
© 2013. R. Srinivas. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial
3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and
reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 11 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Enhanced Novel Sorting Algorithm

 By R. Srinivas

Surampalem

University, India

Abstract

-

In computer science and mathematics; we can formulate a procedure for sorting
unordered array or a file. Such procedure is always governed by an algorithm; which is called as
Sorting Algorithm. Sorting is generally understood to be the process of rearranging a given set of
objects in a specific order. The purpose of sorting is to facilitate the later search for members of the
sorted set.

GJCST-C Classification :

E.5

Enhanced Novel Sorting Algorithm

Strictly as per the compliance and regulations of:

Enhanced Novel Sorting Algorithm
R. Srinivas

Abstract - In computer science and mathematics; we can
formulate a procedure for sorting unordered array or a file.
Such procedure is always governed by an algorithm; which is
called as Sorting Algorithm. Sorting is generally understood to
be the process of rearranging a given set of objects in a
specific order. The purpose of sorting is to facilitate the later
search for members of the sorted set.

I. Introduction

he intelligent and most intuitive way to do this is to
analyze the items in the array or list with each other
and adapt them according to their relative order,

moving an element forward or backward in the list
depending on whether items next to it are greater or
smaller. This is called a comparison sort.

Bubble sort algorithm[13], which is a simple
sorting algorithm, works by repeatedly stepping through
the list to be sorted, comparing each pair of adjacent
items and swapping them if they are in the wrong order.

We considered three elements and move one
element towards left or right and while moving this
element other element moved one or two position
towards opposite direction.

The main drawback of the proposed algorithm
is that if smallest element is at last location then it
requires n/2 iterations to move to first location. To
overcome this draw back we proposed a modification to
the sorting algorithm, in this for each iteration in first half
the largest in the first half moved to first location of
second half and in the second half, iteration start from
the last element and in this iteration smallest in second
half moved to the last location of first half of the
elements. This procedure is repeated for n/2 times to
arrange the elements in sorted order.

II. Proposed Modification

In each iteration in first half the largest in the first
half moved to first location of second half and in the
second half iteration start from the last element and in
this second half iteration smallest in second half moved
to the last location of first half of the elements. In
successive iterations the smallest element moved to first
half may be moved towards left if it is smaller than other
elements in the first half same is true for the element
moved to second half of the element. This procedure is
repeated to arrange the elements in sorted order.
For example consider set of elements 9 4 6 7 8 3 9 5 2
Novel sorting algorithm

Author : SSAIST, Surampalem, India.
E-mail : rayudu_srinivas@rediffmail.com

First iteration
Pass One

Element 4 compared with 9 and 6 arrange these
elements in order. The order of elements after
arrangement 4 6 9 7 8 3 9 5 2

Element 7 compared with 9 and 8 arrange the
elements. The order of elements after
arrangement 4 6 7 8 9 3 9 5 2

Element 3 compared with 9 and 9 arrange the
elements. The order of elements after
arrangement 4 6 7 8 3 9 9 5 2

Element 5 compared with 9 and 2 arrange the
elements. The order of elements after
arrangement 4 6 7 8 3 9 2 5 9
Pass Two

4 6 7 8 3 9 2 5 9
4 6 3 7 8 9 2 5 9
4 6 3 7 2 8 9 5 9
4 6 3 7 2 8 9 5 9
4 6 3 7 2 8 5 9 9

Pass Three
3 4 6 7 2 8 5 9 9

3 4 2 6 7 8 5 9 9
3 4 2 6 5 7 8 9 9

Pass Four
2 3 4 6 5 7 8 9 9

2 3 4 5 6 7 8 9 9

Using proposed modification
Consider same set of elements 9 4 6 7 8 3 9 5 2
Pass One
for first half

4 6 9 7 8 3 9 5 2

4 6 7 8 9 3 9 5 2

Second half

4 6 7 8 9 3 2 5 9

4 6 7 8 2 3 9 5 9

Pass Two

for first half

4 6 7 8 2 3 9 5 9

4 6 2 7 8 3 9 5 9

Second half

4 6 2 7 8 3 5 9 9

4 6 2 7 3 5 8 9 9

Pass three

for first half

2 4 6 7 3 5 8 9 9

2 4 3 6 7 5 8 9 9

T

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

21

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Second half
2 4 3 6 7 5 8 9 9
2 4 3 6 5 7 8 9 9

Pass Four
for first half

2 3 4 6 5 7 8 9 9
2 3 4 5 6 7 8 9 9

III. Algorithm

Input: List of elements a[0..n-1] where n is number of
elements.

Step 1: swap=0

Step 2: repeat step 3 to 6 for j=0 to n/2 where step
size=1

Step 3: repeat step 4 for i=1 to n/2 where step size=2

Step 4: compare elements a[i-1],a[i] and a[i+1]. If they
are not in order arrange them in order. Set swap=1;

Step 5: repeat step 6 for k=n-1 to n/2 where step
size=-2

Step 6: compare elements a[k-1], a[k] and a[k+1]. If
they are not in order arrange them in order. Set
swap=1;

Step 7: If swap=0 then given elements are in order
break the outer loop else set swap=0.

a) Algorithm Analysis

The time for most sorting algorithms depends
on the amount of data or size of the problem.[4]

Worst Case

The outer loop repeats for n/2 times.

