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6

Abstract7

In recent years string matching plays a functional role in many application like information8

retrieval, gene analysis, pattern recognition, linguistics, bioinformatics etc. For understanding9

the functional requirements of string matching algorithms, we surveyed the real time parallel10

string matching patterns to handle the current trends. Primarily, in this paper, we focus on11

present developments of parallel string matching, and the central ideas of the algorithms and12

their complexities. We present the performance of the different algorithms and their13

effectiveness. Finally this analysis helps the researchers to develop the better techniques.14

15

Index terms— text processing, irs, string matching, parallel algorithms.16

1 INTRODUCTION17

he problem of string matching has been studied from several decades. String matching problem is all about18
searching a given pattern of interesting length in a large text. The problem is very practical in its nature: it19
occurs in many real-worlds applications such as web search engines, linguistics, bioinformatics etc. This is the20
reason why algorithms should be efficient even if the speed and capacity of storage of computers increase regularly.21
String matching performs important tasks in many applications including information retrieval; library systems,22
artificial intelligence, pattern recognition, molecular biology, and text search and edit systems. The challenge is23
that for the string matching to be accurate, it needs to be able to search every byte of every input data streaming24
for a potential match from a large set of strings [1][2][3][4][5][6][7].25

The main contributions of this work are summarized as follows. This work offers a comprehensive study as well26
as the results of typical parallel string matching algorithms at various aspects and their application on computing27
models. This work suggests the most efficient algorithmic models and demonstrates the performance gain for28
both synthetic and real data. The rest of this work is organized as, review typical algorithms, algorithmic models29
and finally conclude the study.30

2 II.31

3 OUR CONTRIBUTION32

Thousands of papers, literally, have been published about string matching, exploring the multitude of theoretical33
and practical facets of this fascinating fundamental problem. For example let us consider text(T)length of n and34
pattern(P) length of m. suppose there is an occurrence of P in T, it means the text string ti,ti+1..ti+m-1 equal to35
P, so that H(ti,ti+1..ti+m-1,P)=0. Many other algorithms have been published; some are faster on the average,36
use only constant auxiliary space, operate in real-time, or have other interesting benefits. This work categorizes37
the algorithms into some categories to emphasize the data structure that drives the matching. These categories38
are discussed here. a) Intrusion Detection Systems (Ids) Yongin-si et.al [8] proposed an algorithm that maps39
target patterns onto parallel string matching architectures in intrusion detection systems(IDS). In this iterative40
pattern mapping, the sets of patterns that are mapped onto string matchers are stored in ascending order of the41
average pattern length in each turn. By mapping a set of patterns for a string matcher onto the string matchers42
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4 I. DFA BASED APPROACHES

repeatedly, the required number of string matchers is reduced. Therefore, the proposed iterative pattern mapping43
minimizes the total memory requirement for parallel string matching architecture.44

4 i. DFA Based Approaches45

Issues in accelerating DFA-based multi-pattern matching have received much attention in recent years by several46
researchers. Here we discuss some of them. Hongbin Lu et al., [9] propose a memory-efficient multiple-character-47
approaching architecture consisting of multiple parallel deterministic finite automata (DFAs), called TDP-DFA.48
By employing efficient representations for the transition rules in each DFA, TDP-DFA significantly reduces the49
complexity. They also present a novel scheme to share the storage of transition rules among multiple DFAs,50
substantially decreasing the total storage cost, and avoiding the cost increase being proportional to the number51
of DFAs. They evaluate this design through theoretical analysis and comprehensive experiments.1 ( D D D D D52
D D D )53

Results show that TDP-DFA is able to meet the critical requirement of OC-768 wire speed processing, as well54
as constituting a promising way for scaling up to cope with throughput over 100 Gb/s in the future.55

