
P vs NP: P is Equal to NP: Desired Proof1

Zulfia A. Chotchaeva12

1 Moscow State University3

Received: 10 September 2021 Accepted: 4 October 2021 Published: 15 October 20214

5

Abstract6

Computations and computational complexity are fundamental for mathematics and all7

computer science, including web load time, cryptography (cryptocurrency mining),8

cybersecurity, artificial intelligence, game theory, multimedia processing, computational9

physics, biology (for instance, in protein structure prediction), chemistry, and the P vs. NP10

problem that has been singled out as one of the most challenging open problems in computer11

science and has great importance as this would essentially solve all the algorithmic problems12

that we have today if the problem is solved, but the existing complexity is deprecated and does13

not solve complex computations of tasks that appear in the new digital age as efficiently as it14

needs. Therefore, we need to realize a new complexity to solve these tasks more rapidly and15

easily. This paper presents proof of the equality of P and NP complexity classes when the NP16

problem is not harder to compute than to verify in polynomial time if we forget recursion that17

takes exponential running time and goes to regress only (every problem in NP can be solved in18

exponential time, and so it is recursive, this is a key concept that exists, but recursion does19

not solve the NP problems efficiently). The paper?s goal is to prove the existence of an20

algorithm solving the NP task in polynomial running time. We get the desired reduction of21

the exponential problem to the polynomial problem that takes O(log n) complexity.22

23

Index terms— P vs. NP, P=NP, computational complexity, NP-complete problems, exponential running24
time.25

1 I. Introduction26

Computations and computational complexity are fundamental for mathematics and all computer science,27
including web load time, cryptography (cryptocurrency mining), cybersecurity, artificial intelligence, game theory,28
multimedia processing, computational physics, biology (for instance, in protein structure prediction), chemistry,29
and the P vs. NP problem that has been singled out as one of the most challenging open problems in computer30
science and has great importance as this would essentially solve all the algorithmic problems that we have today31
if the problem is solved, but the existing complexity is deprecated and does not solve complex computations of32
tasks that appear in the new digital age as efficiently as it needs. Therefore, we need to realize a new complexity33
to solve these tasks more rapidly and easily. This paper presents proof of the equality of P and NP complexity34
classes when the NP problem is not harder to compute than to verify in polynomial time if we forget recursion35
that takes exponential running time and goes to regress only (every problem in NP can be solved in exponential36
time, and so it is recursive, this is a key concept that exists, but recursion does not solve the NP problems37
efficiently). The paper’s goal is to prove the existence of an algorithm solving the NP task in polynomial running38
time. We get the desired reduction of the exponential problem to the polynomial problem that takes O(log n)39
complexity.40

Keywords: P vs. NP, P=NP, computational complexity, NP-complete problems, exponential running time.41

10.34257/GJCSTGVOL21IS3PG1 1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

