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5

Abstract6

In evolving radar systems, detection is regarded as a fundamental stage in their receiving end.7

Consequently, detection performance enhancement of a CFAR variant represents the basic8

requirement of these systems, since the CFAR strategy plays a key role in automatic detection9

process. Most existing CFAR variants need to estimate the background level before10

constructing the detection threshold. In a multi-target state, the existence of spurious targets11

could cause inaccurate estimation of background level. The occurrence of this effect will result12

in severely degrading the performance of the CFAR algorithm. Lots of research in the CFAR13

design have been achieved. However, the gap in the previous works is that there is no CFAR14

technique that can operate in all or most environmental varieties. To overcome this challenge,15

the linear fusion (LF) architecture, which can operate with the most environmental and target16

situations, has been presented.17

18

Index terms— adaptive detection, non-coherent integration, fluctuating targets, swerling models, target19
multiplicity environments.20

1 I. Introduction21

adar systems are widely used for safety purposes. For case in point, they are utilized at airports to safely regulate22
the air traffic and in a military context, they are employed to defend against hostile missiles. The mission of the23
radar is to detect targets of interest and to discard those that don’t concern a particular application.24

Depending on the type of radar application, the system might be concerned with estimating the target radar25
cross section (RCS), measuring and tracking its position or velocity, imaging it, or providing fire control data to26
direct weapons to the target. In all of these practical applications, one of the most fundamental tasks of a radar27
is the detection; the process of examining the radar data and determining if it represents interference only, or28
interference plus echoes from a target of interest (ToI) [1][2][3][4][5].29

The detection capability is one of the most significant factors in the behavior of such type of vital systems.30
Normally, the purpose of detection is to distinguish genuine target reflections from noise and clutter. More31
specifically, target detection can be regarded as a style of classification, which distinguishes whether the tested32
signal contains an echo from a target or just corresponds to the noise. This process relies on the thresholding33
criteria. This criteria has two philosophies: fixed and adaptive. Although the fixed threshold is simple in design,34
it has a misdetection and this procedure deprives the system from its ability to control the false alarm rate. This35
strategy of detection is useful for non-fluctuating targets of identical reflection models but fails when a mixture36
of different targets exists in radar’s field of view (FoV). Therefore, variable threshold will be needed to cover37
such scenarios. For this reason, adaptive detection thresholds have been the subject of research for a long time.38
In other words, there is a demand for a detection process that is based on dynamic, instead of static, threshold39
to cope with those situations of inhomogeneous or changing clutter environment all over the search space. This40
is the objective of the second philosophy. Constant false alarm rate (CFAR) technology is the most popular41
target detection framework to address the issues associated with fixed threshold. This technology is crucial as a42
desired property for automatic target detection in an unknown and non-stationary background. In other words,43
CFAR is a property that is assigned to the processor in which the threshold, or gain control devices, guarantees44
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2 II. STATISTICAL BACKGROUND AND MODEL DESCRIPTION

an approximately constant rate of false target detection when the noise/clutter level temporally varies. The45
feature of CFAR activates the threshold in such a way that it becomes adaptive to the local clutter environment.46
Thus, the CFAR mechanism maintains the amount of false alarm under supervision in a diverse background of47
interference. It should be taken into account that this approach doesn’t come at no cost.48

In radar applications which necessitate precision strikes for reduced risk and cost efficient operation with49
minimum possible guarantee damage, besides radar size, computation cost is major issue. The increased50
performance of the detection algorithm demands an increase in computation speed and device memory for every51
scan. Therefore, a trade-off between performance and cost has to be made [6][7][8][9][10].52

A robust detector should not only find targets but also eliminate false alarms. Therefore, the general objective53
of all radar detection schemes is to ensure that false alarms don’t fluctuate randomly. During the detection54
process, each cell is evaluated for the presence/absence of a target using a threshold. It is beneficial to be able55
to detect both high-and low-fidelity targets while maintaining constant false alarm rate. This is actually the56
function of the adaptive thresholding algorithm which most modern radar systems apply it in their detection57
process. Although there exists a large number of versions of CFAR circuits, cell-averaging (CA), order-statistics58
(OS), and trimmed-mean (TM) scenarios remain the most popular and well-understood techniques. In many59
cases, a single CFAR processor can hardly meet the complex radar operation environment. Thus, the concept60
of composite CFAR designing was introduced, to account for both homogeneous and heterogeneous situations.61
Based on this concept, fusion of particular decisions of the single CFAR detectors by appropriate fusion rules62
provides a better final detection. In this regard, the linear fusion (LF) approach is based on the parallel operation63
of the CA, OS, and TM types of CFAR techniques. However, the computational complexity may prevent the use64
of these more robust algorithms in favor of simple thresholding techniques, especially in automotive applications.65
Nevertheless, with the increasing prospect of reduction in hardware cost and availability of high-speed processors,66
the drift to high-performance algorithms is inevitable [11][12][13][14][15].67

The behavior of the target detection processor can be significantly enhanced with the availability of the68
statistical characteristics of a target’s radar crosssection (RCS). To achieve such interesting objective, Swerling69
proposed five models (SWI-SWV), to describe the RCS statistical properties, for practical objects, based on ?70
2 -distribution with varying degrees of freedom. In SWI model, the target reflections in a single scan have a71
constant RCS magnitude (perfectly correlated), but it varies from scan-to-scan obeying ? 2probability density72
function (PDF) with two-degrees of freedom. For SWII model, the PDF of RCS is the same as in SWI with73
the exception that it is independent from pulse-to-pulse instead of scan-to-scan. Because some objects have a74
dominant scatterer, SWIII mod uses a fourth-degree ? 2 -statistics to model the returned pulses. This model75
has the same characteristics as SWI style which has constant magnitude from pulse-to-pulse, but different from76
scan-to-scan. The RCS, in SWIII template, has the same description as SWI form with the difference that its77
PDF follows ? 2 -statistics with fourdegrees of freedom. The RCS, in SWIV pattern, varies from pulse-to-pulse,78
instead of scan-to-scan, with the same PDF of SWIII model. Finally, SWV mode is characterized by constant79
and perfectly correlated, from pulse-to-pulse and from scan-to-scan, echo pulses which corresponds to infinite80
degrees of freedom [10,13].81

Our goal in this paper is to analyze LF-CFAR structure when this strategy uses non-coherent integration of M82
pulses to carry out its decision. The primary and the secondary outlying targets are assumed to be fluctuating83
in terms of four Swerling models s (SWI-SWIV). Closed-form expression is derived for its performance in the84
absence as well as in the presence of interferers. A comparison of the tested scheme with its basic variants along85
with Neyman-Pearson (N-P) detector is also portrayed. The paper proceeds as follows. Section II formulates the86
problem of interest. The detection performance of the tested methodology along with its fundamental variants87
is analyzed in section III. Section IV portrays our numerical results to evaluate the accuracy of the theoretical88
derivation and substantiate the effectiveness of the proposed schemes. Finally, our useful conclusions are drawn89
in section V.90

