
A Performance Comparison Between Enlightenment and1

Emulation in Microsoft Hyper-V2

Hasan Fayyad-Kazan1, Luc Perneel2 and Martin Timmerman33

1 Vrije Universiteit Brussel4

Received: 10 December 2012 Accepted: 3 January 2013 Published: 15 January 20135

6

Abstract7

Microsoft (MS) Hyper-V is a native hypervisor that enables platform virtualization on x86-648

systems. It is a micro-kernelized hypervisor where a host operating system provides the9

drivers for the hardware. This approach leverages MS Hyper-V to support enlightenments10

(the Microsoft name for Paravirtualization) in addition to the hardware emulation11

virtualization technique.This paper provides a quantitative performance comparison, using12

different tests and scenarios, between enlightened and emulated Virtual Machines (VMs)13

hosted by MS Hyper-V server 2012. The experimental results show that MS enlightenments14

improve performance by a factor of more than two.15

16

Index terms— virtualization, hyper-v, enlightenments, emulation.17

1 Introduction18

irtualization has become a popular way to make more efficient use of server resources within both private data19
centers and public cloud platforms. It refers to the creation of a Virtual Machine (VM) which acts as a real20
computer with an operating system (OS) [1]. It also allows sharing the underlying physical machine resources21
with different VMs.22

The software layer providing the virtualization is called a Virtual Machine Monitor (VMM) or hypervisor [1].23
It can be either Type 1 (or native, bare metal) running directly on the host’s hardware to control the hardware24
and to manage guest operating systems, or Type 2 (or hosted) running within a conventional operating-system25
environment.26

Since it has direct access to the hardware resources rather than going through an operating system, a native27
hypervisor is more efficient than a hosted architecture and delivers greater scalability, robustness and performance28
[2].29

Microsoft Hyper-V implements Type 1 hypervisor virtualization [3]. In this approach, a hypervisor runs30
directly on the hardware of the host system and is responsible for sharing the physical hardware resources with31
multiple virtual machines [4]. In basic terms, the primary purpose of the hypervisor is to manage the physical32
CPU(s) and memory allocation between the various virtual machines running on the host system.33

There are several ways to implement virtualization. Two leading approaches are Full virtualization34
(FV)/Hardware emulation and Para-virtualization (PV) [5]. Enlightenment is the Microsoft name for Par-35
avirtualization.36

This paper provides a quantitative performance comparison between hardware emulation and Enlightenments37
(Para-Virtualization) techniques hosted by MS Hyper-V server 2012.38

It is organized as follows: Section 2 describes MS Hyper-V architecture and Enlightenment approach; Section39
3 shows the experimental setup used for our evaluation; Section 4 explains the test metrics, scenarios and results40
obtained; and section 5 gives a final conclusion.41

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

7 I. CLOCK TICK PROCESSING DURATION

2 II.42

3 Microsoft Hyper-v43

Microsoft Hyper-V is a hypervisor-based virtualization technology for x64 versions of Windows Server [6]. It44
exists in two variants: as a stand-alone product called Hyper-V Server and as an installable role/component in45
Windows Server [7].46

There is no difference between MS Hyper-V in each of these two variants. The hypervisor is the same regardless47
of the installed edition [7].48

MS Hyper-V requires a processor with hardwareassisted virtualization functionality, enabling a much more49
compact virtualization codebase and associated performance improvements [3].50

The Hyper-V architecture is based on microkernelized hypervisors (figure 1). This is an approach where a51
host operating system, referred to as the parent partition, provides management features and the drivers for the52
hardware [8].(D D D D D D D D)53

Year Figure 1 : Hyper-V Architecture [6] With this approach, the only layer between a guest operating system54
and the hardware is a streamlined hypervisor with simple partitioning functionality. The hypervisor has no55
third-party device drivers [9]. The drivers required for hardware sharing reside in the host operating system,56
which provides access to the rich set of drivers already built for Windows [9].57

MS Hyper-V implements isolation of virtual machines in terms of a partition (operating system and58
applications). A hypervisor instance has to have at least one parent partition, running a supported version59
of Windows Server [6].The virtualization stack runs in the parent partition and has direct access to the hardware60
devices. The parent partition then creates the child partitions which host the guest OSs [6].61