CrossRef DOI of original article: 10.34257/GJCSTGVOL21IS3PG1

3 III. METHODOLOGY A) DEFINITION OF THE TASK

2 Another mention of the underlying problem occurred in a ?42

letter written by Kurt Gödel to John von43

Neumann. Gödel asked whether theorem-proving (now known to be co-NP-complete) could be solved in quadratic44
or linear time, and pointed out one of the most important consequences -that if so, then the discovery of45
mathematical proofs could be automated (Wikipedia, 2021). he P vs. NP problem remains one of the most46
important problems in computational complexity. Until now, the answer to that problem is mainly ”no”. And47
this is accepted by the majority of the scientific world. What is the P versus NP problem, and why should we care?48
The question is represented as P=?NP. P-class problems take polynomial time to solve T a problem (less time),49
NP-class problems take ”nondeterministic” polynomial time to quickly check a problem (more time), therefore, P50
problems are easier to solve while NP problems are harder. NP-complete problems are the hardest and take more51
time than Pclass problems. If P=NP, we could find solutions to search problems as easily as checking since a52
solution for any NP-class problem can be recast into a solution for any other problem of this class. Thus, finding53
the efficient algorithm would prove that P=NP and revolutionize (completely turn) many fields in mathematics54
and computer science. ”The development of mathematics in the direction of greater exactness has -as well known55
-led to large tracts of it becoming formalized so that proofs can be carried out according to the few mechanical56
rules (G?del, 1931).” ”Perhaps in most cases where we seek in vain the answer to the question, the cause of the57
failure, lies in the fact that problems are simpler and easier than the one in hand have been either not at all58
or incompletely solved (Hilbert, 2000).” ”Do NP-complete languages exist? It may not be clear that NP should59
process a language that is as hard as any other language in the class. However, this does turn out to be the case60
(Arora and Barak, 2009).” All previous attempts to solve the problem did not lead to the desired solution. But61
we declare that the desired solution exists. The paper will get easy proof of the equality of complexity classes P62
and NP through (with) the new computational complexity that takes polynomial running time and completely63
rearranges these complexity classes (we will get an exponential-time reduction to polynomial time using a sorted64
array). The paper intends to prove that the use of logarithmic looping of matrices through a sequence of matrix65
loops replaces recursive iterating that takes O(2?) with a completely new and another method (approach) that66
is more efficient and faster than existing and takes O(log n) complexity instead of O(2?) when we solve the67
NP task. (Notice, we will not compare this work and its methods (operators) with what has been done before,68
because it is so different from everything that already exists that it simply makes it impossible, for instance, like69
the Boolean satisfiability problem (SAT), the Cook-Levin theorem, the Curry-Howard isomorphism, the Davis-70
Putnam algorithm, the Davis-Putnam-Logemann-Loveland procedure, the Karp-Lipton theorem, and others that71
are conversions of the listed, that is, have nothing in common what lies at the basis of these approaches, except72
for the fractional differentiation, but it does not rely on old, previously II. Literature Review a) Background ”The73
precise statement of the P versus NP problem was introduced in 1971 by Stephen Cook in his seminal paper ”The74
complexity of theorem-proving procedures”. ?Although the P versus NP problem was formally defined in 1971,75
there were previous inklings of the problems involved, the difficulty of proof, and the potential consequences?The76
relation between the complexity classes P and NP are studied in computational complexity theory, the part of77
the theory of computation dealing with the resources required during computation to solve a given problem. The78
most common resources are time (how many steps it takes to solve a problem) and space?the class P consists79
of all those decision problems that can be solved on a deterministic sequential machine in an amount of time80
that is polynomial in the size of the input; the class NP consists of all those decision problems whose positive81
solutions can be verified in polynomial time ? on a nondeterministic machine. ?To attack the P=NP question,82
the concept of NP-completeness is very useful. ? NPcomplete problems are a set of problems to each of which83
any other NP-problem can be reduced in polynomial time and whose solution may still be verified in polynomial84
time. ? Based on the definition alone, it is not obvious that NP-complete problems exist? The first natural85
problem proven to be NP-complete was the Boolean satisfiability problem, also known as SAT? However, after86
this problem was proved to be NPcomplete, proof by reduction provided a simpler way to show that many other87
problems are also NP-complete, including the game Sudoku?a polynomial-time to Sudoku leads, by a series of88
mechanical transformations, to a polynomial-time solution of satisfiability, which in turn can be used to solve any89
other NP problem in polynomial time? In 1975, R. E. Ladner showed that if P?NP, then there exist problems90
in NP that are neither in P or NP-complete. Such problems are called NP-intermediate problems. The graph91
isomorphism problem, the discrete logarithm problem, and the integer factorization problem are examples of92
problems believed to be NP-intermediate. ?P means ”easy” and ”not in P” means ”hard”, an assumption known93
as Cobham’s thesis. It is a common and reasonably accurate assumption in complexity theory; ?There are94
algorithms for many NP-complete problems, such as the knapsack problem, the traveling salesman problem,95
Boolean satisfiability problem that can solve to optimality many real-world instances in reasonable time?Decades96
of searching have not yielded a fast solution to any of these problems, so most scientists suspect that none of97
these problems can be solved quickly. This, however, has never been proven (Wikipedia, 2021)”.98

3 III. Methodology a) Definition of the Task99

Any NP class problem can be solved by exhaustive search of all instances, i.e., by brute force search that requires100
exponential execution time, this is unacceptable in practice, therefore, we need to solve the NP problems in101
polynomial time, and if one of these NP problems is solved in polynomial time, then the others will also be solved102

2 10.34257/GJCSTGVOL21IS3PG1

in polynomial time. To solve the task where the worst-case run-time on an input of size n is O(n?) that have the103
highest growth rate, i.e., is greater than exponential and factorial time complexities that take O(2?) and O(!),104
we need to transform this task from infinitely exponential complexity class to polynomial complexity class using105
logarithmic looping of n? if the value of n? is explicit, but even then, when this task is solved, it will have no106
practical use as it leads to infinity only. Therefore, we need to solve the task of exponential time complexity that107
takes O(2?) to get the P vs. NP problem solution.108

Exponential runtime complexity O(2?) is often seen in recursive functions that make 2 recursive calls that109
mean that growth doubles with each addition to the input data set (every problem in NP is recursive, and every110
recursive problem is recursively enumerable). Let us take, for example, a set with n elements, where we need to111
find (generate) all subsets of this set (the set theory is commonly used as a foundational system for the whole112
of mathematics and has various applications in computer science; its implications for the concept of infinity and113
its multiple applications have made set known algorithms, methods, principles, concepts, or models, this light114
tutorial is completely new and will easily refute the unsolvability, or intractability, of the P vs. NP problem.115
More precisely, to change the NP, we needed to change the P, i.e., we use a polynomial-time reduction that is the116
perfect way to provide (get) the reducibility and computability of NP that make the problem of NP the problem117
of P.)118