2 II. Statistical Background and Model Description91

The basic demands of the limited warfare of the present era necessitate precision strikes of reduced risk and92
cost efficient operation with minimum possible guarantee damage. In order to reply such exact challenges, the93
capability of automatic detection is increasingly becoming more important to the defense community. Automatic94
detection can be achieved by setting a fixed threshold based on the interference power level. This construction95
operates with predictable performance if the interference belongs only to thermal noise. However, the ideality96
of operating environment of radar systems is scarcely verified. Therefore, technology of adaptation is of primary97
concern in the design of their future scenarios [15][16].98

The ability of a weak echo detection by the radar receiver is limited by the noise energy that occupies the same99
spectrum as the signal. From this point of view, the process of detection is based on establishing a threshold100
level at the output of the receiver. This threshold must be adjusted in such a way that weak signals are detected,101
but not so low that allows noise peaks to cross it and give a false target. Thus, the proper threshold selection102
is dependent upon how important it is if a mistake is occurred because of failing to recognize a signal (miss103
probability) or falsely indicating the presence of a signal (false alarm probability). On the other hand, to cope104
with a changing clutter environment, there is a persistent need of dynamic and adaptive threshold. This threshold105
must be varied, up and down, in accordance with the background level for the false alarm rate to be maintained106
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at its pre-set value. A detector with this characteristic is designated as constant CFAR. Thus, the CFAR strategy107
is the main goal of the radar system designer.108

For the CFAR circuit to be efficient, it must realize some characteristics. The more motivating features109
include rigorous fitting of the detection threshold to the clutter background, masking avoidance of closely spaced110
targets, low CFAR loss, and constructing a threshold that gives point as well as extended targets the chance to111
pass. Whatever the structure of the CFAR model is, the framework of sliding window is regarded as its basic112
arrangement. As Fig. (1) depicts, this window moves throughout the coverage area, and contains a set of reference113
cells (RC’s) around the central cell, which is termed as cell under test (CUT). To alleviate self-interference in114
a real target echo, some guard cells (GCs) embrace CUT. These cells are used as buffer between CUT and the115
training cells. They are excluded from the background computation to insure that the CUT doesn’t affect the116
threshold calculation. The declaration of the presence of a target is carried out if the power of CUT is greater117
than the power of both GCs and the estimated level. Each resolution cell has the chance to occupy the position118
of CUT. In this regard, the RC’s that have been already processed constitute the leading subset, whilst those119
that have not yet occupied the center organize the lagging subset. The size selection of the sliding window is120
dependent upon rugged knowledge of the typical clutter background. Generally, the window length N should be121
as large as possible for the estimation process to be of good modality. Meanwhile, N is preferred to be compatible122
with the typical range extension of homogeneous clutter zones for the demand of identically distributed random123
variables to be statistically satisfied. Normally, the typical value of N lies in the 16-32 range.124

The detection threshold is established as the product of the estimated noise power Z by a scaling factor T,125
which is imposed to verify the desired rate of false alarm, as Fig. (1) portrays. By comparing the content of126
CUT with the resulting threshold, the procedure will recommend that the signal is belonging to a target, if the127
magnitude of the CUT surpasses the calculated threshold. Otherwise, the signal is coming from interference and128
no target is present.129

Most modern radar systems are of coherent type. This means that they receive the returned signal in a polar130
(amplitude and phase) form. In the radar receiver, the synchronous detector generates an inphase (??) and a131
quadrature (??) components from the received signal. Whilst the in-phase component denotes the real part, the132
quadrature component represents the imaginary part of the received signal. Under the null hypothesis (H 0 ),133
the received noise for both ?? and ?? channels is modeled as an independent and identically distributed (IID)134
Gaussian random process with zero mean and of variance ?/2. In addition, ?? and ?? channels are statistically135
independent. Thus, the received noise is a complex Gaussian signal (?=??+????) with ?=0 and ???? 2 =?.136

After pulse compression, the signal passes through a rectifier, which converts the complex signal into an137
amplitude and phase. In this vein, there are two familiar types of rectifiers: linear and square-law detectors. The138
linear detector measures only the magnitude (I 2 +Q 2 ) ½ of the complex received signal, which follows the139
Rayleigh distribution. The square-law detector, on the other hand, measures only the power (I 2 +Q 2 ) of the140
linear detector, the distribution of which is exponential. For both types, the phase is uniformly distributed in141
the interval [???, ??] [17].142

3 a) Neymann -Pearson Detector143

The Neyman-Pearson (N-P) processor operates with a detection threshold which is imposed in such a way that for144
a desired rate of false alarm, the level of detection will be maximized. This threshold is fixed and is derived from145
a known interference PDF. Practically, the using of N-P detector necessitates: 1) the background interference146
is IID over all resolution cells, to which the fixed threshold is to be applied, 2) the interference is of statistical147
distribution the parameters of which are known, 3) the interference environment is homogenous.148

Generally, the detection process is achieved at the output of the rectifier and yields one of three possible149
outcomes: correct decision, missed detection, or false alarm. A correct decision is one in which the detector150
correctly declares the presence/absence of a target. A missed detection is one in which the detector declares151
the absence of a target when in truth the measurement contains a target return. A false alarm occurs when the152
detector declares the presence of a target and in reality a target’s return is not present in the measured data.153
Whilst the first outcome is specified by P d , the second one represents its complement (1 -P d ). Therefore, P d154
plays an important role in determining the first two outcomes. The last outcome is characterized by P fa . Thus,155
once P d and P fa are calculated, the processor performance is completely evaluated.156

Here, we are concerned with square-law type of signal rectifiers. Thus, as we have noted above, the squarelaw157
detected output for any range cell (? 0 ) has an exponential distribution, the general formulation of which is:( )158
( ) ? ? ? ? ? ? U p ? ? ? ? ? ? ? ? ? = exp 1 0 (1)159

In the above expression, U(.) stands for the unit-step function. The value of ? depends on the situation of160
operation and can take one of the following values: In the preceding formula, ”?” denotes the signalto-noise ratio161
(SNR) of the ToI return, whereas ”?” symbolizes the interference-to-noise ratio (INR) of the interfering target162
return, and ”?” represents the background noise power.163

Since the target returns and interference are of the stochastic nature, the performance of a signal’s detector is164
characterized in terms of probabilities. For N-P procedure, these probabilities take the form [9]:( ) ( ) ? ? ? +165
= = = ? = ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? 1 1 exp 1 0 if if Tr d P P F P d fa Tr s (3)166