Child partitions do not have direct access to hardware resources. Hyper-V can host two categories of operating62
systems in the child partitions: Enlightened (Hyper-V Aware) and un-enlightened (Hyper-V Unaware) operating63
systems [10]. Enlightened partition has a virtual view of the resources, in terms of virtual devices. Any64
request to the virtual devices is redirected via the VMBus (figure 1) -a logical channel which enables inter-65
partition communication -to the devices in the parent partition managing the requests. Parent partitions run a66
Virtualization Service Provider (VSP), which connects to the VMBus and handles device access requests from67
child partitions [6]. Enlightened child partition virtual devices internally run a Virtualization Service Client (VSC)68
(figure1), which redirect the request to VSPs in the parent partition via the VMBus [6]. The VSCs are the drivers69
of the virtual machine, which together with other integration components are referred to as Enlightenments that70
provide advanced features and performance for a virtual machine. In contrast, the unenlightened child partition71
does not have the integration components and the VSCs; everything is emulated.72

4 III.73

5 Experimental Setup74

Microsoft Hyper-V Server 2012 is tested here. It is a dedicated stand-alone product that contains the hypervisor,75
Windows Server driver model, virtualization capabilities, and supporting components such as failover clustering,76
but does not contain the robust set of features and roles found in the Windows Server operating system [11].77

As MS Hyper-V supports enlightened and emulated VMs, both VMs are created, running Linux PREEMPTRT78
v3.8.4-rt2 [12]. Being open source and configurable for usage in enlightened VM are the main reasons for selecting79
it as the guest OS. This also permits us to compare with another ongoing study of XEN.80

Both Linux versions (for enlightened and emulated VM) are built using the buildroot [13] tool to make sure81
that the enlightenment drivers are added to the enlightened VM.82

6 Global Journal of Computer Science and Technology83

Volume XIII Issue II Version I The tests are done in each VM separately. Under Test VM (UTVM) is the name84
used for the tested VM, which can be either enlightened or emulated. Each VM has one virtual CPU (vCPU).85
machine (Bare-Machine) as a reference, using the same OS of the UTVM.86

7 i. Clock tick processing duration87

The kernel clock tick processing duration is examined here. The results of this test are extremely important as88
the clock interrupt -being on a high level interrupt on the used hardware platform -will bias all other performed89
measurements. Using a tickless kernel will not prevent this from happening as it will only lower the number of90
occurrences. The kernel is not using the tickless timer option.91

Here is a description of how this test is performed: a real-time thread with the highest priority is created. This92
thread does a finite loop of the following tasks: starting the measurement by reading the time using RDTSC93
instruction, executing a ”busy loop” that does some calculations and stopping the measurement by reading the94
time again using the same instruction. Having the time before and after the ”busy loop” provides the time needed95
to finish its job. In case we run this test on the bare-machine, this ”busy loop” will be delayed only by interrupt96
handlers. As we remove all other interrupt sources, only the clock tick timer interrupt can delay the ”busy loop”.97
When the ”busy loop” is interrupted, its execution time increases.98

2

Running the same test in a VM also shows when it is scheduled away by the VMM, which in turn impacts99
latency.100

Figure 2 presents the results of this test on the baremachine, followed by an explanation. The X-axis indicates101
the time when a measurement sample is taken with reference to the start of the test. The Yaxis indicates the102
duration of the measured event; in this case the total duration of the ”busy loop”. The lower values (68 s) of103
figure 2 present the ”busy loop” execution durations if no clock tick happens. In case of clock tick interruption,104
its execution is delayed until the clock interrupt is handled, which is 76 s (top values). The difference between105
the two values is the delay spent handling the tick (executing the handler), which is 8 s.106

Note that the kernel clock is configured to run at 1000 Hz, which corresponds to a tick each 1 ms. This is107
obvious in figure 2, which is a zoomed version of figure 3 below. This test is very useful as it detects all the delays108
that may occur in a system during runtime. Therefore, we execute this test for long duration (more than one109
hour) to capture 50 million samples. The results in the tables of section D are comparing the maximum results110
obtained from the 50 million samples. The hardware platform used for conducting the tests has the following111
characteristics: Intel® Desktop Board DH77KC, Intel® Xeon® Processor E3-1220v2 with 4 cores each running112
at a frequency of 3.1 GHz, and no hyper-threading support. The cache memory size is as follows: each core has113
32 KB of L1 data cache, 32KB of L1 instruction cache and 256 KB of L2 cache. L3 cache is 8MB accessible114
to all cores. The system memory is 8 GB. Below is an explanation of the evaluation tests. Note that the tests115
are initially done on a non-virtualized One physical CPU is allocated for each VM, using the ”virtual machine116
reserve” and ”virtual machine limit” attributes in the VM settings using Hyper-V Manager.117