The P versus NP problem is a major unsolved problem in computer science. P-complexity is a deterministic119
polynomial, we consider this complexity class as O(?? ??), where the base is variable, and the exponent of120
the base is constant; and NP-complexity is a nondeterministic polynomial, we consider this complexity class as121
O(c?), where the base is constant, and the exponent of the base is variable. The polynomial and exponential time122
complexities are the most prominently considered and define the complexity of an algorithm. The question is123
-whether every problem whose solution can be quickly verified in polynomial running time can be solved quickly124
in polynomial running time too? If NP-complete problems were efficiently solvable, it could advance considerably125
the solution of other complex problems.126

We take S={a?, a?, a?}. What is the number of all possible and proper subsets of a given set with these 5127
elements? There are 2? subsets and 2?-1 proper subsets that means that the number of all subsets of a set is128
2? and the number of proper subsets is 2?-1. To determine the Big-O runtime complexity, we do not need to129
look at how many recursive calls are made (iterating over all possible subsets of a set) since we will not deal with130
Fibonacci trees, it will be used only the task of the recursive Fibonacci number calculation that is O(2?), as the131
certain patterns in the recurrence relation lead to exponential results too (exponential time grows much faster132
than polynomial time). Therefore, we will get this using a new time complexity that works without a return133
(we capture one of the NP tasks in a sequence of matrix loops that runs in polynomial time and hack its secret134
arrangement without recursion). You need to read the paper at https://doi.org/10.3844/jcssp.2020.1610.1624135
that is published recently and gets O(log n) complexity instead of O(n²) before continuing this reading since136
we will use this O(log n) complexity to solve this exponential task in polynomial running time (read this paper137
instead of the Methodology section, you can start reading at once from the end to clarify faster how it works,138
more exactly, see Lemma 21 and then other lemmas).139

Let’s continue if you have read. We will solve this NP problem using the new matrix model of computation140
concept and prove that this is a perfect path for its solution.141

and finally, we have where the total a=LE=2?= (2?2)?(2?2)?2=(4?4)?2=16?2=32=a?.142
Remark 1.0. There is a reference map of these matrices that is:Loop1,2,3= (2 2 8 8) , (2 2 8 8) , (2 8143
),Loop2,3=(4 4 6 6) , (2 8144
),Loop3,0=(16 2 84 98), (? ? ? ?),145
As a result, we get exponential running time that will rising meteorically if we will add n elements to this set.146

And the third way, let us consider a set with 5 elements:147
Lemma 1.0. The use of the NP task 2 ?? partitioning into 2 2 particles is a key for this NP task solution.148
Proof. We need to generate a set of matrices to find the number of all subsets of this set with five elements149

that is S=?1, 2, 3, 4, 5? (see above), where are 2? subsets that are equal to 2²?2²?2¹. Each of these 2² particles150
gives one complete matrix. The matrices look like these matrix loops: theory a field of major interest; current151
research into the set theory covers a vast array of topics, ranging from the real number line structure to the study152
of the consistency; many mathematical concepts can be defined precisely using only set theory concepts). There153
are three ways to find the number of subsets of a set S= expression of the trend we see would be 2?+2¹+2²+2154
3 +2 ?? ? ¹=2?-1 that takes exponential running time. The second way is to translate between the binary155
representation of the rank and the subset when 1 means the corresponding element is in the subset, and 0 means156
the element is not in the subset, see below:157

where we have inserted these previous 2 2 particles of our partitioned task that is 2?=2²?2²?2 1 in an array158
as one of the options of this array to find the number of all possible subsets of a given above set, and the set of159
these matrices represents this decomposition of 2?=2²?2²?2¹, and each of them works to find these 2² particles,160
note that matrix Loop1,2,3 is not complete since the number of elements of the given set is odd, therefore, Loop161
1,2,3 not works completely and carried over this incomplete matrix that is ?? 2 8)to the following loops; we are162
moving ahead only (without using backtracking to find all subsets), i.e., we do not need to iterate recursively163
(return), we take the result obtained by the first matrix loop and drag it to another matrix loop till we get to164

10.34257/GJCSTGVOL21IS3PG1 3

6 PROOF

finish (terminate), and as we move ahead through the matrix loops, we cut the work at least in half and are165
closer to finding the last result, that is how we proceed, and further, we receive this:166

In the first loop, L=E=2, I=T=sbasis-L=sbasis-E=8, sbasis=10, LE=4=a?, in the second loop, L=E=4=a?,167
I=T=sbasis-L=sbasis-E=6, That means that the number of all subsets of a set is 32, including the empty subset,168
and the number of proper subsets is 32-1=31.169

