
© 2021. Zulfia A. Chotchaeva. This research/review article is distributed under the terms of the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts
of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-
nd/4.0/.

Global Journal of Computer Science and Technology: G
Interdisciplinary
Volume 21 Issue 3 Version 1.0 Year 2021
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

P vs NP: P is Equal to NP: Desired Proof
 By Zulfia A. Chotchaeva

 Moscow State University
Abstract- Computations and computational complexity are fundamental for mathematics and all computer
science, including web load time, cryptography (cryptocurrency mining), cybersecurity, artificial
intelligence, game theory, multimedia processing, computational physics, biology (for instance, in protein
structure prediction), chemistry, and the P vs. NP problem that has been singled out as one of the most
challenging open problems in computer science and has great importance as this would essentially solve
all the algorithmic problems that we have today if the problem is solved, but the existing complexity is
deprecated and does not solve complex computations of tasks that appear in the new digital age as
efficiently as it needs. Therefore, we need to realize a new complexity to solve these tasks more rapidly
and easily. This paper presents proof of the equality of P and NP complexity classes when the NP
problem is not harder to compute than to verify in polynomial time if we forget recursion that takes
exponential running time and goes to regress only (every problem in NP can be solved in exponential
time, and so it is recursive, this is a key concept that exists, but recursion does not solve the NP problems
efficiently). The paper’s goal is to prove the existence of an algorithm solving the NP task in polynomial
running time. We get the desired reduction of the exponential problem to the polynomial problem that
takes O(log n) complexity.

Keywords: P vs. NP, P=NP, computational complexity, NP-complete problems, exponential running time.

GJCST-G Classification: I.2.8

PvsNPPisEqualtoNPDesiredProof

 Strictly as per the compliance and regulations of:

P vs NP: P is Equal to NP: Desired Proof

1 © 2021 Zulfia A. Chotchaeva. This open access article is available
under the Creative Commons Attribution-NonCommercial-No
Derivatives (CC BY-NC-ND) 4.0 license.

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

1

 (

)
G

Y
e
a
r

20
21

Abstract-

I. Introduction

Computations and computational complexity are
fundamental for mathematics and all computer science,
including web load time, cryptography (cryptocurrency
mining), cybersecurity, artificial intelligence, game theory,
multimedia processing, computational physics, biology (for
instance, in protein structure prediction), chemistry, and the P
vs. NP problem that has been singled out as one of the most
challenging open problems in computer science and has
great importance as this would essentially solve all the
algorithmic problems that we have today if the problem is
solved, but the existing complexity is deprecated and does not
solve complex computations of tasks that appear in the new
digital age as efficiently as it needs. Therefore, we need to
realize a new complexity to solve these tasks more rapidly and
easily. This paper presents proof of the equality of P and NP
complexity classes when the NP problem is not harder to
compute than to verify in polynomial time if we forget recursion
that takes exponential running time and goes to regress only
(every problem in NP can be solved in exponential time, and
so it is recursive, this is a key concept that exists, but recursion
does not solve the NP problems efficiently). The paper’s goal
is to prove the existence of an algorithm solving the NP task in
polynomial running time. We get the desired reduction of the
exponential problem to the polynomial problem that takes
O(log n) complexity.
Keywords: P vs. NP, P=NP, computational complexity,
NP-complete problems, exponential running time.

Another mention of the underlying problem
occurred in a … letter written by Kurt Gödel to John von
Neumann. Gödel asked whether theorem-proving (now
known to be co-NP-complete) could be solved in
quadratic or linear time, and pointed out one of the most
important consequences – that if so, then the discovery
of mathematical proofs could be automated (Wikipedia,
2021).

he P vs. NP problem remains one of the most
important problems in computational complexity.
Until now, the answer to that problem is mainly

“no”. And this is accepted by the majority of the
scientific world. What is the P versus NP problem, and
why should we care? The question is represented as
P=?NP. P-class problems take polynomial time to solve

T

a problem (less time), NP-class problems take “non-
deterministic” polynomial time to quickly check a
problem (more time), therefore, P problems are easier to
solve while NP problems are harder. NP-complete
problems are the hardest and take more time than P-
class problems. If P=NP, we could find solutions to
search problems as easily as checking since a solution
for any NP-class problem can be recast into a solution
for any other problem of this class. Thus, finding the
efficient algorithm would prove that P=NP and
revolutionize (completely turn) many fields in
mathematics and computer science. “The development
of mathematics in the direction of greater exactness has
– as well known – led to large tracts of it becoming
formalized so that proofs can be carried out according
to the few mechanical rules (Gȍdel, 1931).” “Perhaps in
most cases where we seek in vain the answer to the
question, the cause of the failure, lies in the fact that
problems are simpler and easier than the one in hand
have been either not at all or incompletely solved
(Hilbert, 2000).” “Do NP-complete languages exist? It
may not be clear that NP should process a language
that is as hard as any other language in the class.
However, this does turn out to be the case (Arora and
Barak, 2009).” All previous attempts to solve the
problem did not lead to the desired solution. But we
declare that the desired solution exists. The paper will
get easy proof of the equality of complexity classes P
and NP through (with) the new computational
complexity that takes polynomial running time and
completely rearranges these complexity classes (we will
get an exponential-time reduction to polynomial time
using a sorted array). The paper intends to prove that
the use of logarithmic looping of matrices through a
sequence of matrix loops replaces recursive iterating
that takes O(2ⁿ) with a completely new and another
method (approach) that is more efficient and faster than
existing and takes O(log n) complexity instead of O(2ⁿ)
when we solve the NP task. (Notice, we will not compare
this work and its methods (operators) with what has
been done before, because it is so different from
everything that already exists that it simply makes it
impossible, for instance, like the Boolean satisfiability
problem (SAT), the Cook-Levin theorem, the Curry-
Howard isomorphism, the Davis-Putnam algorithm, the
Davis-Putnam-Logemann-Loveland procedure, the
Karp-Lipton theorem, and others that are conversions of
the listed, that is, have nothing in common what lies at
the basis of these approaches, except for the fractional
differentiation, but it does not rely on old, previously