Experimental Results: Using the pattern set from Snort, they extract 2234 distinct substrings containing 3356
793 characters from the signature database. In their prototype, the space for each state field in a CDLE entry is57
2 bytes, allowing the maximum number of states up to 65 536. This is large enough considering the maximum58
number they measured in real cases is less than 6000. Similarly, the ”Action ID” field in an entry of the associated59
RAM also occupies 2 bytes. It is shown in the Fig. 1. Yi-Hua E. Yang et al., [10] proposed a novel partitioning60
algorithm which converts an AC-DFA into a ”head” and a ”body” parts. The head part behaves as a traditional61
ACDFA that matches the pattern prefixes up to a predefined length; the body part extends any head match to the62
full pattern length in parallel body-tree traversals. Taking advantage of the SIMD instructions in modern x86-63
64 multi-core processors, they design compact and efficient data structures packing multi-path and multi-stride64
pattern segments in the body-tree. Compared with an optimized AC-DFA solution, their head-body matching65
(HBM) implementation achieves 1.2x to 3x throughput performance when the input match (attack) ratio varies66
from 2% to 32%, respectively. Their HBM data structure is over 20x smaller than a fullypopulated AC-DFA for67
both Snort and ClamAV dictionaries. The aggregated throughput of their HBM approach scales almost 7x with68
8 threads to over 10 Gbps in a dual-socket quad-core Opteron (Shanghai) server. b) Parallel Processing based69
Approaches K.L. Chung et al., [11] presents an O(n) time parallel algorithm for finding all initial palindromes70
and periods of the string matching on an n × n reconfigurable mesh(RM) where n is the length of the string.71
They provide a partitionable strategy when the RM doesn’t offer sufficient processers under the same strategy.72
This overcomes the hardware limitation and is very suitable for VLSI implementation.73

Heikki Hyyro and Gonzalo Navarro ?? average-optimal for m ? w, assuming the alphabet size is constant. In74
practice, it performs better than the original ABNDM and is the fastest algorithm for several combinations of m,75
k and alphabet sizes that are useful, for example, in natural language searching and computational biology. To76
show that the concept of witnesses can be used in further scenarios, they also improve a recent variant of BPM.77
The use of witnesses greatly improves the running time of this algorithm too.78

M. Oguzhan Külekci [13] proposed a new bitparallel algorithm, given name BLIM (bit-parallel length79
independent matching), and for exact pattern matching that does not restrict the input pattern to be shorter80
than the word size. The multiple pattern case is also addressed, and it is shown that up to computer word size81
number of patterns, whatever their lengths are, can be searched simultaneously in a single bit-parallel framework.82
Similar to other algorithms of this genre, BLIM is also capable of handling fixed-length gaps and character classes83
in the input strings as well. The proposed algorithm is compared with the other alternatives of its class, mainly84
the shift-or and BNDM variants. Experimental results indicate that BLIM is compatible with the previous bit-85
parallel algorithms with an additional gain of overcoming the word size new faster string matching algorithm, but86
a new approach identifying the use of bits in a different manner. Each bit in the proposed scheme represents an87
event, and the observations performed during the investigation alter these events according to the pre computed88
masks. In the exact pattern matching problem examined in this study, the events correspond to the alignments of89
the patterns in a window, and the observations are actually the characters accessed. Jorg Nolte And Paul Horton90
[14] discuss an experimental application that exploits TACO’s distributed object groups and collective operations91
for computing the similarity between groups of molecular sequences, a computationally intensive core problem92
in molecular biology research. In particular they show how TACO’s distributed collections can be conveniently93
combined with well known concepts found in the C++ standard template library (STL) to solve matching and94
sorting problems effectively on distributed hardware platforms. Figure ?? shows the results of the measurements95
using both a binary tree (par. red-2) and a 4-ary tree (par. red-4) topology. TACO’s implementation is by all96
means in the competitive range and the reduction on the 4-ary tree topology even outperforms the MPI-based97
implementation. Kuo-Kun Tseng et al., [15] propose a new Parallel Automaton string matching approach and98
its hardware architecture for content filtering coprocessor. This new approach can improve the average matching99
time of the Parallel Automaton with Pre-Hashing and Root-Indexing techniques. The Pre-Hashing technique uses100
a hashing function to verify quickly the text against the partial patterns in the Automaton, and the Root-Indexing101
technique matches multiple bytes for the root state in one single matching. A popular Automaton algorithm,102
Aho-Corasick (AC) is chosen to be implemented by adding the two techniques; they employ these two techniques103
in a memory efficient version of AC namely Bitmap AC. For the average-case time, their approach improves104
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Bitmap AC by 494% and 224% speedup for URL and Virus patterns, respectively. Since Pre-Hashing and Root-105
Indexing techniques can be concurrently executed with Bitmap AC in the limitation. The main contribution of106
this study is not a or compute others fast. The resulting algorithm is hardware, their proposed approach has the107
same worstcase time as Bitmap AC.108