It may be rarely that a decision is made on the basis of a single transmitted pulse. More often, a lot of pulses167
are transmitted, and the resulting received signal is integrated or processed in some way to enhance, relative to168
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4 B) CONSTANT FALSE ALARM RATE (CFAR) DETECTOR

the mono-pulse case, the SNR. In this regard, to detect the target signal with some reasonable probability and169
to reject noise, the signal must be more strengthened than the noise. For M-pulses, the range cell (? 0 ) has a170
PDF given by [.]:( ) ( ) ( ) ? ? ? ? ? ? ? U M M M p ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? exp ! 1 1 1 0 (4)171

The cumulative distribution function (CDF) corresponding to the PDF of Eq.( ??) has a form given by:( ) (172
) ( ) ? ? ? ? ? ? ? U M F ? ? ? ? ? ? ? ? ? ? = ? ? = exp ! 1 1 0 0 ? ? ? (5)173

In radar systems, detection performance is always related to target models and background environments.174
Thus, the availability of the statistical characteristics of a target’s radar cross-section (RCS) can significantly175
ameliorate the performance of the detection algorithm. For this purpose, Swerling introduced five models (SWI-176
SWV), to describsse the RCS statistical properties of the objects based on ? 2distributionss of varying degrees177
of freedom. For ? th degree of freedom ? 2 fluctuating target, the PDF of the target return is given by [9]:( ) ( )178
( ) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? U M M e F p M ? ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? + = ! 1 ; ; 1 1 1 0179
(6)180

1 F 1 (.) stands for the confluent hyper-geometric function and ? denotes the average M-pulse SNR. The181
calculation of the CDF associated with this PDF yields:( ) ( ) ( ) ? ? ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ?182
= ? ? ? + = ? ? = & ! 1 1 ! 1 0 0 0 j M j j j e F j ? ? ? (7) with ? ? ? ? ? ? ? ? ? ? = SWV for SWIV for M183
SWIII for SWII for M SWI for 2 2 1 ?(8)184

( )H Year 2021 and ( ) ( ) ( ) ? ? ? > ? + + + = = Î?” + Î?” ? 0 ) 1 .( )......... 1 ( ) 1 ( 0 1 j if j j if j j ? ? ?185
? ? ? ? (9)186

The substitution of Eq.( ??) into Eq.( ??) and using the values indicated in Eq.( 8), the N-P performance can187
be easily obtained for fluctuating targets of different Swerling’s models.188

4 b) Constant False Alarm Rate (CFAR) Detector189

CFAR detectors are designed to track changes in the interference and to adjust the detection threshold to maintain190
a constant probability of false alarm. Since the performance of a detection scheme is measured by evaluating191
the probability of detection and the probability of false alarm, our strategy in analyzing a CFAR variant is to192
calculate its detection probability which is given by:( ) ( ) ( ) ( ) ? ? ? ? ? ? ? d T T dx dy y x T Z F p p p H193
P Z T Z d ? ? ? ? ? = = ? ? ? ? ? ? ? ? 0 0 0 1 0 0 0 0 Pr (10)194

F Z (.) denotes the CDF of the noise power level estimate and T is a thresholding constant required to195
guarantee the designed rate of false alarm. In terms of the Laplace transformation, Eq.( ??0) takes the form:196
(11) With the aid of convolution theorem, Eq.( ??1) can be put in another form as:( ) ( ) ( ) ? ? = ? ? ? Z g T197
T M * 1 0 ?(12)198

In the above formula, M x (.) represents the moment generating function (MGF) of the random variable199
(RV) x, ? Z (.) denotes the Laplace transformation of the CDF of the RV Z, and the symbol ”*” stands for the200
convolution process. By using Eq.( 12), Eq.( ??0) can be written as:( ) ( ) 0 2 1 0 = ? ? ? = ? ? ? ? ? ? ? ? d201
T j Z C d M P (13)202

The contour of integration Cconsists of a vertical path in the complex ?-plane crossing the negative real axis203
at the rightmost negative real axis singularity of M ?0 (.) and closed in an infinite semicircle in the left half204
plane.205

Eq.( ??3) demonstrates that the MGF of ? 0 , the content of the CUT, plays an important role in determining206
the processor detection performance. Let’s go to calculate this interesting parameter for the Swerling’s models207
of fluctuating targets.208

For mono-pulse application and when a nonfluctuating target return-plus-noise represents the content of the209
CUT, the output of this cell has a PDF given by [11]:( ) ( ) ? ? ? ? ? ? ? ? ? ? U I p ? ? ? ? ? ? ? ? ? ? ? ?210
? ? ? ? + ? = 2 exp 1 0 0 (14)211

? denotes the signal power, ? is the noise power, ?/? represents the SNR at the square-law detector input212
and I 0 (.) stands for the modified Bessel function of type 1 and of order 0.213

Since the single pulse case is infrequently used, the M-pulses form of Eq.( ??4) is preferable. After integrating214
M pulses, the new form of Eq.( ??4) becomes [9]:( ) ( ) ? ? ? ? ? ? ? ? ? ? ? ? U I p M M ? ? ? ? ? ? ? ? ? ?215
? ? ? ? ? ? + ? ? ? ? ? ? ? = ? ? 2 exp 1 1 2 1 0 (15)216

The MGF associated with the PDF of Eq.( ??5) can be easily evaluated and the result yields:( ) ( ) ( ) ( ) ( )217
? ? ? ? ? d T with F p T P Z g g d ? ? ? ? = ? ? = ? ? ? ? exp 0 0 0 ( ) ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ?218
? ? ? + ? = ? 1 exp 1 1 0 ? ? ? ? ? M M (16)219

The unconditional MGF can be obtained by averaging the above formula over the target fluctuation distribution220
of ?. For ? 2 family of target fluctuation models, the RV ? is characterized by a PDF given by [18] ( )( ) ( ) ? ?221
? ? ? ? ? ? ? ? ? ? ? U p ? ? ? ? ? ? ? ? ? ? ? ? ? Î?” = ? exp 1 1 (17)222

The unconditional MGF is then extracted by calculating the average value of Eq.( ??6) given the PDF of Eq.223
(17). Thus, we have ( )( ) ( ) ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? + ? = ? = ? ? ? ? ? ?224
? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 & 1 1 1 1 0 0 0 M d p M M (18)225

Eq.( ??8) is the fundamental formula from the Swerling’s models can be derived as special cases.226
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5 Swerling I Model (SWI)227

As Eq.( 8) indicates, this model is characterized by ?=1. Replacing ? by 1 in Eq.( ??8) yields:( ) ( ) ( ) ? ? ? ?228
? ? ? ? ? ? ? + = + ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? + ? = ? ? 1 1 & 1 1 1 1 1 0 M M (19)229

