
Accuracy in Selecting Reconfigurable Web Services1

M N Sahulamid1 and M Regina Bagam22

1 SBM college of engineering and technology3

Received: 6 December 2012 Accepted: 31 December 2012 Published: 15 January 20134

5

Abstract6

Service-Oriented Architecture (SOA) provides a flexible framework for service7

composition.Using standard-based protocols (such as SOAP and WSDL).There are several8

constraints meant for selecting the right and appropriate service to be designed as9

reconfigurable dynamic web services. Those constraints leverage to the following factors10

availability, response time, failure handling and supports dynamic configuration. Our paper11

presents the way of predicting the service methods which are really necessary for providing as12

a dynamic web service. Since all the service methods cannot be used as dynamically as it13

depends upon the number of users really using the service by the service providers.14

15

Index terms—16

1 I.17

2 Introduction for Selecting18

Dynamic Web Services eb Services are software applications or services that are uniquely identified by a URI19
(Uniform Resource Identifiers) and expose public interfaces for clients, using XML (extended markup language).20
Those web services can be discovered and used by other client applications using XML based messages and21
protocols such as HTTP.22

The emergence and continued development of web services standards such as SOAP (simple object access23
protocol) and WSDL (web services description language) [3] enable us to request and describe web services in a24
standard way. This will increase the ease of use of web services, enable interoperability between heterogeneous25
platforms and help businesses solve Authors ? ? : SBM college of engineering and technology, India. E-mail :26
sahulamid@gmail.com integration problems of their applications. Consequently, it is anticipated that web servers27
that host the services will be subject to increasing usage and have a higher load. Furthermore, the current simple28
modulus operand involving client/server activation of a single web service will be enhanced to support more29
complex scenarios, in which applications and service providers them selvesrely on other external web services as30
part of their business logic. The reliance on third party web services reduces the control of the Organization31
over its application and (sometimes) mission-critical code. The control and information of certain parts of the32
system is pushed outside organizational boundaries. Scenarios involving reliance on external web services raise33
several new issues and challenges. An example of common scenario would be of clients consuming external web34
services, which in turn outsource their computational resources to other service providers. Furthermore, runtime35
information such as service load and availability or business related constraints might affect the selection process36
of an external web service, and not be predecided, as it is today. In the existing frameworks for web services37
there is no incentive to bind dynamically to a specific web service. However, once runtime information concerning38
those web services is available to the application, a dynamic binding becomes advantageous over a static, pre-39
decided one. We suggest a model that provides the web service client runtime information that is pertinent to its40
execution and business logic. The client application can then dynamically bind to the temporarily best service,41
from a selection of acceptable web services it works with, and according to the client’s set of constraints. A client42
may want to apply some business rules when dynamically choosing a web service, or may be more concerned43
with response time or availability. When response time is critical (e.g. stock quotes service etc.) it is important44

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

8 B) PREDICTION GENERATION

for an application to activate the fastest web service available at that given time, or have some mechanism that45
ensures availability and reliability. When several clients participate in such a scenario, an indirect load balancing46
mechanism is created, which helps to direct clients to available and relatively fast web services.47

Figures 1 illustrate a client activation decisions based on information gathered at runtime from the service48
providers according to the client constraints. In figure 1, the client is concerned with availability and response49
times of a web service; after retrieving related information from the service providers, it activates the fastest50
available web service. This behaviour contributes to the robustness of the client application. Figure 1 shows51
client activation, based on response time and quality of service. According to the client’s business constraints,52
it may prefer to switch to another service provider when it observe a change in the combination of quality and53
response time offered by the service providers. The recommendation component asks the user to rate the executed54
service, so it will be used for recommendation purpose.55

3 II.56

4 Related Work57

Architecture58

5 Semantic Matcher59

Service providers publish DAML-S [5] descriptions of services to a Semantic Description Repository. A service60
user gives his requirements using DAML-S description. The semantic matcher finds the match between user61
requirement and all published service descriptions using a Semantic Matching Algorithm. It along with62
Recommendation System gives matching services in an order.63