A Figure ?? : Thread switch latency between 2 threads on the Bare-machine Figure ?? shows that the118
minimum switch latency between 2 threads is around 0.43 s; the maximum latency is 11.45 s which is dependent119
on the clock tick processing duration.120

Table ?? below shows the results of performing this test on the bare-machine using 2 and 1000 threads.121
Armstrong, Hyper-V Program Manager, explains in the blog ”Processor Affinity and why you do not need it122
on Hyper-V” [14] that there is no need for this concept in Hyper-V. Instead, one can reserve a physical CPU123
(pCPU) for the VM to guarantee that it always has a whole processor.124

Moreover, if a VM has one vCPU and the host has more than one core, this VM can be mapped to any of the125
available cores in a round-robin way between all the cores [15]. The parent partition is the only VM parked on126
core 0.127

8 d) Testing scenarios128

Below is a description of the scenarios used for the evaluation. In all the scenarios drawings, the parent partition129
(VM) is not shown because it is idle. As shown in figure 5, this scenario has only one VM, the UTVM with one130
vCPU. This vCPU can run on any core (physical CPU) during runtime. The aim of this scenario is to detect the131
pure hypervisor overhead (as there is no contention).132

ii. Thread switch latency between threads of same priority This test measures the time needed to switch133
between threads having the same priority. Although realtime threads should be on different priority levels to be134
capable of applying rate monotonic scheduling theory [16], this test is executed with threads on the same priority135
level in order to easily measure thread switch latency without interference of something else.136

For this test, threads must voluntarily yield the processor for other threads, so the SCHED_FIFO scheduling137
policy is used. If we didn’t use the FIFO policy, a round-robin clock event could occur between the yield and the138
trace, and then the thread activation would not be seen in the test trace. The test looks for worst-case behavior139
and therefore it is done with an increasing number of threads, starting with 2 and going up to 1000. As we140
increase the number of active threads, the caching effect becomes visible as the thread context will no longer be141
able to reside in the cache.142

Table ?? : Comparison between the ”Thread switch latency” test results Note that the ”maximum switch143
latency” in all the scenarios depends on the processing durations of clock tick and other interrupts that may144
occur in the system during the testing time.145

ii. Scenario2: One-to-One As mentioned before, Hyper-V does not support affinity. It sends the workload of146
a VM to the first physical CPU that is available.147

In this scenario, there is only one physical CPU available, while the other three are disabled from the BIOS.148
There is only the UTVM, together with the parent partition which is always parked on CPU-0 but idle. Therefore,149
UTVM is also pinned to CPU-0.The aim of this scenario is to clarify if the affinity technique removes the periodic150
high measurements. Figure ?? shows that every second, the hypervisor is doing some tasks/scheduling decisions151
which causes the VM to be suspended/scheduled-away resulting in such high values periodically.152

Note that our policy is black-box testing which makes it difficult to understand the internal behavior of an153
out-of-the-box product.154

The emulated VM behaves exactly the same except with higher values. Table 2 is a comparison between the155
”clock tick processing duration” test results for both VMs, while table 3 is a comparison for the test results. This156
scenario is exactly the same as scenario 3 except using Memory-Load VM instead of CPU-Load VM. This VM157
is running an infinite loop of memcpy() function that copies 9 MB (a value that is larger than the whole caches)158
from one object to another. The other goal of this scenario using such a VM is to detect the cache effects on159

3

11 CONCLUSION

the performance the UTVM. 8 and 9 compare the results of the two tests: ”Clock Tick processing duration” and160
”Thread switch latency”.161

9 Table 8 : Comparison between the ”clock-tick processing162

duration” test results163

Table ?? shows that measurements of this scenario are greater than the ones of the previous scenario (scenario164
3) by almost 3 ms. 6 and 7 compares the results of the two tests: ”Clock Tick processing duration” and ”Thread165
switch latency”. The resulting values of this scenario are around three times greater than the ones of the previous166
scenario (scenario 5) even though number of VMs is running. This difference in the results is due to the concept167
explained in the following section (System bus bottleneck in SMP systems).168

System bus bottleneck in SMP systems.169
The hardware platform used for this evaluation is a Symmetric Multiprocessing (SMP) system with four170

identical processors connected to a single shared main memory using a system bus. They have full access to all171
I/O devices and are treatedequally.172

The system memory bus or system bus can be used by only one core at a time. If two processors are executing173
tasks that need to use the system bus at the same time, then one of them will use the bus while the other will174
be blocked for some time. As the processor used has 4 cores, when all of these are running at the same time,175
system bus contention occurs. Scenario 5 is not causing high overheads because the CPU stress program is quite176
small and fits © 2013 Global Journals Inc. (US)177