Yunho Oh, Doohwan Oh and Won W. Ro [16] proposed a new parallel genome matching algorithm using109
graphics processing units (GPUs). Their proposed approach is based on the Aho-Corasick algorithm and it was110
developed based on a consideration of the architectural features of existing GPUs with a hundred or more cores.111
Thus, they provide an appropriate task partitioning method that runs on multiple threads and they fully utilize112
the cache memory and the shared memory structures available in GPUs. Especially, they propose a tiled access113
method for rapid data transfer from the global memory to the shared memory. They also provide new models114
for cache-friendly state transition table to improve performance of pattern matching operations on GPUs. The115
maximum throughput they achieved in various experiments was 15.3Gbps.116

For the performance evaluation, they selected five genome sequences and used the EST database provided by117
the UC Santa Cruz Genome Browser as the pattern set. The details of the input sequences are described in118
Table ??(a). In order to analyze the performance of modern GPU architectures, all experiments were performed119
using an NVIDIA GTX 285 (GT200 architecture) and a GTX 480 (Fermi architecture). J. J. ASTRAIN et al.,120
[17] apply a genetic algorithm to adjust the automaton parameters for selecting the ones best fit to a particular121
application. They have introduced a genetic algorithm to adjust the parameters of a deformed fuzzy automaton.122
They propose the use of genetic algorithms for the automatic parameter tuning of a deformed fuzzy automaton123
and they validate it for the approximate string matching problem .This genetic approach overcomes the difficulty124
of using common optimizing techniques like gradient descent, due to the presence of non derivable functions125
in the calculus of the automaton transitions. Experimental results, obtained in a text recognition experience,126
validate the proposed methodology.127

Yoginder S Dandass et al., [18] describes techniques for accelerating the performance of the string set matching128
problem with particular emphasis on applications in computational proteomics. The process of matching peptide129
sequences against a genome translated in six reading frames is part of a proteogenomic mapping pipeline that130
is used as a casestudy. The Aho-Corasick algorithm is adapted for execution in field programmable gate array131
(FPGA) devices in a manner that optimizes space and performance. In this approach, the traditional Aho-132
Corasick finite state machine (FSM) is split into smaller FSMs, operating in parallel, each of which matches up133
to 20 peptides in the input translated genome. Each of the smaller FSMs is further divided into five simpler FSMs134
such that each simple FSM operates on a single bit position in the input (five bits are sufficient for representing135
all amino acids and special symbols in protein sequences). This bit-split organization of the Aho-Corasick136
implementation enables efficient utilization of the limited random access memory (RAM) resources available in137
typical FPGAs. The use of onchip RAM as opposed to FPGA logic resources for FSM implementation also138
enables rapid reconfiguration of the FPGA without the place and routing delays associated with complex digital139
designs. Experimental results show storage efficiencies of over 80% for several data sets. Furthermore, the FPGA140
implementation executing at 100 MHz is nearly 20 times faster than an implementation of the traditional Aho141
Corasick algorithm executing on a 2.67 GHz workstation.142