Remark 2.0. Keep in mind that we not only do not return to the matrix loop, where we already have received170
the result, we find the value of (a)=LE only for one complete matrix of each matrix loop since all complete171
matrices of each matrix loop are the same (they are copies).172

Remark 3.0. Compare these steps with the following: S={1, 2, 3, 4, 5}. Subsets of a given above set: { },173
{1}, {2}, {3}, {4}, {5}, {12}, {13}, {14}, {15}, {23}, {24}, {25}, {34}, {35}, {45}, {123}, {124}, {125}, {134},174
{135}, {145}, {234}, {235}, {245}, {345}, {1234}, {1235}, {1245}, {1345}, {2345}, {{12345}.175

Imagine how many returns (repeating moves) you will need to make to find all subsets of a set when the176
number of elements in a set is 20, 30, 80, etc.177

Let’s go further.178
Proof. Suppose we need to find all subsets of a set with eight elements that is S={1, 2, 3, 4, 5, 6, 7, 8}, where179

are 2? subsets. The number of elements in this set is even, therefore, all matrices of the matrix Loop1,2.3.4 are180
complete. Further we have: then and finally, That is, there are 256 subsets in a given set.181

Remark 1.1. Let us take a look at a visual model of this task that gives the scheme below. We have the182
following:183

The number of all subsets of a set that is 2? is equal to 256. sbasis=10, LE=16=a?, in the third loop, L=16=a?,184
E=2, I=sbasis-L=84, T=sbasis-E=92, sbasis=100, LE=32=a?. We are interested only in the (a) options values,185
as all these elements of a given set are inserted on a position of (a)=LE options in this array after partitioning186
them into 2² equal particles, therefore, it is not necessary to determine the values of T elements, they can be187
dropped since these values will not be used in the main algorithm below. We use this algorithm for these 2²188
particle’s logarithmic looping:189

Theorem 1.0. Regardless of how large the exponent of 2? is, a sequence of matrix loops runs in polynomial190
time solving this exponential-time task, that means that an upper bound on the worst-case running time of this191
2? task is O(log n).192

Corollary 1.0. We get a sequence of matrix loops that runs in polynomial time when we define the value of 2?.193

4 Proof194

Let’s go further and take a set with 30 elements, where we need to find all possible subsets of this set. The195
number of all subsets of this set is 2 , and we have the following:196

, ().197
that takes O(log n) complexity.198
Corollary 2.0. A sequence of matrix loops runs in polynomial running time when the exponent of 2? increases199

and becomes larger.200

5 Proof201

As we need to estimate the asymptotic complexity of this 2 task, let us consider, for instance, a set with 89202
elements, where the number of all possible subsets is 2??. We need to partition the 2?? into 2² particles, where203
are 44 complete and 1 incomplete matrices in the initial matrix loop (note that all incomplete matrices are204
carried to the following matrix loops until there are no complete matrices, then they are sequentially enclosed in205
additional matrix loops on the position of the (a) options in matrices), and we have the following: then Loop1,206
?,44,5 gives the value of the (?? 1) option for all complete matrices of this matrix loop, that is (2 ? 2), and207
goes to the following matrix loop as the value of (L ? E)=(4 ? 4), and defines the number of all complete and208
incomplete matrices for the following matrix loop that is the Loop22,25, ?,44,5 this number is (44,5:2)=22,25.209

?210

6 Proof211

Let us consider a set where the number of elements of this set is much larger than in previous sets. We take the212
set with 4117 elements, the number of all subsets of this set is 2 , and we have the following sequence of matrix213
loops:214

where we get the value of a?=(L ? E)= 2 ? 2=4, (see the reference map of these matrices above), then, where215
we get the value of a?=a? ? a?=16, further, and this matrix loop gives the value of a?=a? ? a?=256, and then,216
then we get the value of a?=a?217

),218
where we have a?=a? ? a?=134078079299425970995740249?006084096, note that the value of L element is219

always equal to E element and the value of I element is always equal to T element if these elements are the220
elements of one of the complete matrices of each matrix loop, further, and then we have a??=a?? ? a??, and,221
and finally, we get the value of a??=a?? ? a??, where L=a??, E=L=a??, I=sbasis-L=sbasis-a??, T=I=sbasis-a??,222

4 10.34257/GJCSTGVOL21IS3PG1

then, Asymptotic analysis of the runtime of an algorithm that we use to find the value of (a) option for each223
complete matrix of these matrix loops is presented below.224