10 Global Journal of Computer Science and Technology178

Volume XIII Issue II Version I 27 () in the core cache together with its data. Therefore, the are not intensively179
loading the system bus which in turn will not highly affect the UTVM.180

Referring back to scenario 6, the three Memory-Load VMs are intensively using the system bus. The UTVM181
is also running and requires the usage of system bus from time to time. Therefore, the system bus is shared most182
of the time between four VMs (UTVM and 3 Memory-Load VMs), which causes extra contention. Thus, the183
more cores in the system that are accessing the system bus simultaneously, the more contention will occur and184
thus the overhead increases.185

To explicitly show this effect, we created another additional scenario (scenario 7 below) where only one Memory-186
Load VM is sharing the resources with the UTVM. The following demonstrates our observation. vii. Scenario7:187
TWO-to-ALL with 1 Memory-Load VM This work compares the performance between the two types of VM. For188
this purpose, different tests and several scenarios are used. The results show that the enlightened VM performs189
on average twice as good as the hardware-emulated VM. This performance enhancement may increase/decrease190
depending on the scenario in question.191

Even with VM performance is low compared with bare-machine (nonvirtualized) performance.192
A shared-memory symmetric multiprocessor hardware with four physical cores is used for conducting the tests.193

The results also show that the synchronous usage of all the available cores causes an intensive overload in the194
system bus which in turn increases latencies by a factor of 3 when compared with a system with only one active195
core.196

11 Conclusion197

Hyper-V is a ”Microkernalized Type 1” hypervisor which leverages paravirtualization (called Enlightenment by198
Microsoft) in addition to the traditional hardware emulation technique. It exists in two variants: as a stand-alone199
product called Hyper-V Server and as an installable role in Windows Server.200

There is no difference between MS Hyper-V in each of these two variants. The hypervisor is the same regardless201
of the installed edition.202

In203

4

Figure 1: A

2

Figure 2: Figure 2 :

5

11 CONCLUSION

3

Figure 3: Figure 3 :

2

Figure 4: () 2 A

Figure 5:

6

1

Figure 6: Table 1 :

5

Figure 7: Figure 5 :

7

11 CONCLUSION

617

Figure 8: Figure 6 : 1 Figure 7 :A

8

Figure 9: Figure 8 :

9

Figure 10: Figure 9 :)

10

Figure 11: Figure 10 :

11

Figure 12: Figure 11 :

8

1213

Figure 13: Figure 12 :Figure 13 :

15

Figure 14: Figure 15 :

14

Figure 15: Figure 14 :

Figure 16:

9

11 CONCLUSION

2

[Note: processing duration” test results A iv. Scenario4: Contention with 1 Memory-Load VM]

Figure 17: Table 2 :

9

Figure 18: Table 9 :

10

Tables

Figure 19: Table 10 :

6

Figure 20: Table 6 :

7

[Note: test A]

Figure 21: Table 7 :

11

Figure 22: Table 11 :

12

Figure 23: Table 12 :

13

Figure 24: Table 13 :

16

Figure 25: Table 16 :

10

[Finn et al.] , P Finn , Mastering Lownds , -V Hyper , Deployment . Wiley Publishing Inc.204

[Global Journals Inc. (US) ()] , Global Journals Inc. (US) 2013.205

[Klein et al. ()] A practitioner’s Handbook for Real-Time Analysis, M H Klein , T Ralya , B Pollak , R Obenza206
, M G Harbour . 1994. USA: Kumer Academic Publishers.207

[Abels et al.] An overview of Xen Virtualization, T Abels , P Dhawam , B Chandrasekaran . http://www.208
dell.com/downloads/global/power/ps3q05-20050191-abels.pdf209

[Available] http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf Available,210

[Available] http://msdn.microsoft.com/enus/library/cc768520%28v=bts.10%29.aspx Available,211

[Developers] Buildroot: Making Embedded Linux easy, T B Developers . http://buildroot.uclibc.org/212

[CONFIG PREEMPT RT Patch-RT wiki] CONFIG PREEMPT RT Patch-RT wiki, (Online)213

[Virtuatopia] Global Journal of Computer Science and Technology Volume XIII Issue II Version I 28, Virtuatopia214
. http://www.virtuatopia.com/ (An Overview of the Hyper-V Architecture)215

[Microsoft] Hyper-V Architecture, Microsoft . (Online)216

[Wiki] Hyper-V Concepts -vCPU (Virtual Processor), M T Wiki . http://social.technet.microsoft.217
com/wiki/contents/articles/1234.hyper-v-conceptsvcpuvirtualprocessor.aspx?wa=218
wsignin1.0219