Author: Moscow State University*, Krasniy Kurgan 369387, Russia.
e-mail: lesya.chotchaeva8@gmail.com
The self-study

Zulfia A. Chotchaeva1

*

II. Literature Review

a) Background

“The precise statement of the P versus NP

problem was introduced in 1971 by Stephen Cook in his
seminal paper “The complexity of theorem-proving
procedures”. …Although the P versus NP problem was
formally defined in 1971, there were previous inklings of
the problems involved, the difficulty of proof, and the
potential consequences…The relation between the
complexity classes P and NP are studied in
computational complexity theory, the part of the theory
of computation dealing with the resources required
during computation to solve a given problem. The most
common resources are time (how many steps it takes to
solve a problem) and space…the class P consists of all
those decision problems that can be solved on a
deterministic sequential machine in an amount of time
that is polynomial in the size of the input; the class NP
consists of all those decision problems whose positive
solutions can be verified in polynomial time … on a non-
deterministic machine. …To attack the P=NP question,
the concept of NP-completeness is very useful. … NP-
complete problems are a set of problems to each of
which any other NP-problem can be reduced in
polynomial time and whose solution may still be verified
in polynomial time. … Based on the definition alone, it is
not obvious that NP-complete problems exist… The first
natural problem proven to be NP-complete was the
Boolean satisfiability problem, also known as SAT…
However, after this problem was proved to be NP-
complete, proof by reduction provided a simpler way to

show that many other problems are also NP-complete,
including the game Sudoku…a polynomial-time to
Sudoku leads, by a series of mechanical
transformations, to a polynomial-time solution of
satisfiability, which in turn can be used to solve any
other NP problem in polynomial time… In 1975, R. E.
Ladner showed that if P≠NP, then there exist problems
in NP that are neither in P or NP-complete. Such
problems are called NP-intermediate problems. The
graph isomorphism problem, the discrete logarithm
problem, and the integer factorization problem are
examples of problems believed to be NP- intermediate.
…P means "easy" and "not in P" means "hard", an
assumption known as Cobham’s thesis. It is a common
and reasonably accurate assumption in complexity
theory; …There are algorithms for many NP-complete
problems, such as the knapsack problem, the traveling
salesman problem, Boolean satisfiability problem that
can solve to optimality many real-world instances in
reasonable time…Decades of searching have not
yielded a fast solution to any of these problems, so most
scientists suspect that none of these problems can be
solved quickly. This, however, has never been proven
(Wikipedia, 2021)”.

III. Methodology

a) Definition of the Task
Any NP class problem can be solved by

exhaustive search of all instances, i.e., by brute force
search that requires exponential execution time, this is
unacceptable in practice, therefore, we need to solve
the NP problems in polynomial time, and if one of these
NP problems is solved in polynomial time, then the
others will also be solved in polynomial time. To solve
the task where the worst-case run-time on an input of
size n is O(nⁿ) that have the highest growth rate, i.e., is
greater than exponential and factorial time complexities
that take O(2ⁿ) and O(!), we need to transform this task
from infinitely exponential complexity class to polynomial
complexity class using logarithmic looping of nⁿ if the
value of nⁿ is explicit, but even then, when this task is
solved, it will have no practical use as it leads to infinity
only. Therefore, we need to solve the task of exponential
time complexity that takes O(2ⁿ) to get the P vs. NP
problem solution.

Exponential runtime complexity O(2ⁿ) is often
seen in recursive functions that make 2 recursive calls
that mean that growth doubles with each addition to the
input data set (every problem in NP is recursive, and
every recursive problem is recursively enumerable). Let
us take, for example, a set with n elements, where we
need to find (generate) all subsets of this set (the set
theory is commonly used as a foundational system for
the whole of mathematics and has various applications
in computer science; its implications for the concept of
infinity and its multiple applications have made set

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

2

(
)

Y
e
a
r

20
21

G
P vs NP: P is Equal to NP: Desired Proof

known algorithms, methods, principles, concepts, or
models, this light tutorial is completely new and will
easily refute the unsolvability, or intractability, of the P
vs. NP problem. More precisely, to change the NP, we
needed to change the P, i.e., we use a polynomial-time
reduction that is the perfect way to provide (get) the
reducibility and computability of NP that make the
problem of NP the problem of P.)

The P versus NP problem is a major unsolved
problem in computer science. P-complexity is a
deterministic polynomial, we consider this complexity
class as O(𝑛𝑛𝑐𝑐), where the base is variable, and the
exponent of the base is constant; and NP-complexity is
a nondeterministic polynomial, we consider this
complexity class as O(cⁿ), where the base is constant,
and the exponent of the base is variable. The polynomial
and exponential time complexities are the most
prominently considered and define the complexity of an
algorithm. The question is - whether every problem
whose solution can be quickly verified in polynomial
running time can be solved quickly in polynomial
running time too? If NP-complete problems were
efficiently solvable, it could advance considerably the
solution of other complex problems.

We take S={a₀, a₁, a₂}.

Subsets of a given set:

0 000 { } the empty subset

1 001 {a₀}
2 010 {a₁}
3 011 {a₀, a₁}
4 100 {a₂}
5 101 {a₀, a₂}
6 110 {a₁, a₂}
7 111 {a₀, a₁, a₂}

S= {1, 2, 3, 4, 5}.

What is the number of all possible and proper
subsets of a given set with these 5 elements? There are
2ⁿ subsets and 2ⁿ-1 proper subsets that means that the
number of all subsets of a set is 2⁵ and the number of
proper subsets is 2⁵-1. To determine the Big-O runtime
complexity, we do not need to look at how many
recursive calls are made (iterating over all possible
subsets of a set) since we will not deal with Fibonacci
trees, it will be used only the task of the recursive
Fibonacci number calculation that is O(2ⁿ), as the
certain patterns in the recurrence relation lead to
exponential results too (exponential time grows much
faster than polynomial time). Therefore, we will get this
using a new time complexity that works without a return
(we capture one of the NP tasks in a sequence of matrix
loops that runs in polynomial time and hack its secret
arrangement without recursion). You need to read the
paper at https://doi.org/10.3844/jcssp.2020.1610.1624
that is published recently and gets O(log n) complexity
instead of O(n²) before continuing this reading since we
will use this O(log n) complexity to solve this exponential
task in polynomial running time (read this paper instead
of the Methodology section, you can start reading at

once from the end to clarify faster how it works, more
exactly, see Lemma 21 and then other lemmas).