Run-time analysis: Prove that (E:2-(E:2:(sbasis: (I-L))))?sbasis= O(log n). Let T(n) be the execution time225
for the input of size n, where , there exist positive constants and lower order terms that are not considered226
and can be omitted, then: ? T(n)=T?(n)+T?(n)+T?(n)+T?(n)+T?(n)+T?(n)=f(n) ? T?(n)=sbasis-L=I?O(n)227
? T?(n)=I-L?O(n) ? T?(n)=sbasis:(I-L)?O(n) ? T?(n)=E:2:(sbasis:(I-L))?O(n) ? T?(n)=E:2-(E:2:(sbasis:(I-228
L)))?O(n) ? T?(n)=(E:2-(E:2:(sbasis:(I-L))))?sbasis?can omitted (dropped)(? 12 = ??? ? ??? = (???) 2 (65536229
? 16 ? 2) ?????? ? ? 12 ???????).16 84) , (2 8), ????2058,5, 0 =230

Let f and g be functions from positive numbers to positive numbers, wheref(n)=(E:2-(E:2:(sbasis:(I-231
L))))?sbasis=O(n) and g(n)=O(log n). Prove the claim that f(n) is O(g(n)232

) if there exist positive constants c>0 and n?>0 such that:233
To prove big-O, we choose values for c and n? and prove n>1 implies f(n)?c*g(n):234
1. Choose n?=1, 2. Assuming n>1, find/derive a c such that:f(n)?c*g(n) for all n?n?.235
that proves that n>1 implies (n)?c*gn. This means that function (n) does not grow faster than (n), or that236

function (n) is an upper bound for (n) for all sufficiently large ?? ? ?.237

7 An algorithm asymptotic running time is O(log n).238

Notice. The value of sbasis is always equal to 10 , therefore, we consider this value as an easy constant factor,239
and the I element is the 10’s complement of the L element, therefore, it runs very quickly when we define the240
value of (sbasis-L).241

Comparing the asymptotic running time:242
An algorithm that runs in O(n) time is better than one that runs in O(2), and O(log n) is better than O(n).243

8 Theorem 2.0.244

It is enough to decompose n? into the set of n² particles (fractions) to find the value of any n? since there is an245
easy algorithm that solves the exponentialtime task as the task that runs in polynomial time, i.e., we will turn246
(transform) NP to P using O{log n) complexity that will provide an easy solution for every n² particle of this set.247
We have the value of ???????????? that is equal to the value of (a?? ? 65536 ? 16 ? 2) = 2?¹¹?, where 65536, 16248
and 2 are the values from those incomplete matrices that were carried over all loops and the value of T element is249
dropped, we use this algorithm a=(E:2-(E:2:(sbasis:(I-L)))) to find these long values of all (a) options, and thus,250
regardless of how large the exponent of 2? is, a sequence of such matrix loops runs in polynomial time.251

? T(n)=(E:2-(E:2:(sbasis:(I-L))))sbasis As any n? can be easily decomposed (partitioned) into n² . n²?? ? n²?252
n¹ if the exponent of n? is an odd number, and into n²? n²? ? n²? n² if the exponent of n? is an even number, that253
we can find in logarithmic time using O(log n) complexity, hence we can find n? in polynomial time, that means254
that P=NP. For example, it and let, for instance, n?=3 and n?=2, then n?=sbasis-n?=7 and n?=sbasis-n?=8,255
the values of the n? and n? elements of an array are the complements of the n? and n? elements, the sbasis=10,256
suppose we need to find the exponential values of these elements, when n??= 3? and n??= 7?, the bases and the257
exponents of the n? elements are taken arbitrarily, and the current sbasis is successive, then: and further, we258
decompose this array into this matrix of n² particles:259

To solve these matrix loops, we will also use this algorithm: a=n???n??=(n??:2-(n??:2:(sbasis:(n??-260
n??))))?sbasis, The reference matrix for n? looks like this: for n?, where the exponent of this n? is an odd,261
and for n?, where the exponent of this n? is an even. These all are easy to check using any random instance of262
n?.263

9 IV. Results and Discussion264

The major result of this paper is that O(2?)=O(log n), that means that P=NP. Easy to solve (to find), easy to265
check (to verify), don’t you think? This is a study that changes our understanding of a topic. We had to go266
beyond the rules for this. And it is easier than you think. There is no decision problem (a yes-no question) for267
the NP problem anymore, and we do not need the certificate for this, since we have simplified and Given a set268
(an array) of positive integers in matrix form: (? 1 ? ? 2 ? ? 3 ? ? 4 ?), (3? 2? 7? 8?), (3² ? 3² ? 3¹ 2² ? 2²269
? 2¹ 7² ? 7² ? 7¹ 8² ? 8² ? 8¹). (3270