[Armstrong ()] Hyper-V CPU Scheduling-Part 1, B Armstrong . http://blogs.msdn.com/b/virtual_pc_220
guy/archive/2011/02/14/hyper-v-cpu-scheduling-part-1.aspx 2011.221

[Corporation ()] Hyper-V Technical Overview, M Corporation . http://download.microsoft.com 2008.222
(Windows Server)223

[Shah ()] ‘Hyper-V: Deploying Hyper-V Enterprise Server Virtualization Platform’. Z H Shah . Windows Server,224
2012. 2013. Packt Publishing.225

[Blogs] Hyper-V: Microkernelized or Monolithic, M T Blogs . http://blogs.technet.com/b/chenley/226
archive/2011/02/23/hyper-v-microkernelized-or-monolithic.aspx227

[Microsoft ()] Microsoft Hyper-V Server, Microsoft . http://www.microsoft.com/enus/server-cloud/228
hyper-v-server/ 2012.229

[Knuth ()] Microsoft Windows Server 2008 -Hyper-V solution overview, G Knuth230
. http://www.brianmadden.com/blogs/gabeknuth/archive/2008/03/11/231
microsoft-windows-server-2008-hyper-v-solution-overview.aspx 2008.232

[Lee et al. ()] ‘Supporting Sofy Real-Time Tasks in the Xen Hypervisor’. M Lee , A S Krishnakumar , P Krishnan233
, S Nayjot , Y Shalini . the 6th ACM SIGPLAN/SIGOPS international conference on Virtual execution234
enviroments, 2010.235

[Vmware ()] Understanding Full virtualization, Paravirtualization and hardware Assist, Vmware . 2007.236

11

http://www.dell.com/downloads/global/power/ps3q05-20050191-abels.pdf
http://www.dell.com/downloads/global/power/ps3q05-20050191-abels.pdf
http://www.dell.com/downloads/global/power/ps3q05-20050191-abels.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://msdn.microsoft.com/enus/library/cc768520%28v=bts.10%29.aspx
http://buildroot.uclibc.org/
http://www.virtuatopia.com/
http://social.technet.microsoft.com/wiki/contents/articles/1234.hyper-v-conceptsvcpuvirtualprocessor.aspx?wa=wsignin1.0
http://social.technet.microsoft.com/wiki/contents/articles/1234.hyper-v-conceptsvcpuvirtualprocessor.aspx?wa=wsignin1.0
http://social.technet.microsoft.com/wiki/contents/articles/1234.hyper-v-conceptsvcpuvirtualprocessor.aspx?wa=wsignin1.0
http://social.technet.microsoft.com/wiki/contents/articles/1234.hyper-v-conceptsvcpuvirtualprocessor.aspx?wa=wsignin1.0
http://social.technet.microsoft.com/wiki/contents/articles/1234.hyper-v-conceptsvcpuvirtualprocessor.aspx?wa=wsignin1.0
http://blogs.msdn.com/b/virtual_pc_guy/archive/2011/02/14/hyper-v-cpu-scheduling-part-1.aspx
http://blogs.msdn.com/b/virtual_pc_guy/archive/2011/02/14/hyper-v-cpu-scheduling-part-1.aspx
http://blogs.msdn.com/b/virtual_pc_guy/archive/2011/02/14/hyper-v-cpu-scheduling-part-1.aspx
http://download.microsoft.com
http://blogs.technet.com/b/chenley/archive/2011/02/23/hyper-v-microkernelized-or-monolithic.aspx
http://blogs.technet.com/b/chenley/archive/2011/02/23/hyper-v-microkernelized-or-monolithic.aspx
http://blogs.technet.com/b/chenley/archive/2011/02/23/hyper-v-microkernelized-or-monolithic.aspx
http://www.microsoft.com/enus/server-cloud/hyper-v-server/
http://www.microsoft.com/enus/server-cloud/hyper-v-server/
http://www.microsoft.com/enus/server-cloud/hyper-v-server/
http://www.brianmadden.com/blogs/gabeknuth/archive/2008/03/11/microsoft-windows-server-2008-hyper-v-solution-overview.aspx
http://www.brianmadden.com/blogs/gabeknuth/archive/2008/03/11/microsoft-windows-server-2008-hyper-v-solution-overview.aspx
http://www.brianmadden.com/blogs/gabeknuth/archive/2008/03/11/microsoft-windows-server-2008-hyper-v-solution-overview.aspx