In first pass of outer loop, the first inner loop
repeats for (n/4) times and performs 3n/4 comparison
operations and second inner loop repeats for (n/4) times
and perform 3n/4 comparisons. The number of
assignments performed depends on the order of
elements. The maximum number of assignments
performed is 2n.
In the second pass (n/2) in third pass (n/2)……
Inner loop repeats n/2+n/2+ ……..n/2 terms.
 =n2/4
Therefore the worst time complexity is O(n2)

IV. Results

he time complexity of this algorithm in in worst
case O(n2) same as bubble sort but their actual run
time differ. For better understanding the actual

performance we conducted some experiments.
The run times are measured on a PC, (AMD

athlaon 220xd) processor and1G.B. RAM under
Microsoft XP operating system. These algorithms are
compiled using the sun java platform complier and run
under the java interpreter. The run time shown is CPU
execution time measured using object of Date class.
The class Date available in java util package. The
elements are generated using nextInt method of
Random class. The same set of elements is used for
algorithms.

Table 1 : For average execution times

Graph

1 : Graph drawn for execution times

T

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

22

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

1000 5000 10000 20000 30000 40000 50000

New Sorting With Left-Right Sorting 1.58 32.2 118.22 502.52 1206.58 2114.72 3279.4

New Sorting Algorithm 2.84 45.74 167.76 692.56 1635.94 2918.8 4513.8

Bubble Sort 21.9 103.66 342.2 1345.84 3240.56 5814.6 9010.04

Enhanced Novel Sorting Algorithm

V. Conclusion

We have proposed modification to a novel
sorting algorithm to sort given elements. The Proposed
method uses three elements at a time to compare
based on the result it arranges the elements. The
proposed algorithm is easy to understand and easy to
implement. We also proposed a modification of
considering iterations to increase the speed of
execution. The proposed novel algorithm has similarity
like bubble sort that is in every phase one element
moved to its correct location.

References Références Referencias

1. Krung Sinapiromsaran, “The sorted list exhibits the
minimum successive difference”, The Joint
Conference on Computer Science and Software
Engineering, November 17-18, 2005.

2. D.S. Malik, C++ Programming: Program Design
Including Data Structures, Course Technology
(Thomson Learning), 2002.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein. “Introduction to Algorithms”. MIT Press,
Cambridge, MA, 2nd edition, 2001.

4. Liu C. L., “Analysis of sorting algorithms”,
Proceedings of Switching and Automata Theory,
12th Annual Symposium, 1971, East Lansing, MI,
USA, pp 207-215.

5. Francesc J.Ferri, Jesus Albert “An Analysis of
selection sort using recurrence relations” Questho,
vol. 20, pp-111-119 (1996).

6. Parag Bhalchandra*, Nilesh Deshmukh, Sakharam
Lokhande, Santosh Phulari “A Comprehensive Note
on Complexity Issues in Sorting Algorithms”
Advances in Computational Research, ISSN: 0975–
3273, Volume 1, Issue 2, 2009, pp-1-09.

7. Omar Khan Durrani, Shreelakshmi V, Sushma Shetty
& Vinutha D C “Analysis and Determination of
Asymptotic Behavior Range For Popular Sorting
Algorithms” Special Issue of International Journal of
Computer Science & Informatics (IJCSI), ISSN
(PRINT) : 2231–5292, Vol.- II, Issue-1, 2.

8. Bubble Sort: An Archaeological Algorithmic Analysis
Owen Astrachan SIGCSE ’03, February 19-23,
Reno, Nevada, USA. ACM 1-58113-648-X/03/0002

9. V. Estivill-Castro and D. Wood. “A Survey of
Adaptive Sorting Algorithms”, Computing Surveys,
24:441-476, 1992.

10. V. Estivill-Castro and D. Wood. “A Survey of
Adaptive Sorting Algorithms", Computing Surveys,
24:441-476, 1992.

11. Hoffmann, J., Hofmann, M.: Amortized Resource
Analysis with Polymorphic Recursion and Partial
Big-Step Operational Semantics. In: 8th Asian
Symp. on Prog. Langs. (APLAS’10). (2010)

12. Nadathur Satish, Mark Harris, Michael Garland,”
Designing Efficient Sorting Algorithms for Manycore

GPUs”23rd IEEE International Parallel and
Distributed Processing Symposium, May 2009.

13. Soubhik Chakraborty, Mausumi Bose, and Kumar
Sushant, A Research thesis, On Why Parameters of
Input Distributions Need be Taken Into Account For
a More Precise Evaluation of Complexity for Certain
Algorithms.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
I
V
er
sio

n
I

23

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Enhanced Novel Sorting Algorithm

	Enhanced Novel Sorting Algorithm
	Author
	I. Introduction
	II. Proposed Modification
	III. Algorithm
	a) Algorithm Analysis

	IV. Results
	V. Conclusion
	References Références Referencias