In the above expression, ? denotes the average per pulse SNR. The substitution of this MGF into Eq.( ??3)230
results:( ) ( ) ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + ? ? ? Î?” ? ? ? ? ? ? ? ? + ? ? ?231
? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? T T d d M T T T T Z M M M Z M d P 1 1 1 1 1 2 2232
1 1 (20)233

6 Swerling II Model (SWII)234

This model of target fluctuation has an M th degree of freedom. Setting ?=M in Eq.( ??8) leads to:( ) ( ) ? ? ?235
? ? ? ? ? ? + = ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? + ? = ? 1 1 & 1 1 0 M M M (21)236

? denotes the average, over M pulses, SNR. In this case, the processor detection performance is given by:( ) (237
) ( ) ? ? T d d M T Z M M M d P ? = ? ? ? ? Î?” = ? ? ? 1 1 (22)238

7 Swerling III Model (SWIII)239

This model of target fluctuation is characterized by ?=2 in the MGF of the CUT. In this situation, the MGF of240
the concerned cell becomes:( ) ( ) ? ? ? ? ? ? ? ? ? ? ? + = ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? + ? ? ? ? ?241
? ? ? ? + ? = ? ? 1 2 1 & 1 1 1 1 2 2 0 M M (23) © 2021 Global Journals ( ) H Year 2021242

The probability of detection of SWIII target fluctuation model will be:( ) ( ) ( ) ? ? ? ? ? ? = ? ? ? ? ? ? ?243
? ? ? ? ? ? ? ? ? ? ? ? + ? ? ? Î?” + ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ?244
? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? T T d d M T T d d T T Z M M Z M M d P 2 3 3 2 2 2 1 2 1 1 (24)245

8 Swerling IV Model (SWIV)246

This case of target fluctuation has (2M) th degrees of freedom. Thus, the substitution of ?=2M in Eq.( ??8)247
yields:( ) ( ) ? ? ? ? ? ? ? ? ? ? ? + = ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? + ? = ? ?248
1 2 1 & 1 1 1 1 2 0 M M M M (25)249

Eq.( ??5), as a MGF, in the definition of P d gives the processor detection performance which has a250
mathematical form given by:( ) ( ) ? ? ? ? T T d d M T T Z M M M M M d P ? = ? ? ? ? ? ? ?251
? ? ? ? ? ? ? ? ? ? ? ? ? ? + ? ? Î?” ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? 1 2 1 1 2 1 2 2 (26)252

In all cases, the false alarm probability takes a unified form; the mathematical version of which is:( ) ( ) { } ?253
? T d d M T Z M M M fa P ? = ? ? ? ? Î?” ? ? ? ? ? ? ? ? = ? ? ? 1 1 1 (27)254

Since enhancing detection performance of a CFAR variant is a basic requirement in evolving radar systems,255
we choose the recent version of CFAR detectors to fulfill this objective. It is intuitive that as P d increases, the256
missed detection decreases and consequently, the processor performance will be enhanced. The upcoming section257
is devoted to evaluate the performance of the linear fusion (LF) strategy to have a knowledge about its reaction258
against fluctuating targets of Swerling models.259

By careful examining the previous derived formulas, it is evident that they rely on the Laplace transformation260
of the CDF of the noise power level estimate Z and its mathematical differentiation. Therefore, we are focused on261
formulating this transformation when the detection scheme operates in an environment that has several outlying262
targets along with the main one (ToI).263

9 III.264

10 Processor performance analysis265

Specifically, the efficiency of a CFAR scheme is measured in the perfect case of operating conditions or in the266
presence of some of fallacious targets beside the ToI. Since the ideal situation is a special case of nonideal267
operation, it is preferable to analyze the processor performance in heterogeneous background. This is actually268
the case that we are going to follow in the upcoming subsections.269

11 a) Single Adaptive Processors270

This procedure of CFAR technology performs robustly in both inhomogeneous clutter and target multiplicity271
situations. It extracts the K th largest sample from the candidates of the reference window to represent the272
estimate of the unknown noise power. To carry out such extraction, it ranks the reference cells in an ascending273
order, in such a way that:1 ., .......... , 2 , 1 & ) 1 ( ) ( ? = + ? N y y ? ? ? (28) ( ) N K y Z K OS ? ? ? 1 &274

In this ranked samples, y (1) denotes the lowest noise level whilsst y (N) represents the highest one. After275
the rank order, we plan to pick the sample of K th level to constitute the unknown noise level in the reference276
window. Thus, the OS test-statistic takes the form:277

12 i. Ordered-Statistics (OS)278

Aiming at evaluating the performance of the OS algorithm, this necessitates the PDF calculation of the K th279
ordered sample in the case where the samples are independent, but not identically distributed. To accomplish280
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12 I. ORDERED-STATISTICS (OS)

such objective, let us consider that the reference window has ”R” cells that contain outlying target returns each281
with power level ?(1+?) and the remaining, ”N -R” ones having thermal noise only with power level ?. In both282
cases, the observations are governed by the exponential PDF and are statistically independent quantities. Taking283
these assumptions into account, the cumulative distribution function (CDF) of the K th ordered cell is given by284
[19]:( ) ( ) ( ) ( ) { } ( ) { } m R I j n j i m n R N C m n N K i R N i Min R i Max j NH K t F t F m j i n j j i285
R j R N R N t F ? = ? = ? ? = ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?286
? ? ? ? = ? ? ? ? 1 1 1 1 , ; 0 0 ) , ( ) , 0 ((30)287

In the above expression, F C (.) represents the CDF of the cell that contains clutter background whilst F I (.)288
denotes the same thing for the cell that has interfering target return. The random variable (RV’s) representing289
the returns from clutter background has MGF of the same form as that given in Eq.( ??8) after nullifying ?. By290
using the resulting form of that equation, the Laplace transformation of F c (.) becomes:( ) ( ) ? + ? ? ? = ? 1291
M C (31)292

The Laplace inverse of the above formula yields:( ) ( ) ( ) t U t e t F t M C ? ? = ? + Î?” ? = 1 0 1 1 ? ? ?293
(32) Where ( ) ? ? ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? = M j j j j M j i i j i i M j j j M ?294
? ? 1 1 2 2 1 1 1 ? ? ? ? ? ? ? ? ? ? (34) and ( ) ( ) ? ? = ? ? ? ? M j k k j k j k j j j 1 2 2 1 1 ? ? ? ? ? ? ?295
(35)296