).(??² ? ??² ? ? ? ??² ? ?? ?? 2 ? ?? 2 ? ? ? ??² ? ?? ??² ? ??² ? ? ? ??² ? ?? ??² ? ??² ? ? ? ??² ? ??) (271
?? 2 ? ?? 2 ? ? ? ??² ? ??² ?? 2 ? ?? 2 ? ? ? ??² ? ??² ?? 2 ? ?? 2 ? ? ? ??² ? ??² ?? 2 ? ?? 2 ? ? ? ??² ? ??²)272

eliminated all that was complicated multiple times over by various wrong theories and their numerous273
modifications, we no longer even need the SAT. The NP tasks do not require making two recursive calls when274
growth doubles with each addition to the input data set, we have a new path to solve this problem in polynomial275
running time using a sequence of matrix loops that uses a sorted array and takes O(log n) complexity. We get276
the desired reduction of the exponential problem to the polynomial problem. There are some known definitions277
of the P vs. NP problem that will be read in a new way in the future: ’The P versus NP problem is to determine278
whether every language accepted by some nondeterministic algorithm in polynomial time is also accepted by279
some (deterministic) algorithm in polynomial time (Cook, 2000).” ’P versus NP -a gift to mathematics from280
computer science (Smale, 2000).” ”It is interesting to recall that the motivation for the development of the theory281

10.34257/GJCSTGVOL21IS3PG1 5

10 V. CONCLUSION

of computation, on which theoretical computer science is based, came from purely mathematical considerations.282
The paradox is emerging from Cantor’s set theory emphasized the need to clarify the foundations of mathematics283
and, under Hilbert’s leadership, concentrated attention on axiomatic proof systems. The quest to understand the284
power and limitations of axiomatizable systems led directly to the questions about all possible formal mechanical285
ways of deriving proofs (sequences with desired properties). In modern terms, it led to the search for what is286
and is not effectively computable (Hartmanis, 1989).” ”The hope that mathematical methods employed in the287
investigation of formal logic would lead to purely computational methods for obtaining mathematical theorems288
goes back to Leibniz? ??Davis & Putnam,1959).” ”Your definition of experiments by using point-sets is perfectly289
satisfactory to me, I thought, however, that it might be good to say explicitly that a computation may be part of290
an ”observation” (Neumann, 2005).” ”The most comprehensive formal systems yet set up are, on the one hand, ?291
and, on the other, the axiom system for set theory?These two systems are so extensive that all methods of proof292
used in mathematics today have been formalized in them (G?del, 1931).” ”Occasionally it happens that we seek293
the solution under insufficient hypotheses or in an incorrectly sense (Hilbert, 2000).” ”The principal technique294
used for demonstrating that two problems are We got the decomposition of this n? task into n² particles that295
transforms the exponential time to a polynomial that uses the new O(log n) complexity for O(n²), i.e., for these296
n² particles solving. Further, we make matrix loops for each of these ?? 2 particles that look like this:297

is obvious, as we are aware, that 3?=3²?3²?3¹, or 5?=5²?5²?5², etc. The constant factors of this new algorithm298
will remain sustainable (steady) and scalable when n? grows and goes to infinity. Let us consider the following:299