Figure ?? shows the detailed architecture of a Semantic Matcher [6][7] [4]. The Ontology Inference Engine64
creates a knowledge base from the specified ontology in a DAML-S description and a request description. Web65
Service Description parser parses the Web Service Descriptions to find out different parameters to be matched.66
The criteria table specifies service attributes to be compared and the If the first conceptual annotation contains67
the second, the mapping is called a Container map and if first conceptual annotation is part of the second, the68
mapping is called Part of map. Otherwise the mapping is called disjoint map.69

6 Recommendation System70

The Dynamic Web Service Selection Framework has are commendation system, which recommends the best71
service satisfying the user’s requirements. When a user uses a web service, it asks user to rate a web service; so72
that users can help each other to find a better web service. This is especially important when there are more73
than one web services which have same functionality but their quality of service is different. We provide the74
user, a metric to help him decide the rating of a web service. It will be a comparison matrix of runtime behavior75
of a web service and the users expected QoS parameters like max execution time, average execution time, max76
response time, average response time etc. Web service with better quality of service will get more rating than77
other service which offers same functionality but poor service quality. The recommendation system uses the78
item based collaborative filtering approach [8]. As users rate web services, it is possible to predict how a given79
user will rate a particular web service. Once it knows prediction of ratings to each web service satisfying user80
requirements, it can recommend web services in order of their ratings. This approach looks at the set of web81
services the target user has rated and computes how similar they are to the web service for which user rating82
is to be predicted. Once the similar web services are found, the prediction is computed by taking a weighted83
average of the target user’s ratings on these similar web services. The item based collaborative filtering approach84
has two aspects namely similarity computation and prediction generation.85

7 a) Similarity Computation86

The similarity ??8][9] between two web services is computed by subtracting the average rating of the two web87
services. Considering only users who have rated both web service A and web service B, say that there are 10 such88
users, we sum the ratings that A and B got, say 65 and 85.Clearly B is ranked higher than A by 2 on average.89
The similarity between web services is computed whenever users rate a web service. The result of similarity90
computation is stored in a similarity matrix.91

8 b) Prediction Generation92

The prediction function [8][9] predicts how a particular user will rate a web service. It computes prediction on93
a web service i for a user u by computing the sum of ratings given by the user on the web services similar to94
i. Each rating is weighted by the corresponding similarity Si,j between web services i and j.Pu, i=_all similar95
items, j(si,j * Ru,j)_all similar items, j(|si,j|)Basically it tries to capture how the active user rates the similar96
web services. The weighted sum is scaled by the sum of the similarity terms to make sure the prediction is with97
in the predefined range. If the user has used a similar service, it predicts his likely satisfaction index for this98
service/service chain. If no(D D D D D D D D)99

similar service has been used before, it considers the average rating of all the users for similar services.100

2

9 III.101

10 Dynamic Web Service Invocation -Advanced a) Headers102

Besides parameters, a web service operation may include ”headers”. Headers are basically additional parameters103
that are carried inside the header of a SOAP request/response instead of in the body. In general headers are used104
to specify additional information not strictly related to the semantics of an operation such a as the credentials105
(username and password) required to invoke it.106

The WSData class allows managing parameters and headers homogeneously: while the voidset107
Parameter(<parameter-name>, < parameter-value>) AbsObjectgetParameter(<parameter-name>) String get108
Parameter String(<parameter-name>), Intget Parameter Integer(<parameter-name>), booleanget Parameter109
Boolean(<parameter-name>) methods are available to manage parameters, the voidset Header(<header-110
name>, <header-value>) AbsObjectgetHeader(<header-name>) String getHeaderString(<header-name>)111
integergetHeaderInteger(<header-name>) booleangetHeaderBoolean(<header-name>) methods are available to112
manage headers.113

11 b) Proxy114

In many cases both the access to a WSDL (at Dynamic Client initialization time) and the actual web service115
invocation require passing through an HTTP Proxy. The Dynamic Client class provides the following methods116
to set proxy information.117

? setProxyHost(<host>): Set the proxy host (e.g. 163.162.10.12) ? setProxyPort(<port>): Set the proxy118
port (e.g. 8080)119