The substitution of Eqs.(32 & 33) into Eq.(30) leads to: For the interference case, there are two situations: a.297
? 2 _fluctuation with 4-degrees of freedom: if the interfering target fluctuates following this statistical type, F I298
(.) has a form given by [12]:( ) ? ? ? ? ? ? = ? ? ? ? = ? ? = ? = ? ? = ? ? ? ? ? ? + ? ? ? ? ? ? + Î?” ? ?299
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? R M n t n n N K i k R N300
t M m m k i j k j i R N i R i j NH K e e F n t m t j i k j j i R j R N R N t 1 1 0 0 0 ) , min( ) , 0 max( ) 1 ( ) 1301
( ) , ; ( ? ? ?( ) ( ) ( ) 2 1 1 , ) ( 1 1 1 1 1 2 2 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? + ? + ? = ? ? ? ? ? ? ? ? ? ? +302
? ? = ? = = ? ? ? + ? t U t i t e L F t M M i i I (33)303

By using binomial theorem, we can expand the bracketed quantities as a binomial of t. This expansion results304
in reformatting Eq. (36) as: ?? ; (( ) ( ) ( ) ( ) ? ? ? ? ? ? ? ? ? ? ? ? ? ? + + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?305
? + Î?” ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ?306
? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? + ? ? = ? ? = ? ? = ? ? = = = = ? = ? = ? = ? ? = ? ? = ? ? = ? ?307
= ? = ? ? = ? = ? t R N t R R R N j i j j i R j R N R N t n M n n n R M M R R R M R M M N K i R N R308
N R N i j j i R N i R i j NH K M M M M F ? ? ? ? ? ? ? ? ? ? ? µ ? ? ? µ µ ? ? ? ?1 0 1 2 1 2 0 1 1 ? ? ? ?309
? ? ? ? ? ? (37)310

The Laplace transformation of Eq. (37) gives: ?? ; (( ) ( ) ( ) ( ) ? ? ? ? ? ? ? + + ? ? + ? ? ? ? ? ? ? ? ?311
? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? + + ? ? Î?” ? ? ? ? ? ? ? ? ? ? ? ? ? + Î?” ? ? ? ? ? ? ? ? ? ? ? ? ? ?312
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + + ? ? ? = = ? ? = ? ? = ? ? =313
= = = ? = ? = ? = ? ? = ? ? = ? ? = ? ? = ? = ? ? = ? = ? n M n n n R R R R N j i j j i R j R N R N R314
N M M M M R M M M R R R M R M M N K i R N R N R N i j j i R N i R i j NH K ? ? ? ?1 0 1 2 1 2 0 1 1 1315
1 0 1 2 1 0 0 0 0 0 0 2 1 0 1 0 1 0 0 0 0 0 0 ) , min( ) , 0 max( ? ? ? ? ? ? ? ? ? ? ? (38)316

In the previous formulas, the term ?(J; j 1 , j 2 , ...., j M ) is defined as [20]:s( ) ( ) ( ) ? ? ? ? ? ? ? ? ? ? =317
+ Î?” ? ? ? ? ? + Î?” = = = M M M i i M J j if J j if j j j j J J 1 1 1 2 1 0 1 1 ,......., , ; ? ? ? ? (39) ( ) ? ? ?318
? ? ? ? ? ? ? + ? ? ? ? ? ? ? + ? ? = ? = ? 1 1 & 1 1 1 M I L F t (40)319

y evaluating the Laplace inverse processing of the above formula, one obtains:( ) ( ) ( ) ? ? ? = = ? ? ? ? =320
M j i i j i i j M j j j I t U t t ? ? ? (41)321

The substitution of Eqs.(32 & 41) into Eq.(30) yields:? ? ? ? ? = ? = ? ? ? ? = ? ? = ? = ? ? = ? ? ? ? ?322
? ? ? ? ? ? ? + Î?” ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ?323
R M n t n N K i R N t M m m i j j i R N i R i j NH K e e F n m t j i j j i R j R N R N t 1 1 0 0 0 ) , min( ) , 0324
max( ) 1 ( ) 1 ( ) , ; ( ? ? ? ? ? ?325

With the aid of binomial theorem, the bracketed quantities can be expanded as a binomial of t. Following this326
procedure of expansion, Eq.( ??2) can be rewritten as: The Laplace transformation of Eq.( ??3) results: ?? ; ((327
) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ? ? ? ? ? ? ? + ? ? ? ? ? + Î?” ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?328
? ? ? ? ? ? ? ? ? ? ? ? ? = = ? ? = ? = ? = = ? = ? ? ? = ? ? = ? ? = ? ? ? = = = ? ? = ? = ? ? ? ? ?329
? ? ? ? ? ? ? ? M n n n u R v R v R v M v M M u M R N u R N u R N u i j i j N K i R N i R i j NH K t v R330
N t v v v R u u u u R N j i j j i R j R N R N t M M M F 1 0 0 0 1 2 1 1 0 1 2 1 0 0 0 0 0 0 , min( ) ( ) ( ) ( ) ( )331
[ ] ( ) ( ) ? ? ? ? ? ? ? + ? ? + ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? + ? Î?” ? ? + Î?” ? ? ? ? ? ? ? ?332
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? + ? ? = ? = ? = ? = = ? =333
? ? ? = ? ? = ? ? = ? ? ? = = = ? ? = ? = ? M n n n u v v v R u u u u R N j i j j i R j R N R N v R N M334
M M u M R v R v R v M v M M u M R N u R N u R N u i j i j N K i R N i R i j NH K 1 1 .....1 1 0 0 0 0 1 2 1335
1 0 1 2 1 0 0 0 0 0 0 , min , 0 max 1 0 1 2 1 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(44)336

Once Eqs. (38 & 44) are obtained, the false alarm and detection performances are completely evaluated, as337
Eqs. (20, ??2, ??4, ??6, ??7) demonstrate. The major drawback of this scheme is the high processing time that338
is taken in performing the sorting mechanism.339

The trimmed-mean (TM) algorithm is the more generalized version of the OS scheme. It may be considered340
as an amended version of the OS scenario. The motivation of using this algorithm is to combine the benefits of341
averaging and ordering along with censoring. In this scheme, the noise power is estimated by a linear combination342
of some selected ordered range samples.343
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The linear combination may be anticipated to give better results because averaging estimates the noise power344
more efficiently as in the case of the CA processor and thus loss of detection in uniform background is more345
tolerable. In the TM-CFAR detector, the lowest L 1 ordered range samples and the highest L 2 ordered ones are346
excised before summing the remaining cells to formulate the statistic Z TM . Thus, ( )( ) ? ? + = ? 2 1 1 2 1 ,347
L N L TM y Z L L ? ? (45)348

Clearly, the ordered samples y (i) ’s are neither independent nor identically distributed, so the performance349
evaluation of TM scheme becomes cumbersome. To handle this evaluation, a new linear transformation is needed.350
In other words, the following transformation can be used to make the ordered samples y (i) ’s satisfy the IID351
property [18]. Mathematically, this transformation takes the form:( ) ( ) ( ) 2 1 1 1 ? ? ? ? + + ? ? ? ? U y y352
Y L L (46)353