Let’s continue if you have read. We will solve
this NP problem using the new matrix model of
computation concept and prove that this is a perfect
path for its solution.

and finally, we have

 where the total a=LE=2⁵= (2∙2)∙(2∙2)∙2=(4∙4)∙2=16∙2=32=a₃.

 Remark 1.0.

There is a reference map of these matrices

that is:

Loop1,2,3= (
2 2
8 8

) , (2 2
8 8

) , (
2
8

),

 Loop2,3=(
4 4
6 6

) , (
2
8

),

 Loop3,0=(
16 2
84 98

),

(
𝐿 𝐸
𝐼 𝑇

),

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

3

 (

)
G

Y
e
a
r

20
21

P vs NP: P is Equal to NP: Desired Proof

As a result, we get exponential running time that will
rising meteorically if we will add n elements to this set.
And the third way, let us consider a set with 5 elements:

Lemma 1.0. The use of the NP task 2𝑛𝑛
partitioning into 22 particles is a key for this NP task
solution.

Proof. We need to generate a set of matrices to
find the number of all subsets of this set with five
elements that is S=⦃1, 2, 3, 4, 5⦄ (see above), where are
2⁵ subsets that are equal to 2²∙2²∙2¹. Each of these 2²
particles gives one complete matrix. The matrices look
like these matrix loops:

theory a field of major interest; current research into the
set theory covers a vast array of topics, ranging from the
real number line structure to the study of the
consistency; many mathematical concepts can be
defined precisely using only set theory concepts). There
are three ways to find the number of subsets of a set S=

expression of the trend we see would be
2⁰+2¹+2²+23+2𝑛𝑛−¹=2ⁿ-1 that takes exponential
running time. The second way is to translate between
the binary representation of the rank and the subset
when 1 means the corresponding element is in the
subset, and 0 means the element is not in the subset,
see below:

where we have inserted these previous 22 particles of
our partitioned task that is 2⁵=2²∙2²∙21 in an array as one
of the options of this array to find the number of all
possible subsets of a given above set, and the set of
these matrices represents this decomposition of
2⁵=2²∙2²∙2¹, and each of them works to find these 2²
particles, note that matrix Loop1,2,3 is not complete
since the number of elements of the given set is odd,
therefore, Loop 1,2,3 not works completely and carried

over this incomplete matrix that is(2
8)to the following

loops; we are moving ahead only (without using
backtracking to find all subsets), i.e., we do not need to
iterate recursively (return), we take the result obtained by
the first matrix loop and drag it to another matrix loop till
we get to finish (terminate), and as we move ahead
through the matrix loops, we cut the work at least in half
and are closer to finding the last result, that is how we
proceed, and further, we receive this:

In the first loop, L=E=2, I=T=sbasis-
L=sbasis-E=8, sbasis=10, LE=4=a₁, in the second
loop, L=E=4=a₁, I=T=sbasis-L=sbasis-E=6,

{a₀, a₁, …, a𝑛𝑛-1}. The Tower of Hanoi is O(2ⁿ), as the

T(n)=(E:2-(E:2:(sbasis:(I-L))))∙sbasis

that provides the following

• Loop1,2,3 gives a₁=20:2-(20:2:(100:(80-20)))=4=2²
- for Loop1,2 that goes to (4∙4)∙2

• Loop2,3 gives a₂=40:2-(40:2:(100:(60-40)))=16=4²
- for Loop2 that goes to 16∙2

• Loop3,0 gives a₃=200:2-(200:2:(10000:(8400-
1600)))=32=16∙2 - for Loop3

That means that the number of all subsets of a
set is 32, including the empty subset, and the number of
proper subsets is 32-1=31.

Remark 2.0. Keep in mind that we not only do
not return to the matrix loop, where we already have
received the result, we find the value of (a)=LE only for
one complete matrix of each matrix loop since all
complete matrices of each matrix loop are the same
(they are copies).

Remark 3.0. Compare these steps with the following:

S={1, 2, 3, 4, 5}.
Subsets of a given above set:

{ }, {1}, {2}, {3}, {4}, {5}, {12}, {13}, {14}, {15}, {23}, {24}, {25}, {34}, {35}, {45}, {123}, {124}, {125},

{134}, {135}, {145}, {234}, {235}, {245}, {345}, {1234}, {1235}, {1245}, {1345}, {2345}, {{12345}.

Imagine how many returns (repeating moves) you will need to make to find all subsets of a set when the
number of elements in a set is 20, 30, 80, etc.

Let’s go further.

Proof. Suppose we need to find all subsets of a set with eight elements that is S={1, 2, 3, 4, 5, 6, 7, 8}, where are 2⁸
subsets. The number of elements in this set is even, therefore, all matrices of the matrix Loop1,2.3.4 are complete.
Further we have:

then

and finally,

That is, there are 256 subsets in a given set.

Remark 1.1. Let us take a look at a visual model of this task that gives the scheme below. We have the following:

The number of all subsets of a set that is 2⁸ is equal to 256.

𝐿𝑜𝑜𝑝1,2,3,4 = (
2 2
8 8

) , (
2 2
8 8

) , (
2 2
8 8

) , (
2 2
8 8

),

𝐿𝑜𝑜𝑝3,4 = (
4 4
6 6

) , (
4 4
6 6

),

𝐿𝑜𝑜𝑝4,0 = (
16 16
84 84

).