related is that of ”reducing” one to the other, by giving a constructive transformation that maps any instance300
of the first problem into an equivalent instance of the second (Garey, 1979).” ”?any recognition problem solved301
by a polynomial time-bounded nondeterministic Turing machine can be reduced to the problem of determining302
whether a given proposition formula is a tautology (Cook, 1971).” ”The class of languages recognizable by string303
recognition algorithms which operate in polynomial time is also invariant under a wide range of changes in the304
class of algorithms (Karp, 1972).” ’Due to the fact that no NP-complete problem can be solved in polynomial305
time? (Crescenzi & Kann, 1994).” ”I offer a personal perspective on what it’s about, why it’s reasonable to306
conjecture that P?NP is both true and provable? ??Aaronson, 2011).” ”?we can avoid brute -force search in307
many problems and obtain polynomial-time solutions. However, attempts to avoid brute force in certain other308
problems, including many interesting and useful ones, haven’t been successful, and polynomial-time algorithms309
that solve them aren’t known to exist (Sipser, 2012).” ”As we solve larger and more complex problems with310
greater computational power and cleverer algorithms, the problem we cannot tackle begin to stand out (Fortnow,311
2009).” ”In recent years, the reducibility of computation in real environments to the standard Turing model has312
been brought increasingly into question (Cooper, 2004).” ”The subject my talk is perhaps most directly indicated313
by simply asking two questions: first, is it harder to multiply than to add? and second, why? I grant I have put314
first of these questions rather loosely; nevertheless, I think the answer ought to be: yes. It is the second, which315
asks for a justification of this answer which provides the challenge (Cobham, 1965).” ”Most of the computational316
problems that arise in practice turn out to be complete for one of a handful of complexity classes, even under317
very restrictive notions of reducibility (Agrawal, Allender, Impagliazzo, Pitassi, & Rudich, 2001).” ”At present,318
when faced with a seemingly hard problem in NP, we can only hope to prove that it is not in P assuming that NP319
is different from P. ??Goldreich, 2008).” ”?an algorithm is any well-designed computational procedure that takes320
some value, or set of values, as input and procedures some value, or set of values, as output. An algorithm is321
thus a sequence of computational steps that transform the input into the output ??Cormen, Lieserson, & Rivast,322
2009).” ”It is well known that every set in P has small circuits. Adelman was recently proved the stronger result323
that every set accepted in polynomial time by a randomized Turing machine has small circuits (Lipton & Karp,324
1980).” ’I see complexity as the intricate and exquisite interplay between computation (complexity classes) and325
applications (that is, problem) (Papadimitriou, 1994).” ”We do not know of polynomialtime algorithms for these326
problems, and we cannot prove that polynomial-time algorithms exist?These are the NP-complete problems?327
??Kleinberg & Tardos, 2006).” ”?there is a strictly ascending sequence with a minimal pair of upper bounds328
to the sequence?if P?NP then there are members of NP-P that are not polynomial complete (Ladner, 1975).”329
”?minimal propositional logic corresponds to dependent simply typed-calculus? (Sorensen & Urzyczyn, 1998).”330
’Practical problems requiring polynomial time are almost solvable in an amount of time that we can tolerate, while331
those that require exponential time generally cannot be solved except for small instances (Hopcroft, Motwani, &332
Ullman, 2001).” ”Some success was had by causing the machine to systematically eliminate the redundancy; but333
the problem of total length increasing rapidly still remained when more complicated problems were attempted334
(Davis, Logemann, & Loveland, 1961).” ”G?del and others went on to show that various other mathematically335
interesting statements, besides the consistency statement, are undecidable by P, assuming it to be consistent?336
(Boolos, Burgess, & Jeffrey, 2007).” ”There has been much work in getting the number of variables needed for337
an undecidability result to be small ??Gasarch, 2021).”338

10 V. Conclusion339

It is possible to solve the exponential-time task in polynomial time if we forget recursion that takes O(2?)340
complexity and goes to regress only. As you see, it is clear that the new notion of the decision procedure for the341
NP problem exists. We have a completely new definition of the certificate for this NP problem that can not only342
be checked in polynomial time but also solved in polynomial time. And there is no case when this new uniform343

6 10.34257/GJCSTGVOL21IS3PG1

procedure is not valid, the algorithm terminates with a correct answer on any input instance of 2? and does not344
involve seeking forever (without Halting problem, without approximation), i.e., this new certificate is consistent,345
therefore, we solve this NP task rapidly,346

10.34257/GJCSTGVOL21IS3PG1 7

10 V. CONCLUSION

????1, ? , 2058,5 = (2 2 8 8) 2058 ???????? , (2 8
),

????1029,25, ? ,2058,5 = (4 4 6 6)
1029
????????

, (2
8),

????514,625, ? ,2058,5 = (16 16 84 84) 514
????????

, (16
84)
, (

2 8
),

????257,3125, ? ,2058,5 = (256 256 744 744) 257
????????

, (
16
84

) ,
(

2
8
),

????128,65625, ? ,2058,5 = (65536 65536 34464 34464) 128 ???????? , (
65536
34464

) , (16
84

) ,
(2
8

),

????64,328125, ? ,2058,5 = (4294967296 4294967296 5705032704 5705032704) 64
????????

, (
65536
34464

) ,
(

16
84
)
,
(

2
8
),

????32,1640625, ? ,2058,5 =
= (18446744073709551616 18446744073709551616 81553255926290448384 81553255926290448384) 32

????????
, (
65536
34464

) ,
(

16
84

)
,
(
2
8

),

????16,08203125, ? ,2058,5 =
= (340282366920938463463374607431768211456 340282366920938463463374607431768211456 659717633079061536536625392568231788544 659717633079061536536625392568231788544 16

????????
)

,

(65536 34464) , (16 84) , (2
8
),

????8,041015625, ? ,2058,5 =
= (115792089237316195423570985008687907853269984665640564039457584007913129639936 1 ? 884207910762683804576429014991312092146730015334359435960542415992086870360064 8 ?) 8

????????
, (65536

34464
) ,
(
16
84

) ,
(

Figure 1:

8 10.34257/GJCSTGVOL21IS3PG1

.1 Acknowledgment

.1 Acknowledgment347

I would like to express my special thanks of gratitude to the reviewers for their thoughtful comments and the348
effort and expertise that they contribute to review the manuscript.349

.2 Funding Information350

This research received no specific grant from any funding agency in the public, commercial, or notfor-profit351
sectors.352