? setNonProxyHosts(<listOfAddresses>): Set a list of addresses (possibly including ’*’) that120
will be accessed without using the proxy. The separator is the ’|’ character ? setProxyAu-121
thentication(<user>, <password>): Set the credentials (if any) required to access the proxy The122
following code snipped provides an example. dc.setProxyHost(”10.12.175.14”); dc.setProxyPort(”8080”);123
dc.setNonProxyHosts(”163.163.*|*.telecomitalia.it”); dc.setProxyAuthentication(”myUser”, ”myPwd”);124
dc.initClient(new URI(”http://myWSDL”)); c) Security Certain web services require HTTP Basic125
Authentication. The Dynamic Client class provides the following methods to set HTTP related information.126

? setDefaultHttpUsername(): Specifies the http username used in all requests.127
? setDefaultHttpPassword(): Specifies the http password used in all requests. The fol-128

lowing code snipped provides an example. dc.setDefaultHttpUsername(”MyHttpUsername”);129
dc.setDefaultHttpPassword(”MyHttpPassword”);130

If the credential of HTTP Basic Authentication are different in all requests is possible specify them in invoke(?)131
method with Security Properties object.132

Instead, if the credential of HTTP Basic Authentication are different for the WSDL discovery is possible133
specify them in initClient(?) method.134

The following code snipped provides an example dc.initClient (new URI(”http://myWSDL”), ”MyHttpUser-135
name”, ”MyHttpUsername”); Other web services require WS-Security Username Token. The DynamicClient136
class provides the following methods to set WSS related information.137

? setDefaultWSSUsername(): Specifies the wss username used in all requests. ? setDefaultWSSPassword():138
Specifies the wss password used in all requests. ? setDefaultWSSPasswordType(): Specifies the wss password type139
used in all requests (TEXT or DIGEST, see SecurityProperties object). The following code snipped provides an140
example. dc.setDefaultWSSUsername(”MyWSSUsername”); dc.setDefaultWSSPassword(”MyWSSPassword”);141
dc.setDefaultWSSPasswordType(SecurityProperties.PW _TEXT);142

If the credential of WS-Security Username Token are different in all requests is possible specify them in143
invoke(?) method with Security Properties object.144

Other web services require WS-Security Timestamp. The Dynamic Client class provides the following method145
to set WSS related information.146

? setDefaultWSSTimeToLive(): Specifies the wss request time to live (in second) used in all requests. The147
following code snipped provides an example. dc.setDefaultWSSTimeToLive(60);148

If the credential of WS-Security Timestamp are different in all requests is possible specify them in invoke(?)149
method with Security Properties object.150

Other web services require SSL connections with or without certificates. The Dynamic Client class provides151
the following methods to set SSL related information.152

? enableCertificateChecking(): Enables the certificates checking mechanism. When this mechanism is ?153
setTrustStore(<file.keystore>):154

Specifies the keystore holding certificates of trusted remote servers ? setTrustStorePassword(<password>):155
Specifies the password used to protect the keystore of trusted certificates The following code snipped pro-156
vides an example. dc.setTrustStore(”C:/myFolder/cert.keystore”); dc.setTrustStorePassword(”myPassword”);157
dc.initClient(new URI(”http://myWSDL”));158

3

15 CONCLUSION

12 d) Caching159

Considering that the initialization of a Dynamic Client (initClient() method) is a long operation that may take160
some seconds, a good approach is to create a single Dynamic Client instance for each WSDL and reuse it whenever161
an operation of a service described in that WSDL must be invoked (note that the invoke() methods of Dynamic162
Client class are thread safe and therefore can be called by two or more threads in parallel). In order to facilitate163
this practice the WSDC provides a class called Dynamic Client Cache that manages all issues related to creation,164
initialization and caching of Dynamic Client objects in a thread safe mode. The Dynamic Client Cache class165
follows the singleton pattern and therefore the first step when using it is to retrieve the singleton Dynamic Client166
Cache instance by means of the get Instance() method.167