(2∙2) (2∙2) (2∙2) (2∙2) ─ Loop1,2,3,4, where L=E=2, I=8=sbasis-2, a₁=2∙2=4

(4 ∙ 4) (4 ∙ 4) ─ Loop3,4, where L=E=4, I=6=sbasis-4, a₂=𝑎1
2=4∙4=16

 (16 ∙ 16) ─ Loop4,0, where L=E=16, I=84=sbasis-16, a₃=𝑎2
2=16∙16=256

 256

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

4

(
)

Y
e
a
r

20
21

G
P vs NP: P is Equal to NP: Desired Proof

Lemma 2.0. The partitioning of the NP task 2𝑛𝑛 into 22 particles remains a key for this NP task solution when the
exponent of 2𝑛𝑛 grows.

sbasis=10, LE=16=a₂, in the third loop, L=16=a₂,
E=2, I=sbasis-L=84, T=sbasis-E=92, sbasis=100,
LE=32=a₃. We are interested only in the (a) options
values, as all these elements of a given set are inserted
on a position of (a)=LE options in this array after
partitioning them into 2² equal particles, therefore, it is
not necessary to determine the values of T elements,
they can be dropped since these values will not be used
in the main algorithm below. We use this algorithm for
these 2² particle’s logarithmic looping:

Theorem 1.0.
Regardless of how large the exponent of 2ⁿ is, a

sequence of matrix loops runs in polynomial time
solving this exponential-time task, that means that an
upper bound on the worst-case running time of this 2ⁿ
task is O(log n).

Corollary 1.0. We get a sequence of matrix
loops that runs in polynomial time when we define the
value of 2ⁿ.

Proof
Let’s go further and take a set with 30 elements,

where we need to find all possible subsets of this set.
The number of all subsets of this set is 2 , and we
have the following:

then

and then

further,

and,

and, finally,

 𝐿𝑜𝑜𝑝1, … ,15 = (
2 2
8 8

)
15 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

,

𝐿𝑜𝑜𝑝7,5, … ,15 = (
4 4
6 6

)
7 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
4
6

),

𝐿𝑜𝑜𝑝3,75, … ,15 = (
16 16
84 84

)
3 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
16
84

) , (
4
6

),

𝐿𝑜𝑜𝑝1,875, … ,15 = (256 256
744 744

)
1 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (256
744

) , (
16
84

), (4
6

),

𝐿𝑜𝑜𝑝1,875, … ,15 = (
65536 256
34464 𝑑𝑟𝑜𝑝𝑝𝑒𝑑

) , (
16 4
84 96

),

𝐿𝑜𝑜𝑝15, 0 = (
16777216 64
83222784 𝑑𝑟𝑜𝑝𝑝𝑒𝑑

).

that takes O(log n) complexity.

Corollary 2.0. A sequence of matrix loops runs in polynomial running time when the exponent of 2ⁿ increases and
becomes larger.

Proof
As we need to estimate the asymptotic complexity of this 2 task, let us consider, for instance, a set with 89

elements, where the number of all possible subsets is 2⁸⁹. We need to partition the 2⁸⁹ into 2² particles, where are 44
complete and 1 incomplete matrices in the initial matrix loop (note that all incomplete matrices are carried to the
following matrix loops until there are no complete matrices, then they are sequentially enclosed in additional matrix
loops on the position of the (a) options in matrices), and we have the following:

then

𝐿𝑜𝑜𝑝1, … , 44,5 = (
2 2
8 8

)
44 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

𝐿𝑜𝑜𝑝22,25, … ,44,5 = (
4 4
6 6

)
22 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

 a=LE=(E:2-(E:2:(sbasis:(I-L))))∙sbasis

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

5

 (

)
G

Y
e
a
r

20
21

P vs NP: P is Equal to NP: Desired Proof

30

𝑛𝑛

That is, there are 1 073 741 824 subsets in this set with 30 elements. We use this algorithm below for matrices of
each matrix loop:

and

we have

and then,

and finally,

This matrix looping gives a sequence that runs in polynomial time.

The number of all subsets of this set with 89 elements is 618970019642690137449562112.

Corollary 3.0. The sequence of matrix loops runs in polynomial time when the exponent of 2ⁿ becomes extremely
large.

𝐿𝑜𝑜𝑝11,125, … ,44,5 = (
16 16
84 84

)
11 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

𝐿𝑜𝑜𝑝5,5625, … ,44,5 = (
256 256
744 744

)
5 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
256
744

) , (
2
8

),

𝐿𝑜𝑜𝑝2,78125, … ,44,5 = (
65536 65536
34464 34464

)
2 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
65536
34464

) , (
256
744

) , (
2
8

),

 𝐿𝑜𝑜𝑝1,390625, … ,44,5 = (
4294967296 4294967296
5705032704 5705032704

)
1 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
16777216 2
83222784 8

),

 𝐿𝑜𝑜𝑝44,5, 0 = (
18446744073709551616 33554432
81553255926290448384 𝑑𝑟𝑜𝑝𝑝𝑒𝑑

).

further,

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

6

(
)

Y
e
a
r

20
21

G
P vs NP: P is Equal to NP: Desired Proof

Loop1, …,44,5 gives the value of the (𝑎𝑎1) option for all complete matrices of this matrix loop, that is (2 ∙ 2), and goes
to the following matrix loop as the value of (L ∙ E)=(4 ∙ 4), and defines the number of all complete and incomplete
matrices for the following matrix loop that is the Loop22,25, …,44,5 this number is (44,5:2)=22,25.

• 𝑎𝑎1=(2:2-(2:2:(10:(8-2))))∙10=4

• 𝑎𝑎2=(4:2-(4:2:(10:(6-4))))∙10=16

Loop11,125, …,44,5 gives the value of the (𝑎𝑎3) option for all complete matrices of this matrix loop, that is (16 ∙ 16),
and goes to the following matrix loop as the value of (L ∙ E)=(256 ∙ 256), and defines the number of all complete and
incomplete matrices of the Loop5,5625, …, 44,5, i.e., (11,125:2)=5,5625, etc.