5 d) Finite Automata Based Approaches143

Gerald Tripp [19] describes a finite state machine approach to string matching for an intrusion detection system.144
To obtain high performance, they typically need to be able to operate on input data that is several bytes wide.145
However, finite state machine designs become more complex when operating on large input data words, partly146
because of needing to match the starts and ends of a string that may occur part way through an input data word.147
Here they use finite state machines that each operates on only a single byte wide data input. They then provide148
a separate finite state machine for each byte wide data path from a multibyte wide input data word. By splitting149
the search strings into multiple interleaved substrings and by combining the outputs from the individual finite150
state machines in an appropriate way they can perform string matching in parallel across multiple finite state151
machines. A hardware design for a parallel string matching engine has been generated, built for implementation152
in a Xilinx Field Programmable Gate Array and tested by simulation. The design is capable of operating at a153
search rate of 4.7 Gbps with a 32-bit input word size.154

Panagiotis D. Michailidis and Konstantinos G.Margaritis [20] proposed a linear processor architecture for155
flexible string matching. This architecture is a bit-parallel realization of the non-deterministic finite automation,156
which minimizes the amount of data flow between adjacent cells. Initially a bit-level algorithm is discussed which157
consists of two phases, i.e. preprocessing and searching. Then, starting from the data dependence graph of the158
searching phase processor array architecture is derived. Further, the preprocessing phase is also accommodated159
onto the same processor array design.160

Junchen Jiang et al., [21] proposed a multistring matching acceleration scheme named Synergic Parallel161
Compact Finite Automata (SPC-FA) Matching System together with its conflict-free dispatching algorithm and162
the corresponding memory optimization163
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7 EXPERIMENTAL RESULTS: THE EXPERIMENTAL RESULTS

6 e) Prefix based Approaches164

Abdelghani Bellaachia and Iehab Al Rassan [22] proposed a Tagged Sub-optimal code (TSC), a new coding165
technique to speed up string matching over compressed databases on personal digital assistants (PDA). TSC is166
a variable-length sub-optimal code that supports minimal prefix property. It always determines its codeword167
boundary without traversing a tree or lookup table. TSC technique may be beneficial in many types of168
applications: speeding up string matching over compressed text, and speeding decoding process. This paper169
also presents two algorithms for string matching over compressed text using TSC (SCTT) and the Byte Pair170
Encoding (BPE) technique (SCTB). Several experiments were conducted to compare the performance of TSC,171
Byte Pair Encoding (BPE), and Huffman code. Several PDA databases with different record sizes were used:172
the well-known Calgary dataset and a set of small-sized PDA databases. Experimental results show that SCTT173
is almost twice as fast as the Huffman-based algorithm. SCTT has also the same performance in search time174
as the search in uncompressed databases and is faster than the SCTB algorithm. For frequently updated PDA175
databases such as phone books, to-do list, and memos, SCTT is the recommended method regardless of the size176
of the average record length, since the time required to compress the updated records using BPE poses significant177
delays compared to TSC.178

7 Experimental Results: The experimental results179

for Searching over Compressed Text using BPE (SCTB) and Searching over Compressed Text using TSC (SCTT)180
solutions are presented, which was shown in the figure ??. A library application was developed on a Palm OS181
handheld device. The application supports basic functions such as adding, deleting, or modifying an article entry,182
where each entry is a record consisting of author, title, and subject fields. Different sized database records and183
different record numbers in each database were loaded and implemented for testing purposes. Both searching184
techniques were implemented in the library application to allow searching while databases were in compressed185
form. C language with CodeWarrior compiler version 4.01 was the development environment used for designing186
and implementing the library application. Figure ?? shows the searching time using the SCTT, SCTB, and187
Huffman-based methods. Results show that SCTT is 88% faster than Huffman-based and 92% slower than188
SCTB-SO. Moreover, SCTT is 22% slower than the SCTB-Linear solution.189