As a function of these new variables Y i ’s, Eq.( ??5) can be rewritten as:© 2021 Global Journals ii. Trimmed-354
Mean (TM) ( ) ( ) 2 1 1 2 1 & 1 , L L N L j L L L T L j T j T TM Y Z ? ? ? + ? = ? = (47) ( ) ( ) ( ) ( ) ? ?355
? ? ? ? ? ? < ? ? = ? = ? ? ? ? ? ? + + + T NH j L NH j L NH L L j for R N R N j for R N Y M j 1 , ; , ; 1356
, ; 1 1 1 1 1 (48)357

After obtaining the formula (48), the computation of the MGF of the noise level estimate Z TM becomes an358
easy task owing to the independency of its samples. Thus,( ) ( ) ( )? + ? = ? ? = ? ? = 1 , ; 1 2 1 ? ? ? T L L359
Y L L Z T TM M M (49)360

Though the TM-CFAR scheme offers good performance, the large processing time, which is taken in ordering361
the candidates of the reference window, limits its practical applications. This problem can be overcome by362
partitioning the reference window into Q, symmetrical or nonsymmetrical, smaller sub-windows. The samples in363
the each sub-window are processed and its statistic Z may be estimated according to a specified rule and the final364
statistic is chosen by further processing the Q sub-window outputs. Here, we apply this idea by symmetrically365
partitioned the reference window into preceding and succeeding sub-windows (Q=2). In this situation, suppose366
that the preceding subset has R 1 cells from outlying target returns, N/2-R 1 ones from thermal background, the367
lowest P 1 cells and the highest P 2 ones are censored from its orderedstatistic before adding the remaining cells368
to establish the background level of the preceding sub-window. Similarly, assume that the succeeding sub-window369
has R 2 cells of fallacious target returns, N/2-R 2 samples containing clutter, its associated ordered-statistic is370
trimmed from its ends, where the lowest S 1 ordered cells are excised and S 2 highest ranked cells are nullified.371
Under these circumstances, the MGF’s of their noise power level estimates, Z 1 and Z 2 , have the same form as372
that given by Eq.( ??9) after replacing its common parameters with their corresponding values for the preceding373
and succeeding subsets. Since the meanlevel (ML) operation represents the simplest way that uses arithmetic374
averaging to extract the unknown noise power level, the two noise level estimates are combined through the ML375
operation to formulate the final noise power estimate. Mathematically, this can be expressed as:( ) 2 1 , Z Z376
Mean Z f = (50)377

Since the two noise level estimates are statistically independent, the final noise level estimate has a MGF given378
by:( ) ( ) ( ) 2 1 2 1 , ; , ; S S Z P P Z Z M M M TM TM f ? ? = ? (51)379

As Eqs. (20, ??2, ??4, ??6, ??7) indicate that the probabilities of detection and false alarm are functions of380
the Laplace transformation of the CDF of the noise level estimate Z f , it is necessary to compute such important381
parameter. As a function of the MGF of Z f , its CDF has a Laplace transformation given by [21]:( ) ( ) ? ? ?382
= ? M Z Z f f (52)383

Once the ?-domain representation of the PDF of the resultant noise level estimate is formulated, the processor384
false alarm and detection performances can be completely evaluated, as we have proved in the previous section.385
It is of importance to note that the TM scenario reduces to the conventional CA and OS algorithms for specific386
trimming values. In other words, TM (0, 0) and TM (K-1, N-K) tend to the well-known CA and OS (K)387
processors, respectively; each handles N reference cells to estimate the unknown noise power level. Thus, for the388
conventional CA and OS (K) schemes, we have:389

In terms of the ?-domain representation of the CDF of the ordered samples y (i) ’s, the MGF of the random390
variables Y j ’s can be easily calculated as [12]:( ) ( ) ( ) 0 , 0 ; 0 , 0 ; ? ? = ? M M M Z Z Z TM TM CA (53)391
and ( ) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? 2 2 1 1 2 , 1 ; 2 , 1 ; K N K Z K N K Z Z M M M TM TM OS392
(54)393

In Eq.( ??3), the noise levels extracted from the preceding and succeeding sub-windows of the OS scheme are:(394
) ( ) ? ? ? ? ? ? ? ? ? 2 ......, , 2 , 1 , , & 2 1 2 1 2 1 N K K K K y Z y Z (55) iii. Cell-Averaging (CA)395

The CA is the king of the CFAR schemes that has the highest homogeneous performance, given that the clutter396
is exponentially distributed and the contents of the reference window are IID. It uses the maximum likelihood397
estimate of the noise power to set the adaptive threshold. The CA performs the traditional averaging technique398
by dividing the summing of the contents of the reference cells by their number. Commonly, it is regarded as399
the reference model against which new implementations are compared. Nevertheless, it exhibits a weak behavior400
against heterogeneous background which are frequently created by clutter edges and the appearance of multiple401
target situations. If one or more spurious targets fall within the reference window, the probability of losing the402
targets will be increased owing to the severe phenomenon of target masking.403

Since CA is a special case of TM scheme, we can exploit the analysis of the TM variant to evaluate the404
performance of the CA detector, where all of its ordered samples are activated. Thus, under the same conditions405
of the double-window TM scenario, the MGF of the double-window CA processor is given by Eq.(53).406
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14 IV. SIMULATION RESULTS AND DISCUSSION

13 b) Combined CFAR Schemes i. Linear Fusion (LF) Emerged407

Strategy408

A robust detector should not only pick out targets but also diminish false alarms. For target detection in409
complex background, it is difficult to realize high level of detection simultaneously with holding low rate of false410
alarm. Therefore, an effective detector dictates an incorporation of different features in such a way that each411
aspect resolves one of the challenges that enface the detection characteristics. In other words, an architecture412
involving decentralized processing at multiple sensor locations provides the proper choice of optimum results413
in heterogeneous situation. From this point of view, the fusion strategy has rapidly become a methodology of414
choice for detecting fluctuating targets. Such establishment involves higher reliability and survivability, along415
with improved system performance at low latency. In this scenario of CFAR technology, a ??. Since the CA416
scheme provides a low false alarm rate and a high level of detection, its output is taken as a baseline for the417
fusion center. When the CA output is positive (presence of target), there is a possibility of occurrence of false418
alarm, caused by clutter transition or target multiplicity. To eliminate this eventuality, the AND fusion Rule(I),419
indicated in Eq.(56), can be applied. This rule necessitates the application of an AND logic between the CA420
output and that obtained by applying an OR logic between the outputs of OS and TM schemes. On the other421
hand, when the CA output is negative (absence of target), there exists the possibility of a target lost caused by422
clutter interference. To avoid such occurrence, an AND fusion Rule(II), exhibited in Eq.( ??6) is utilized. This423
involves the application of an AND logic between the outputs of OS and TM variants.( ) ? ? ? ? ? = ? ? ? TM424
OS II TM OS CA I Rule (56)425