• 𝑎𝑎3=(16:2-(16:2:(100:(84-16))))∙100=256

• 𝑎𝑎4=(256:2-(256:2:(1000:(744-256))))∙1000=65536

• 𝑎𝑎5=(65536:2-(65536:2:(100000:(34464-65536))))∙100000=4294967296

• 𝑎𝑎6=(4294967296:2-(4294967296:2:(10000000000:(5705032704-4294967296))))∙sbasis=2147483648-(21474836
48:(10000000000:1410065408)))∙10000000000=18446744073709551616

Loop22,25, …,44,5 gives the value of the (𝑎𝑎2) option for all complete matrices of this matrix loop, that is (4 ∙ 4), and
goes to the following matrix loop as the value of (L ∙ E)=(16 ∙ 16), and defines the number of all complete and
incomplete matrices for the following matrix loop that is the Loop11,125, …,44,5, i.e., (22,25:2)=11,125.

• 𝑎𝑎7=(33554432:2-(33554432:2:(100000000000000000000:(81553255926290448384-18446744073709551616))))∙
sbasis=(16777216-(16777216:(100000000000000000000:63106511852580896768)))∙100000000000000000000
=618970019642690137449562112=2⁸⁹

Proof
Let us consider a set where the number of elements of this set is much larger than in previous sets. We take

the set with 4117 elements, the number of all subsets of this set is 2 , and we have the following sequence of
matrix loops:

where we get the value of a₁=(L ∙ E)= 2 ∙ 2=4, (see the reference map of these matrices above), then,

where we get the value of a₂=a₁ ∙ a₁=16, further,

and this matrix loop gives the value of a₃=a₂ ∙ a₂=256, and then,

then we get the value of a₄=a₃ ∙ a₃=65536, further,

and we have the value of a₅=a₄ ∙ a₄=4294967296, and further,

and we get the value of a₆=a₅ ∙a₅=18446744073709551616, then,

and we have the value of a₇=a₆ ∙a₆=340282366920938463463374607431768211456, further,

𝐿𝑜𝑜𝑝1, … , 2058,5 = (
2 2
8 8

)
2058 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

𝐿𝑜𝑜𝑝1029,25, … ,2058,5 = (
4 4
6 6

)
1029 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

𝐿𝑜𝑜𝑝514,625, … ,2058,5 = (
16 16
84 84

)
514 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
16
84

) , (
2
8

),

𝐿𝑜𝑝𝑝257,3125, … ,2058,5 = (256 256
744 744

)
257 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝128,65625, … ,2058,5 = (65536 65536
34464 34464

)
128 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝64,328125, … ,2058,5 = (
4294967296 4294967296
5705032704 5705032704

)
64 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝32,1640625, … ,2058,5 =

= (18446744073709551616 18446744073709551616
81553255926290448384 81553255926290448384

)
32 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝16,08203125, … ,2058,5 =

= (340282366920938463463374607431768211456 340282366920938463463374607431768211456
659717633079061536536625392568231788544 659717633079061536536625392568231788544

)
16 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

,

(65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝8,041015625, … ,2058,5 =

= (
115792089237316195423570985008687907853269984665640564039457584007913129639936 1 …
884207910762683804576429014991312092146730015334359435960542415992086870360064 8 …

)
8 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
65536
34464

) , (
16
84

) , (
2
8

),

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

7

 (

)
G

Y
e
a
r

20
21

P vs NP: P is Equal to NP: Desired Proof

4117

then we get a₈=a₇ ∙ a₇=115792089237316195423570985008687907853269984665640564039457584007913129639936, and,

where we have a₉=a₈ ∙ a₈=134078079299425970995740249…006084096, note that the value of L element is
always equal to E element and the value of I element is always equal to T element if these elements are the elements
of one of the complete matrices of each matrix loop, further,

and then we have a₁₁=a₁₀ ∙ a₁₀, and,

and finally, we get the value of a₁₂=a₁₁ ∙ a₁₁, where L=a₁₁, E=L=a₁₁, I=sbasis-L=sbasis-a₁₁, T=I=sbasis-a₁₁, then,

Asymptotic analysis of the runtime of an
algorithm that we use to find the value of (a) option for
each complete matrix of these matrix loops is presented
below.

Run-time analysis: Prove that (E:2-(E:2:(sbasis:
(I-L))))∙sbasis= O(log n). Let T(n) be the execution time
for the input of size n, where , there exist positive
constants and lower order terms that are not considered
and can be omitted, then:

• T(n)=T₁(n)+T₂(n)+T₃(n)+T₄(n)+T₅(n)+T₆(n)=f(n)
• T₁(n)=sbasis-L=I⇒O(n)

• T₂(n)=I-L⇒O(n)

• T₃(n)=sbasis:(I-L)⇒O(n)

• T₄(n)=E:2:(sbasis:(I-L))⇒O(n)
• T₅(n)=E:2-(E:2:(sbasis:(I-L)))⇒O(n)

• T₆(n)=(E:2-(E:2:(sbasis:(I-L))))∙sbasis⇒can
omitted (dropped)

𝐿𝑜𝑜𝑝4,0205078125, … ,2058,5 =

(
13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096 1 …
86592192070057402900425975001794153872520634179407606622276438556278235969926453023198125701833096572309968141813513949146246117188053430053566350993915904 8 …

)
4 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

,

(
65536
34464

) , (
16
84

) , (
2
8

),

and further, we get a₁₀=a₉ ∙ a₉=179769313486231590772930…224137216, the value of a₁₀ is long enough to write it in full like the following values of a, then,

𝐿𝑜𝑜𝑝2,01025390625 … ,2058 ,5 = (
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211201138798713933576587897688144166224928474306394741243777678934248654852763022196012460941194530829520850057688381506823424628814739131105408272371 63350510684586298239947245938479716304835356329624224137216 1 …
820230686513768409227069480921097526638202302105769342726569918842267324194499036867291522677592463978879886120128606642341210231185583377507152569360525875622232106575134514723697780398753905880546917 047914994231161849317657537118526086889459172762836649489315413701760052754061520283695164643670375775862784 8 …

)
2 𝑐𝑜𝑚𝑝 𝑙𝑒𝑡𝑒

, (
65536
34464

) , (
16
84

) , (
2
8

),

 𝐿𝑜𝑜𝑝1,005126953125 = (
𝑎11 𝑎11

𝑠𝑏𝑎𝑠𝑖𝑠 − 𝑎11 𝑠𝑏𝑎𝑠𝑖𝑠 − 𝑎11
)

1 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝2058,5, 0 = (
𝑎12 = 𝑎₁₁ ∙ 𝑎₁₁ = (𝑎₁₁)2 (65536 ∙ 16 ∙ 2)

𝑠𝑏𝑎𝑠𝑖𝑠 − 𝑎12 𝑑𝑟𝑜𝑝𝑝𝑒𝑑
).