Figure ?? : Searching Time on PDA Figure 4 shows the searching time using the SCTT, SCTB, and Huffman-190
based methods compared to a linear search over uncompressed databases for small-sized records. Results show191
that SCTT is 85% faster than Huffman-based and 6% faster than SCTB-SO. In addition, SCTT is 15% faster than192
the SCTB-Linear solution for small-sized records. Leena Salmela, Jorma Tarhio and Petri Kalsi [23] proposed193
the improvements for FAAST algorithm, a variation of Boyer-Moore string matching problem for kmismatches.194
FAAST is specifically tuned for small alphabets. They further improve FAAST algorithm gaining speedups195
in both preprocessing and searching. They also present three variations of the algorithm for the k-difference196
problem. They show that the searching time of the algorithms is average-optimal and the preprocessing also has197
a lower time complexity than FAAST. Their experiments show that their algorithm for the k-mismatch problem198
is about 30% faster than FAAST and the new algorithms compare well against other state-of-the-art algorithms199
for approximate string matching.200

Mihai Oltean [24] proposed a solution for finding a pattern P of length m in text T of length n. They describe201
a special device which can do string matching by performing n-m + 1 text-to-pattern comparisons. The proposed202
device uses light and optical filters for performing computations. Two physical implementations are proposed.203
One of them uses colored glass and the other one uses polarizing filters. They have made an in-depth analysis204
of the strengths and of the weaknesses of each method. At first sight they can infer that polarizing filters are205
more stable than colored glass for the string matching problem. The physical implementation of the proposed206
devices might be time consuming, so these methods might not bring such a great benefit unless they find some207
real-world cases where there are no other options for implementation but the ones they have proposed. However,208
the greatest benefit is that they have shown that string matching can be efficiently done by using the massive209
parallelism of the light.210

Guang-Ming Tan et al., [25] proposed an attempt to design efficient multiple pattern searching algorithms on211
multi-core architectures. They observe an important feature which indicates that the multiple pattern matching212
time mainly depends on the number and minimal length of patterns. The multi-core algorithm proposed in213
this paper leverages this feature to decompose pattern set so that the parallel execution time is minimized.214
They formulate the problem as an optimal decomposition and scheduling of a pattern set, and then propose215
a heuristic algorithm, which takes advantage of dynamic programming and greedy algorithmic techniques, to216
solve the optimization problem. Experimental results suggest that their decomposition approach can increase217
the searching speed by more than 200% on a 4-core AMD Barcelona system.218

Experimental Results: The input text and patterns are randomly generated. The length of the input text is 10219
million bytes; the lengths of patterns follow a random distribution in a range ??2; 200]. The number of patterns220
is set to be {10 000; 20 000; 40 000}. They examine the parallel algorithms on a commercial multicore processor,221
AMD Barcelona. It is a quad-core processor which features a highly integrated design with all four cores on a222
single die with shared resources. Each core has its own private 128KB L1 cache and 512KB L2 cache. All four223
cores share a common L3 cache that is at least 2MB in size. The full system provides an aggregate memory224
bandwidth of 21.4 GB/s and 54.4 GFlops/s peak performances. The compiler used in the experiment is GCC225
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4.1. Fig. ?? Figure ?? : Scalability of the parallel programs for different problem sizes, x-axis is the number of226
cores g) Other Approaches227