In the previous expression, ”?” stands for the algebraic Boolean of OR gate whilst ”?” represents the same426
thing of AND gate. Since the occurrence of one of them excludes the occurrence of the others, they are mutually427
exclusive. Taking into account that the decisions of CA, OS, and TM approaches are independent events, the428
global detection probability ”P LF ” of the new implementation can be obtained by summing the outcomes of429
these rows. Thus, P LF has a mathematical form given by: + + ? = + + + = ) 2 ((57)430

Here, P miss denotes the probability of missed detection. All the parameters of Eq.( 57) are previously431
calculated. So, the detection performance of the LF-CFAR strategy is completely analyzed.432

Our scope in the upcoming section is to numerically simulate the derived formulas through a PC device using433
C++ programming language to see the new contribution of the LF style in the CFAR world.434

14 IV. Simulation results and Discussion435

It is of importance to numerically evaluate the performance of the examined model. This section introduces436
the simulation results in order to confirm the performance superiority of the proposed algorithm. How well the437
model reacts against the presence of inhomogeneous background, can be assessed by several parameters. The438
most dominant and common ones include detection performance, CFAR loss, and actual probability of false alarm439
which measures the model’s capability of holding the rate of false alarm stationary en face of outliers. Thus, we440
go to compute the detection performance, in the absence as well as in the presence of fallacious targets, for two441
and four (M=2 & 4) post-detection integrated pulses to see to what extent the pulse integration can ameliorate442
the reaction of the CFAR scheme against fluctuating targets. In our simulated results, it is assumed that the443
reference window has a size (N) of 24 cells, the designed P fa is 10 -6 . For OS scenario, the 10 th ordered sample,444
OS (10), is chosen to represent its noise level estimate of each reference sub-window, whilst for TM scheme,445
the two smallest cells along with the two highest ones, TM (2,2), are excised from the ordered set of each sub-446
window before adding the remaining ordered samples to extract its background power. Since the double-windows447
and mean-level operation are common for all the CFAR processors under test, it is of preferable to omit these448
features from nominating them. Instead, it is sufficient to designate each one of them with the CFAR rule used449
in estimating the unknown noise level of each sub-window as CA, OS (10) and TM (2,2). Fig. (2) shows the450
level of detection as a function of primary target signal strength (SNR) of the new methodology in homogeneous451
environment for the four Swerling models when the CFAR circuit based its decision on integrating two (M=2)452
consecutive sweeps. For the sake of comparison, the single sweep (M=1) case is attached for ? 2 fluctuating453
target with two (?=1) and four (?=2) degrees of freedom. Additionally, the same results of the optimum (N-P)454
detector are included among the curves of Fig. (2). In the case of single pulse operation, the displayed results455
illustrate that there is a turnover point; below which the N-P scheme surpasses, in detection performance, the LF456
strategy whilst upper this point the reverse is occurred. In other words, when the target signal is strengthened,457
the detection performance of the new variant outweighs that of the N-P detector and the gap between the two458
curves increases as the signal becomes more strengthened. Moreover, the processor performance for fluctuating459
targets with ?=2 is higher than that obtained for ?=1and this behavior is noticed for LF and N-P processors460
given that the turnover point is exceeded. Furthermore, the performance of SWI model coincides with that of461
SWII model and the performances of SWIII and SWIV models are the same.462

For M=2, on the other hand, it is noted that the turnover point is shifted towards lower signal strength. At463
the preceding of this point, SWI has the top performance whereas SWIV gives the worst detection level. As this464
point is surpassed, the reverse is observed; where SWIV model has the highest performance whilst the SWI model465
exhibits the lowest probability of detection. It is of importance to note that the detector performance against466
SWII fluctuation model coincides with that corresponds to SWIII model in the case where the radar receiver has467
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a non-coherent integration of two successive pulses (M=2) as Eq.( 8) demonstrates. As we have noticed for M=1,468
the N-P detector has a detection performance which is meagerly superior, at lower SNR, than that of LF scheme,469
when the turnover point is not reached. When the SNR is greater than that corresponding to the turnover470
point, the new methodology has the top performance whatever the fluctuation model is. The gap between the471
two curves (LF & N-P) corresponding to SWI model is the widest whereas this gap is narrow for SWIV model,472
taking into account that the LF strategy has always the top performance against any fluctuation model. ??)473
on the exception that the operating environment is contaminated with some interfering targets instead of being474
free of them. The results of this scene are obtained on the assumption that one of each reference sub-window475
cells contains interfering target return (R 1 =R 2 =1); the signal strength of which equals to that of the primary476
target (INR=SNR) and follows the same Swerling model, as the target of interest, in its fluctuation. A big477
insight on the variation of the curves of this plot indicates that the turnover points of LF and N-P are different,478
instead of coincide as in homogeneous case in Fig. (2), and this occurs either the pulse integration is absent479
(M=1) or present (M=2). In addition, the N-P detector has the top performance especially when the signal480
strength is modest. As the target echo becomes strengthened, the detection performance of the new processor481
approaches that of the N-P and may surpass it if the CFAR circuit is provided by pulse integration, as Fig. ??3)482
demonstrates. Moreover, the point of exceeding for SWI fluctuation model takes place at a SNR which is lower483
than that occurs for SWII model which in turn precedes, in its location, that associated with SWIV model. It484
is of importance to note that this behavior doesn’t appear if pulse integration doesn’t achieve. The single sweep485
performance confirms this knowledge.486

Fig.( ??) repeats the behavior of LF and N-P, against fluctuating targets, when the operating environment is487
ideal (homogeneous) as that displayed in Fig. (2) with the exception that the radar receiver builds its decision488
on integrating four (M=4), instead of two (M=2), successive pulses. The portrayed results of this figure prove489
that the candidates of this figure have the same variation as those corresponding in Fig. (2) within some gain.490
Additionally, the gap between the performance of novel scheme and that of N-P becomes evident; with LF491
detector always on the top given that the signal strength exceeds the turnover point.492