Let f and g be functions from positive numbers
to positive numbers, where f(n)=(E:2-(E:2:(sbasis:(I-
L))))∙sbasis=O(n) and g(n)=O(log n). Prove the claim
that f(n) is O(g(n)) if there exist positive constants c>0
and n₀>0 such that:

To prove big-O, we choose values for c and n₀
and prove n>1 implies f(n)≤c*g(n):

1. Choose n₀=1,
2. Assuming n>1, find/derive a c such that:

 f(n)≤c*g(n) for all n≥n₀.

that proves that n>1 implies (n)≤c*gn. This means that
function (n) does not grow faster than (n), or that
function (n) is an upper bound for (n) for all sufficiently
large 𝑛𝑛→ ∞.

An algorithm asymptotic running time is O(log n).

Notice. The value of sbasis is always equal to
10 , therefore, we consider this value as an easy
constant factor, and the I element is the 10’s
complement of the L element, therefore, it runs very
quickly when we define the value of (sbasis-L).

Comparing the asymptotic running time:

An algorithm that runs in O(n) time is better than
one that runs in O(2), and O(log n) is better than O(n).

Theorem 2.0.
It is enough to decompose nⁿ into the set of n²

particles (fractions) to find the value of any nⁿ since
there is an easy algorithm that solves the exponential-
time task as the task that runs in polynomial time, i.e.,
we will turn (transform) NP to P using O{log n)
complexity that will provide an easy solution for every n²
particle of this set.

Proof

 𝑓(𝑛)

𝑔(𝑛)
≤𝑐𝑔(𝑛)

𝑔(𝑛)
=c

𝑙𝑖𝑚
𝑛→∞

,

f
f g
g f

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

8

(
)

Y
e
a
r

20
21

G
P vs NP: P is Equal to NP: Desired Proof

© 2021 Global Journals

be

𝑛𝑛

𝑛𝑛

We have the value of 𝑎𝑎𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 that is equal to the value of (a₁₂ ∙ 65536 ∙ 16 ∙ 2) = 2⁴¹¹⁷, where 65536, 16 and 2
are the values from those incomplete matrices that were carried over all loops and the value of T element is
dropped, we use this algorithm a=(E:2- (E:2:(sbasis:(I-L)))) to find these long values of all (a) options, and thus,
regardless of how large the exponent of 2ⁿ is, a sequence of such matrix loops runs in polynomial time.

• T(n)=(E:2-(E:2:(sbasis:(I-L))))sbasis

As any nⁿ can be easily decomposed
(partitioned) into n². n²∙… ∙ n²∙ n¹ if the exponent of nⁿ is
an odd number, and into n²∙ n²∙ … n²∙ n² if the exponent
of nⁿ is an even number, that we can find in logarithmic
time using O(log n) complexity, hence we can find nⁿ in
polynomial time, that means that P=NP. For example, it

and let, for instance, n₁=3 and n₂=2, then n₃=sbasis-
n₁=7 and n₄=sbasis-n₂=8, the values of the n₃ and n₄
elements of an array are the complements of the n₁ and
n₂ elements, the sbasis=10, suppose we need to find
the exponential values of these elements, when n₁ⁿ= 3⁵
and n₂ⁿ= 7⁵, the bases and the exponents of the nⁿ
elements are taken arbitrarily, and the current sbasis is
successive, then:

and further, we decompose this array into this matrix of
n² particles:

To solve these matrix loops, we will also use this
algorithm:

a=n₁ⁿ∙n₂ⁿ=(n₂ⁿ:2-(n₂ⁿ:2:(sbasis:(n₃ⁿ-n₁ⁿ))))∙sbasis,

The reference matrix for nⁿ looks like this:

for nⁿ, where the exponent of this nⁿ is an odd, and

for nⁿ, where the exponent of this nⁿ is an even. These all
are easy to check using any random instance of nⁿ.

IV. Results and Discussion

The major result of this paper is that
O(2ⁿ)=O(log n), that means that P=NP. Easy to solve
(to find), easy to check (to verify), don’t you think? This
is a study that changes our understanding of a topic.
We had to go beyond the rules for this. And it is easier
than you think. There is no decision problem (a yes-no
question) for the NP problem anymore, and we do not
need the certificate for this, since we have simplified and

Given a set (an array) of positive integers in matrix form:

(
𝑛1

𝑛 𝑛2
𝑛

𝑛3
𝑛 𝑛4

𝑛),

(3⁵ 2⁵
7⁵ 8⁵

),

 (3² ∙ 3² ∙ 3¹ 2² ∙ 2² ∙ 2¹
7² ∙ 7² ∙ 7¹ 8² ∙ 8² ∙ 8¹

).

 (3 3
7 7

) ∙ (
3 3
7 7

) ∙ (
3
7

) and (2 2
8 8

) ∙ (2 2
8 8

) ∙ (
2
8

).