The following code snippet shows how to use the DynamicClientCache class.168
DynamicClientCache dcc = DynamicClientCache.getInstance();169
DynamicClient client = dcc.get(new URI(”http://myWSDL”)); WSData output = client.invoke(”sum”,170

input);171
The get() method of the DynamicClientCache class first checks if a DynamicClient object was already created172

to access the given WSDL and returns it in that case. Only if no DynamicClient object is already available a173
new one is created and initialized.174

13 IV.175

14 Service Selection Algorithms for General Flow Structure176

Many real-world service processes have services that are not in strictly sequential order. They may have parallel177
operations to perform several services at the same time, conditional branch operations, and loops for using a178
service more than once in a flow. The function graph for composite service with general composition patterns179
may contain complex structures among function nodes. In order to simplify the problem and construct a service180
candidate graph with a DAG structure, we first remove the loop operations by unfolding the cycles as in ??Zeng181
et al. 2004]. A cycle is unfolded by cloning the function nodes involved in the cycle as many times as the maximal182
loop count.183

V.184

15 Conclusion185

We have studied the problem of service selection with multiple QoS constraints and proposed several algorithms.186
The selection of dynamic web service is depends upon the Execution price, Execution duration, Reputation,187
Successful execution rate, Availability, response time ? 600, cost ? 25 0, availability ? 85%.188

4

1

Figure 1: Figure 1 :

2

Figure 2: Figure 2 :

5

15 CONCLUSION

Figure 3: E

Figure 4: E

6

[DAML Technical Committee. DARPA Agent Markup Language-DAML] , http://www.daml.org DAML189
Technical Committee. DARPA Agent Markup Language-DAML190

[Tao et al.] Efficient Algorithms for Web Services Selection with End-to-End QoS Constraints, Y U Tao , Yue191
Zhang , Kwei-Jay Lin . University of California, Irvine192

[Evrensirin and Hendler ()] ‘Filtering and Selecting Semantic Web Services with Interactive Composition Tech-193
niques’. Bijanparsia Evrensirin , James Hendler . IEEE Intelligent Systems 2004. 19 (4) p. .194

[Lemire and Mcgrath (2005)] Implementing a Rating-Based Item-to-Item Recommender System in PHP/SQL,195
Daniel Lemire , Sean Mcgrath . D-01. January, 2005. (Technical Report)196

[Sarwar et al.] Item-based Collaborative Filtering Recommendation Algorithms, Badrul Sarwar , George Karypis197
, Joseph Konstan , John Riedl . (In the Proceedings)198

[Kanpur shripad@cse.iitk.ac.in T.V. Prabhakar Indian Institute of Technology] Kanpur shripad@cse.iitk.ac.in199
T.V. Prabhakar Indian Institute of Technology, Kanpurtvp@cse.iitk.ac.in Manikrao Indian Institute200
of Technology201

[Doshi et al. (2004)] Parameterized Semantic Matching for Workflow Composition, Prashant Doshi , Richard202
Goodwin , Rama Akkiraju . March, 2004. (IBM Research Report, RC23133 (W0403-026)203

[Paolucci ()] ‘Semantic Matching of Web Services Capabilities’. M Paolucci . The Semantic Web-ISWC 2003: 1st204
Int’l Semantic Web Conf, 2002. Springer-Verlag. 2342 p. 333.205

[Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL) Available Markup Language (XML) ()]206
‘Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL) Available’. at: 4.1.207
http://www.w3.org/TR Markup Language (XML), 2000/2001. (Web Services)208

7

http://www.daml.org
Kanpurtvp@cse.iitk.ac.in
http://www.w3.org/TR

	1 I.
	2 Introduction for Selecting
	3 II.
	4 Related Work
	5 Semantic Matcher
	6 Recommendation System
	7 a) Similarity Computation
	8 b) Prediction Generation
	9 III.
	10 Dynamic Web Service Invocation -Advanced a) Headers
	11 b) Proxy
	12 d) Caching
	13 IV.
	14 Service Selection Algorithms for General Flow Structure
	15 Conclusion