Hung-Che Shen, and, Chungnan Lee [26] proposed a ”Whistle for Music” system which enables users to228
retrieve MIDI format music by whistling a melodic fragment. Three essential components are query processing,229
MIDI preprocessing and an approximate search engine. For query processing, they have achieved a real-time230
and robust whistle-to-MIDI converter. For feature extraction, the proposed MIDI preprocessing can extract231
individual, local and global melodic descriptions from MIDI files. In order to match query with target, they232
extend an existing search engine into a fast approximate melodic matching engine. Based on the integration of233
those three components, the system can return a list of MIDI files that are ranked by how closely they match234
the whistling. The systematic evaluation for the query-by-whistling system is finally performed. Although the235
content is focused on MIDI data, the unified algorithmic framework is suitable for a wide range of applications236
in music information retrieval. They have demonstrated three essential components: a melody transcription (a237
query processing), a MIDI preprocessing (feature extraction) and melodic AGREP (a search engine). One major238
feature in their system implementation is that ”Whistle for music” is fast enough for ”searching while whistling.”239
The other feature is that( D D D D D D D D )240

Year they provide detailed description of extracting multi-level melodic descriptions from a MIDI database. In241
order to provide a more sophisticated MIR system, they explore the query representation by individual, local and242
global descriptions. In addition, they have provided a helpful sight whistling tutor for derive a high-quality query.243
Finally, they have shown that the issue of scaling with database size can be studied by simulation. Given error244
distances between queries and targets, they can plot the expected number of queries whose correct targets will245
be ranked over a specific database size. The results show that careful measurement and objective comparisons246
can lead us to know the scaling trend about query and target. One encouraging aspect is that the performance247
can be predicted based on the evaluation methods.248

HU Yue et al., [27] proposed a complete automaton and its high-speed construction algorithm for large-scale249
U-, V-, and U-V-uncertain multiple strings, including two or more uncertain strings interlaced with one another.250
The maximum number of parallel complete automation of the V-uncertain string is also given. This paper reveals251
that there are two kinds of pretermissions, i.e., similarly-connected and interlaced string pretermissions, and that252
mistake may appear in the matching of the regular expressions, or states in the automaton may increase in number,253
if the intersection of the U-uncertain strings sets and the homologous subsequent special point in the U-uncertain254
strings sets are not eliminated from the whole system. B. N. Araabi et al., [28] presents a syntactic/semantic255
string representation scheme as well as a string matching method as part of a computer-assisted system to identify256
dolphins from photographs of their dorsal fins. A low-level string representation is constructed from the curvature257
function of a dolphin’s fin trailing edge, consisting of positive and negative curvature primitives. A high-level258
string representation is then built over the low-level string via merging appropriate groupings of primitives in259
order to have a less sensitive representation to curvature fluctuations or noise. A family of syntactic/semantic260
distance measures between two strings is introduced. A composite distance measure is then defined and used as261
a dissimilarity measure for database search, highlighting both the syntax (structure or sequence) and semantic262
(attribute or feature) differences. The syntax consists of an ordered sequence of significant protrusions and263
intrusions on the edge, while the semantics consist of seven attributes extracted from the edge and its curvature264
function. The matching results are reported for a database of 624 images corresponding to 164 individual dolphins.265
The identification results indicate that the developed string matching method performs better than the previous266
matching methods including dorsal ratio, curvature, and curve matching. The developed computer-assisted267
system can help marine mammalogists in their identification of dolphins, since it allows them to examine only a268
handful of candidate images instead of the currently used manual searching of the entire database. The figure269
7 describes the percentage of test images with first correct match VS number of database individuals examined270
before catching the correct match.271

8 CONCLUSIONS272

In this study, we widely investigate the problem of sequential and parallel approaches in the context of string273
matching. An outline of string corresponding is made, in which the special forms of parallel string matching274
problem are also distinguished, and the classifications of parallel string matching problem are discussed.We275
importantly review different classifications of parallel string matching algorithms. Based on this study, a number276
of positive suggestions are made which will cooperative to the researchers for developing better techniques. 1 2277

1CString Matching Problems with Parallel Approaches -An Evaluation for the Most Recent Studies
2C comparison of the parallel searching time. The String Matching Problems with Parallel Approaches -An

Evaluation for the Most Recent Studies
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