(
𝑛₁² ∙ 𝑛₁² ∙ … ∙ 𝑛₁² ∙ 𝑛₁ 𝑛₂2 ∙ 𝑛₂2 ∙ … ∙ 𝑛₂² ∙ 𝑛₂

𝑛₃² ∙ 𝑛₃² ∙ … ∙ 𝑛₃² ∙ 𝑛₃ 𝑛₄² ∙ 𝑛₄² ∙ … ∙ 𝑛₄² ∙ 𝑛₄
)

(
𝑛₁2 ∙ 𝑛₁2 ∙ … ∙ 𝑛₁² ∙ 𝑛₁² 𝑛₂2 ∙ 𝑛₂2 ∙ … ∙ 𝑛₂² ∙ 𝑛₂²

𝑛₃2 ∙ 𝑛₃2 ∙ … ∙ 𝑛₃² ∙ 𝑛₃² 𝑛₄2 ∙ 𝑛₄2 ∙ … ∙ 𝑛₄² ∙ 𝑛₄²
)

eliminated all that was complicated multiple times over
by various wrong theories and their numerous
modifications, we no longer even need the SAT. The NP
tasks do not require making two recursive calls when
growth doubles with each addition to the input data set,
we have a new path to solve this problem in polynomial
running time using a sequence of matrix loops that uses
a sorted array and takes O(log n) complexity. We get the
desired reduction of the exponential problem to the
polynomial problem. There are some known definitions
of the P vs. NP problem that will be read in a new way in
the future: ‘The P versus NP problem is to determine
whether every language accepted by some
nondeterministic algorithm in polynomial time is also
accepted by some (deterministic) algorithm in
polynomial time (Cook, 2000).” ‘P versus NP – a gift to
mathematics from computer science (Smale, 2000).” “It
is interesting to recall that the motivation for the
development of the theory of computation, on which
theoretical computer science is based, came from
purely mathematical considerations. The paradox is
emerging from Cantor’s set theory emphasized the need
to clarify the foundations of mathematics and, under
Hilbert’s leadership, concentrated attention on axiomatic
proof systems. The quest to understand the power and
limitations of axiomatizable systems led directly to the
questions about all possible formal mechanical ways of
deriving proofs (sequences with desired properties). In
modern terms, it led to the search for what is and is not
effectively computable (Hartmanis, 1989).” “The hope
that mathematical methods employed in the
investigation of formal logic would lead to purely
computational methods for obtaining mathematical
theorems goes back to Leibniz… (Davis &
Putnam,1959).” “Your definition of experiments by using
point-sets is perfectly satisfactory to me, I thought,
however, that it might be good to say explicitly that a
computation may be part of an “observation”
(Neumann, 2005).” “The most comprehensive formal
systems yet set up are, on the one hand, … and, on the
other, the axiom system for set theory…These two
systems are so extensive that all methods of proof used
in mathematics today have been formalized in them
(Gȍdel, 1931).” “Occasionally it happens that we seek
the solution under insufficient hypotheses or in an
incorrectly sense (Hilbert, 2000).” “The principal
technique used for demonstrating that two problems are

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

9

 (

)
G

Y
e
a
r

20
21

P vs NP: P is Equal to NP: Desired Proof

We got the decomposition of this nⁿ task into n² particles
that transforms the exponential time to a polynomial that
uses the new O(log n) complexity for O(n²), i.e., for
these n² particles solving. Further, we make matrix loops
for each of these 𝑛𝑛2 particles that look like this:

is obvious, as we are aware, that 3⁵=3²∙3²∙3¹, or
5⁶=5²∙5²∙5², etc. The constant factors of this new
algorithm will remain sustainable (steady) and scalable
when nⁿ grows and goes to infinity. Let us consider the
following:

related is that of “reducing” one to the other, by giving a
constructive transformation that maps any instance of
the first problem into an equivalent instance of the
second (Garey, 1979).” “…any recognition problem
solved by a polynomial time-bounded nondeterministic
Turing machine can be reduced to the problem of
determining whether a given proposition formula is a
tautology (Cook, 1971).” “The class of languages
recognizable by string recognition algorithms which
operate in polynomial time is also invariant under a wide
range of changes in the class of algorithms (Karp,
1972).” ‘Due to the fact that no NP-complete problem
can be solved in polynomial time… (Crescenzi & Kann,
1994).” “I offer a personal perspective on what it’s
about, why it’s reasonable to conjecture that P≠NP is
both true and provable… (Aaronson, 2011).” “…we can
avoid brute - force search in many problems and obtain
polynomial-time solutions. However, attempts to avoid
brute force in certain other problems, including many
interesting and useful ones, haven't been successful,
and polynomial-time algorithms that solve them aren't
known to exist (Sipser, 2012)." "As we solve larger and
more complex problems with greater computational
power and cleverer algorithms, the problem we cannot
tackle begin to stand out (Fortnow, 2009).” “In recent
years, the reducibility of computation in real
environments to the standard Turing model has been
brought increasingly into question (Cooper, 2004).” “The
subject my talk is perhaps most directly indicated by
simply asking two questions: first, is it harder to multiply
than to add? and second, why? I grant I have put first of
these questions rather loosely; nevertheless, I think the
answer ought to be: yes. It is the second, which asks for
a justification of this answer which provides the
challenge (Cobham, 1965).” “Most of the computational
problems that arise in practice turn out to be complete
for one of a handful of complexity classes, even under
very restrictive notions of reducibility (Agrawal, Allender,
Impagliazzo, Pitassi, & Rudich, 2001).” “At present,
when faced with a seemingly hard problem in NP, we
can only hope to prove that it is not in P assuming that
NP is different from P. (Goldreich, 2008).” “…an
algorithm is any well-designed computational procedure
that takes some value, or set of values, as input and
procedures some value, or set of values, as output. An
algorithm is thus a sequence of computational steps
that transform the input into the output (Cormen,
Lieserson, & Rivast, 2009).” “It is well known that every
set in P has small circuits. Adelman was recently proved
the stronger result that every set accepted in polynomial
time by a randomized Turing machine has small circuits
(Lipton & Karp, 1980).” ‘I see complexity as the intricate
and exquisite interplay between computation
(complexity classes) and applications (that is, problem)
(Papadimitriou, 1994).” “We do not know of polynomial-
time algorithms for these problems, and we cannot
prove that polynomial-time algorithms exist…These are

the NP-complete problems… (Kleinberg & Tardos,
2006).” “…there is a strictly ascending sequence with a
minimal pair of upper bounds to the sequence…if
P≠NP then there are members of NP-P that are not
polynomial complete (Ladner, 1975).” “…minimal
propositional logic corresponds to dependent simply
typed-calculus… (Sorensen & Urzyczyn, 1998).”
‘Practical problems requiring polynomial time are almost
solvable in an amount of time that we can tolerate, while
those that require exponential time generally cannot be
solved except for small instances (Hopcroft, Motwani, &
Ullman, 2001).” “Some success was had by causing the
machine to systematically eliminate the redundancy; but
the problem of total length increasing rapidly still
remained when more complicated problems were
attempted (Davis, Logemann, & Loveland, 1961).”
“Gȍdel and others went on to show that various other
mathematically interesting statements, besides the
consistency statement, are undecidable by P, assuming
it to be consistent… (Boolos, Burgess, & Jeffrey, 2007).”
“There has been much work in getting the number of
variables needed for an undecidability result to be small
(Gasarch, 2021).”