.3 Conflict of Interest353

The corresponding author has NO conflicts of interest to disclose.354

.4 Ethics355

This article is original and contains unpublished material.356

[Cooper (ed.) ()] A compendium of NP optimization problems, S B Cooper . U. K. (PDF) Crescenzi, P., & Kann,357
V. (ed.) 2004. 1994. Computability theory. University Leeds (PDF)358

[Davis and Putnam ()] ‘A computing Procedure for Quantification theory’. M Davis , H Putnam . Journal of the359
ACM 1959. 7.360

[Davis et al. ()] ‘A Machine Program for theorem proving’. M Davis , G Logemann , D Loveland . Communica-361
tions of the ACM 1961. 5 (7) .362

[Aaronson ()] S Aaronson . P= ?NP. (PDF), 2017.363

[Kleinberg and Tardos ()] Algorithm design, J Kleinberg , E Tardos . 2005. PDF. Cornell University364

[Hartmanis ()] Bulletin of the European Association for Theoretical Computer Science, J Hartmanis . 1989. 38365
p. . (Gödel, von Neumann, and the P=?NP problem)366

[Boolos et al. ()] Computability and logic, G S Boolos , J P Burgess , R C Jeffrey . 2007. Cambridge University367
Press.368

[Arora and Barak ()] Computational complexity: a modern approach, S Arora , B Barak . 2009. Cambridge369
University Press.370

[Cook (2000)] S A Cook . The P versus NP Problem, April 2000. 18 October 2006. Clay Mathematics Institute.371

[Goldreich ()] O ; P Goldreich , NP , Np-Completeness . The Basics of Computational Complexity, 2010.372
Cambridge University Press.373

[Gasarch ()] Hilbert’s Tenth Problem: Refinements and Variants, W Gasarch . arXiv:2104.07220v2. 2002.374
(math.LO)375

[Cormen et al. ()] Introduction to algorithms, I Cormen , C Leiserson , R Rivast , C Stein . 2009. Cambridge,376
Massachusetts. London, England: The MIT Press. (PDF)377

[Hopcroft et al. ()] Introduction to automata theory, languages, and computations, J E Hopcroft , R Motwani ,378
J D Ullman . 2001. PDF.379

[Sipser ()] Introduction to the Theory of Computation, M Sipser . 2012. (Cengage learning)380

[Morten Heine B. Sorensen, Pawel Urzyczyn (ed.) ()] Lectures on the Curry-Howard Isomorphism, Morten381
Heine B. Sorensen, & Pawel Urzyczyn (ed.) 1998. University of Copenhagen & Warsaw382

[Hilbert ()] Mathematical problems, D Hilbert . 2000. PDF. 37.383

[Smale ()] ‘Mathematical problems for the next century’. S Smale . 10.1007/BF03025291. The mathematical384
intelligencer 2000. 20 (2) .385

[G?del ()] On formally undecidable propositions of principia mathematics and related systems, K G?del . 1931.386
(PDF)387

[Ladner ()] ‘On the structure of Polynomialtime reducibility’. R E Ladner . Journal of the ACM 1975. 23 (1) .388

[Wikipedia ()] ‘P versus NP problem’. Wikipedia . Wikipedia 2021.389

[Karp ()] Reducibility among Combinatorial Problems, R M Karp . 10.1007/978-3-540-68279-0_8. 1972. 2010.390
Springer.391

[Agrawal et al. ()] ‘Reducing the complexity of reductions’. M Agrawal , E Allender , R Impagliazzo , T Pitassi392
, S Rudich . Basil. Computational complexity 2001. 2001. Birkhauser Verlag. 10 p. . (PDF)393

[Neumann ()] ‘Selected letters. History of mathematics’. Von J Neumann . Computational Complexity, 2005.394
1993. Addison-Wesley. 27. (PDF) 26. Papadimitriou, C.)395

[Lipton and Karp ()] ‘Some connections between nonuniform complexity classes’. R J Lipton , R M Karp .396
Proceedings of the ACM, (the ACM) 1980. p. .397

10.34257/GJCSTGVOL21IS3PG1 9

http://dx.doi.org/10.1007/BF03025291
http://dx.doi.org/10.1007/978-3-540-68279-0_8

10 V. CONCLUSION

[Cook ()] The complexity of theoremproving procedures, S A Cook . 1971. University of Toronto. (PDF)398

[Cobham ()] The intrinsic computational difficulty of functions, A Cobham . 1965. PDF.399

[Chotchaeva ()] ‘The new matrix model of computation based purely on quite a new concept of the matrix400
computations for extremely quick web pages loading’. Z A Chotchaeva . Journal of Computer Science 2020.401
16 (11) p. .402

[Fortnow ()] ‘The status of the P vs NP’. L Fortnow . Computers and Intractability, M R Garey, O S Johnson403
(ed.) (San Francisco) 2009. 1979. freeman. 52 p. .404

10 10.34257/GJCSTGVOL21IS3PG1