Similarly, Fig. ??), the current results exhibit some noticeable remarks as: the gap between the LF performance493
and optimum (N-P) is narrower, the point of exceeding is shifted towards lower SNR with the same sequence of494
Swerling models as that outlined during our comments on the curves of Fig. ??3), and there is an evident gain495
in the performance of the examined and standard detectors. Now, Let us go to evaluate another figure of merit496
which is known as CFAR loss. Fig. (6) shows how the signal strength must be to satisfy a detection level of 90%497
(P d =0.9) as a function of the correlation strength among the primary target returns when this target obeys ?498
2 -statistics, with two (?=1) degrees of freedom, in its fluctuation. As a reference of comparison, the traditional499
CFAR and N-P schemes are incorporated among the results of the LF style. The displayed results are acquired on500
the assumption that the environment of operation is ideal and two (M=2) consecutive sweeps are non-coherently501
integrated. A big insight on the behavior of the curves of this figure demonstrates that as the correlation among502
the target returns increases, the echo signal must be more strengthened to reply the required level of detection.503
Additionally, the conventional OS scenario needs the highest, relative to the other ones stated here, signal power504
to attain 90% level of detection, the standard TM mechanism comes next, the traditional CA procedure reserves505
the third position, the optimum (N-P) occupies the fourth location, whilst the new methodology (LF) needs the506
minimum signal strength in order to accomplish the requested probability of detection. The results of this scene507
reveals the superiority of the underlined detector over its original ones as well as the N-P which is taken as a508
reference of any new variant added to the CFAR world. Fig. (7) depicts the same behavior for the concerned509
processors when the primary target fluctuates in accordance with ? 2 -statistics, with four (?=2) degrees of510
freedom. The tested variants follow the same sequence, as indicated in Fig. (6), in demanding the signal strength511
to reply a detection level of 90%. Moreover, for any one of the examined schemes, the signal power required in512
this situation is weaker than that needed in Fig. (6) to satisfy the same probability of detection.513

In multiple target situations, Figs. (8)(9)(10)(11) illustrate the needed signal strength to satisfy a given level of514
detection when the primary and the secondary targets follow SWI, SWII, SWIII, and SWIV models, respectively,515
in their fluctuation for the underlined detectors given that the decision is carried out based on integrating two516
(M=2) successive pulses and the outlying target returns have the same signal strength as those of primary target517
(?=?).518

As a reference of comparison, the results of the N-P scheme are included among the curves of these figures519
under the same target fluctuation model. Fig. (8) portrays the required signal power versus the preassigned level520
of detection for the standard as well as the derived versions when one cell among the contents of each reference521
sub-window is contaminated with extraneous target returns (R 1 =R 2 =1). The displayed results illustrate522
that the CA technique can reply the request probability of detection till a specified level beyond which it hasn’t523
the capability to satisfy the needed level of detection whatever the signal strength is. In this regard, we define524
the dynamic range as the range belong to which, the CFAR processor can reply any given level of detection.525
Based on this definition, the CA scheme has a limited dynamic range which is very narrow. All the other under-526
examination processors are able to reply any level of detection with different signal powers. For lower values of527
detection probability, there is a gap between the signal strengths needed by LF strategy and N-P detector with528
LF needs the highest. However, as the pre-assigned detection level increases, this gap becomes narrower till the529
two curves coincide and may LF requests the lowest signal strength to verify the high levels of detection. The530
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15 CONCLUSIONS

OS (10), TM(2, 2), and LF scenarios have full dynamic range, with OS(10) demands the highest whilst LF needs531
the lowest signal power to give the pre-assigned level of detection. In addition, the length of the dynamic range532
of CA detector varies as a function of the target fluctuation model in such a way that SWI model gives smallest533
whilst SWIV model results in relatively the largest extend of the dynamic range. The remaining schemes have534
always the full length for their dynamic range irrespective the fluctuation model is. However, the required signal535
strength varies depending on the model of fluctuation in such a way that the SWI model requires the highest536
whereas the SWIV model needs the lowest signal power to reply the same level of detection.537

Finally, we are going to test the capability of the new methodology of holding the rate of false alarm unchanged538
en face of fallacious target returns that may exist among the contents of the reference sub-windows. This category539
of plots includes Figs. ??12 & 13). While Fig.( 12) is devoted to measure the actual false alarm rate, as a function540
of the correlation strength among the interferer’s returns, in the case where the outliers fluctuate following ? 2541
-distribution with two-degrees (?=1) of freedom, Fig. (13) depicts the same thing for ? 2distribution with four-542
degrees (?=2) of freedom for the fluctuation of the interferers. In these two figures, it is assumed that each543
reference sub-window has only one contaminated cell (R 1 =R 2 =1) and the interference strength has a power544
of 10dB (?=10dB). In addition, the data of these figures is established taking into account that the CFAR circuit545
non-coherently integrates two successive pulses (M=2). The displayed results of Figs. ??12 & 13) demonstrate546
that the LF derived version has the ability of maintaining the false alarm rate, as the standard OS (10) and TM(2,547
2) procedures, whatever the strength of correlation among interferer’s returns is. As predicted, the conventional548
CA detector is incapable of fixing the rate of false alarm against the existence of outlier’s returns.549

V.550

15 Conclusions551

According to the analysis outlined above, the current investigation is aimed at comparing the performance of552
several CFAR alternatives regarding the maintaining of the false alarm probability and the reaching of the553
top of detection probability with the goal of selecting the most promising CFARs. For the Swerling target554
models, embedded in white Gaussian noise of unknown level, we derive an analytical expression for the overall555
probability of detection while the overall probability of false alarm is retained at the desired level for the given556
fusion rules. Through extensive simulations, the superiority and robustness of the linear fusion mechanism are557
clearly demonstrated by outperforming the conventional processors of CA, OS, TM and N-P in scenarios with558
different target fluctuation models, different correlation strengths among the target’s returns, different numbers559
of integrated pulses, and varied operating circumstances. This ability to obtain improved performance compared560
to existing models is the major contribution of this work. In other words, performance analysis, conducted on561
both analytical and simulated results, highlights that the new architecture operating in multi-target background562
guarantees the constant false alarm rate property with respect to the correlation strength variations and a limited563
detection loss with respect to the other detectors, whose detection thresholds nevertheless are very sensitive to564
the interference power. The cost is that LF-CFAR suffers from more computational burden and elapsed time than565
other processors. We conclude from our simulation results that the fusion detector has higher quality detection566
interactions in heterogeneous environments. In other words, the linear fusion enjoy significant advantages in both567
the false alarm regulation property and detection performance, as the displayed results of 1 2 3 4568

1Multi -Target Detection Capability of Linear Fusion Approach under Different Swerling Models of Target
Fluctuation

2( ) H © 2021 Global Journals Year 2021 Multi -Target Detection Capability of Linear Fusion Approach under
Different Swerling Models of Target Fluctuation

3( ) H Year 2021 Multi -Target Detection Capability of Linear Fusion Approach under Different Swerling
Models of Target Fluctuation
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this research demonstrated. Thus, the LF strategy has the proficiency of choice en face of heterogeneous569
situations.570
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