V. Conclusion

It is possible to solve the exponential-time task
in polynomial time if we forget recursion that takes O(2ⁿ)
complexity and goes to regress only. As you see, it is
clear that the new notion of the decision procedure for
the NP problem exists. We have a completely new
definition of the certificate for this NP problem that can
not only be checked in polynomial time but also solved
in polynomial time. And there is no case when this new
uniform procedure is not valid, the algorithm terminates
with a correct answer on any input instance of 2ⁿ and
does not involve seeking forever (without Halting
problem, without approximation), i.e., this new certificate
is consistent, therefore, we solve this NP task rapidly,

Acknowledgment

I would like to express my special thanks of
gratitude to the reviewers for their thoughtful comments
and the effort and expertise that they contribute to
review the manuscript.
Funding Information

This research received no specific grant from
any funding agency in the public, commercial, or not-
for-profit sectors.

Conflict of Interest
The corresponding author has NO conflicts of

interest to disclose.

Ethics
This article is original and contains unpublished

material.

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

10

(
)

Y
e
a
r

20
21

G
P vs NP: P is Equal to NP: Desired Proof

accurately, and easily using this unthinkably easy
computational tactic above.

References Références Referencias

1. Aaronson, S. (2017). P= ?NP. (PDF)
2. Agrawal, M., Allender, E., Impagliazzo, R., Pitassi,

T., & Rudich, S. (2001). Reducing the complexity of
reductions. Birkhauser Verlag, Basil. Computational
complexity, 10 (2001), 147-138. (PDF)

3. Arora, S., & Barak, B. (2009). Computational
complexity: a modern approach. Cambridge
University Press.

4. Boolos, G. S., Burgess J. P., & Jeffrey R. C. (2007).
Computability and logic. Cambridge University
Press.

5. Cobham, A. (1965). The intrinsic computational
difficulty of functions. (PDF)

6. Cormen, I., Leiserson, C, Rivast, R., & Stein, C.
(2009). Introduction to algorithms. The MIT Press.
Cambridge, Massachusetts. London, England.
(PDF)

7. Cook, S. A. (1971). The complexity of theorem-
proving procedures. University of Toronto. (PDF)

8. Cook, S. A. (April 2000). “The P versus NP
Problem”. Clay Mathematics Institute. Retrieved 18
October 2006.

9. Cooper, S. B. (2004). Computability theory.
University of Leeds, U. K. (PDF) Crescenzi, P., &
Kann, V. (1994). A compendium of NP optimization
problems. (PDF)

10. Chotchaeva, Z. A. (2020). The new matrix model of
computation based purely on quite a new concept
of the matrix computations for extremely quick web
pages loading. Journal of Computer Science,
16(11), 1610-1624.

11. Davis, M., & Putnam, H. (1959). A computing
Procedure for Quantification theory. Journal of the
ACM, Volume 7.

12. Davis, M., Logemann, G., & Loveland, D. (1961). A
Machine Program for theorem proving.
Communications of the ACM, Volume 5, Issue 7.

13. Fortnow, L. (2009). The status of the P vs NP.
Communications of the ACM, 52(9); 78-86. Garey,
M. R. & Johnson, O. S. (1979). Computers and
Intractability (Vol. 174). San Francisco: freeman.

14. Gasarch, W. (2002). Hilbert’s Tenth Problem:
Refinements and Variants. arXiv:2104.07220v2
[math.LO]

15. Gȍdel, K. (1931). On formally undecidable
propositions of principia mathematics and related
systems. (PDF)

16. Goldreich, O. (2010). P, NP, and NP-Completeness:
The Basics of Computational Complexity.
Cambridge University Press.

17. Hartmanis, J. (1989). Gödel, von Neumann, and the
P=?NP problem. Bulletin of the European
Association for Theoretical Computer Science. 38:
101-107.

18. Hilbert, D. (2000). Mathematical problems, AMS,
Volume 37. (PDF)

19. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001).
Introduction to automata theory, languages, and
computations. Addison-Wesley. (PDF)

20. Karp, R.M. (1972). Reducibility among
Combinatorial Problems. DOI: 10.1007/978-3-540-
68279-0_8, Springer, 2010.

21. Kleinberg, J., & Tardos, E. (2005). Algorithm design.
Cornell University. (PDF)

22. Ladner, R. E. (1975). On the structure of Polynomial-
time reducibility. Journal of the ACM. Volume 23,
Issue 1.

23. Lipton, R. J., & Karp. R. M. (1980). Some
connections between nonuniform complexity
classes. Proceedings of the ACM, 302-309.

24. Morten Heine B. Sorensen, & Pawel Urzyczyn
(1998). Lectures on the Curry-Howard Isomorphism.
University of Copenhagen & Warsaw.

25. Neumann, von J. (2005). Selected letters. History of
mathematics, Volume 27. (PDF)

26. Papadimitriou, C. (1993). Computational
Complexity. Addison-Wesley.

27. Sipser, M. (2012). Introduction to the Theory of
Computation. Cengage learning.

28. Smale, S. (2000). Mathematical problems for the
next century. The mathematical intelligencer 20 (2).
DOI:10.1007/BF03025291

29. Wikipedia. (2021). P versus NP problem. Wikipedia.

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
III

 V
er
sio

n
I

11

 (

)
G

Y
e
a
r

20
21

P vs NP: P is Equal to NP: Desired Proof

	P vs NP: P is Equal to NP: Desired Proof
	Author
	Keywords
	I. Introduction
	II. Literature Review
	a) Background

	III. Methodology
	a) Definition of the Task

	IV. Results and Discussion
	V. Conclusion
	Acknowledgment
	References Références Referencias

