
An Aprori Algorithm in Distributed Data Mining System1

Dr C.Sunil Kumar12

13

Received: 13 December 2012 Accepted: 31 December 2012 Published: 15 January 20134

5

Abstract6

Many existing data mining (DM) tasks can be proficient effectively only in a distributed7

condition.The ground of distributed data mining (DDM) has therefore gained growing8

weightage in the preceding decades. The Apriori algorithm (AA) has appeared as one of the9

greatest Association Rule mining (ARM) algorithms. Ii also provides the foundation algorithm10

in majority of parallel algorithms (PAs). The size and elevated dimensionality of datasets11

characteristically existing as a key to difficulty of AR finding, makes it perfect difficulty for12

solving on numerous processors in parallel. The main causes are the computer memory and13

central processing unit pace constraints looked by single workstations. This paper is based on14

an Optimized Distributed AR mining algorithm for biologically distributed information is15

used in similar and distributed surroundings so that it decreases communication costs.16

17

Index terms— association rules (ars), apriori algorithm (aa), distributed data mining (ddm), xml data,18
parallel.19

1 Introduction20

RM has turn out to be one of the hub DM tasks and has attracted marvelous interest among DM investigators.21
ARM is an unsupervised DM method which works on variable length data, and produces understandable22
results. There are two foremost approaches for utilizing numerous workstations that have appeared in distributed23
computer memory in which each CPU has a confidential memory; and public memory in which all CPUs access24
universal memory [4]. Collective memory planning has many gorgeous assets. Each CPU has straight and25
identical right to use memory in the computer system. Equivalent applications are easy to execute on such a26
distributed system. In allocated memory design each CPU has its own restricted memory that can simply right27
to use directly by that CPU [10]. For a CPU to have contact with facts in the restricted memory of another28
CPU a replica of the preferred data ingredient must be sent from one CPU to the other throughout message29
passing. XML information is used with the optimized distributed association rule mining (ODAM) algorithm. A30
similar application could be divided into numeral of jobs and implemented in parallel on different CPUs in the31
system [2,9]. Though the performance of a similar function on a distributed system is mainly depe-ndent on the32
distribution of the jobs contains the applic ation onto the obtainable CPUs in the system.33

Modern associations are biologically dispersed. Classically, each location locally stores its ever growing amount34
of every day data. Using centralized DM to find out useful patterns in such institutions’ data isn’t always35
practicable because integration of data sets from dissimilar locations into a centralized location earns enormous36
communication system costs. Information from these institutions’ is not only spread to a variety of sites but also37
vertically incoherent, making it complex if not unfeasible to merge them in an essential site.38

Distributed DM therefore emerged as vigorous subarea of DM investigation. In this paper an ODAM Algorithm39
is used for executing the mining procedure.40

2 II. Association Rule Mining Algorithms41

An AR is a rule which implies certain association relationships among a set of objects in a database.42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

6 PADA RULE WITH XML DATA

Given a set of transactions, where each transaction is a set of items, an AR is an expression of the form X Y,43
where X and Y are sets of items. The intuitive meaning of such a rule is that transactions of the database which44
contain X tend to contain Y [1].45

3 a) Apriori Algorithm46

Apriori has been urbanized for rule mining in large business databases by Quest project team of IBMs. An item47
set (IS) is a non-empty set of things.48

4 They have decayed the difficulty of mining ARs into two (2)49

pieces50

? Find all groupings of items that have business support above smallest support. Call those groupings frequent51
ISs [5]. ? Use the recurrent IS to produce the preferred rules.52

The universal idea is that if, say, EFGH and EF are recurrent ISs, then we can determine if the rule EF GH53
holds by computing the ratio R = support(EFGH)/support(EF). The rule holds only if R >= min assurance.54
The algorithm is extremely scalable [7]. The AA used in Quest to find all recurrent ISs is specified below.55

Procedure AprioriAlg () begin M1 := {frequent 1-itemsets}; for (k := 2; Mk-1 0; k++) do {Nk= Apriori-gen56
(Mk-1); // new candidates for all transactions t in the dataset do} {for all candidates c Nk contained in t do c:57
count++} In the first pass, the algorithm simply counts item occurrences to determine the frequent 1-itemsets.58
A succeeding pass, say pass k, consists of two phases. First, the recurrent ISs Mk-1 found in the (k-1) th pass59
are used to make the candidate ISs Nk, using the Apriori-gen () function. This task first joins Mk-1 with Mk-1,60
the joining condition being that the lexicographically ordered first k-2 items are the same. Next, it deletes all61
those ISs from the join result that have some (k-1)subset that is not in Mk-1 yielding Nk. The algorithm now62
examines the database. For each deal, it concludes which of the candidates in Nk are limited in the deal using a63
hash-tree data structure and increases the count of those candidates [8], at the end of the pass, Ck is observed64
to decide which of the candidates’ frequent, yielding Mk. The algorithm quits when Mk becomes vacant.65

5 III. Optimized Distributed Mining Algorithm66

The presentation of Apriori agent rule mining algorithms humiliates for diverse causes. It requires ’N’ number67
of database examines to produce a common n-IS. In addition, it doesn’t differentiate operations in the data set68
with identical ISs if that data set is not burdened into the memory.69

Consequently, it needlessly occupies resources for frequently generating ISs from such matching transactions.70
For e.g., if a data set has 10 matching transactions, the AA not only indicates the same candidate ISs 10 times71
but also informs.72

The support counts for those candidate ISs 10 times for every iteration. Furthermore, openly loading a73
unprocessed data set into the memory won’t find an significant number of equal transactions because each74
business of a raw data set contains both recurrent and non-recurrent items. To overcome these difficulties,75
candidate support counts can’t be supported from the raw data set following the first pass. This method not76
only decreases the average business length but also decreases the data set size considerably. The number of items77
in the data set might be huge, but only a few will gratify the support threshold (TH).78

Consider ODAM eliminates all globally infrequent 1itemsets from every transaction and inserts them into the79
main memory; it reduces the transaction size and finds more alike transactions. This is because the data set80
initially contains both frequent and rare items. However, total transactions could surpass the main memory limit.81

ODAM removes rare items and inserts each transaction into the main memory. While inserting the82
transactions, it checks whether they are already in memory. If yes, it increases that transaction’s counter by83
one. Otherwise, it inserts that transaction into the main memory with a count equal to one. Finally, it writes84
all main-memory entries for this separation into a temporary file. This process continues for all other divisions.85

IV.86

6 Pada Rule with Xml Data87

Parallelism is predictable to relieve current ARM methods from sequential blockages, providing the ability to scale88
to enormous datasets and improving the response time. The parallel and Distributed Association rule (PADA)89
design space spans three main components including the hardware platform, the kind of parallelism broken and90
the load balancing strategy used [8]. Shared memory architecture has all the processors access common memory.91
Each processor has direct and equal access to all the memory in the system.92

Parallel programs are easy to execute on such a system. The data warehouse (DW) is partitioned among93
’P’ processors logically. Each processor works on its local partition of the database but performs the same94
computation of counting support. Dynamic load balancing seeks to address this issue by balancing the load and95
reassigning the loads to the lighter ones. The development of distributed rule mining is a challenging and vital96
task, since it requires knowledge of all the data stored at different locations and the ability to combine partial97
results from individual databases into a single result.98

2

The AR from XML data with a sample XML document is considered. For example, the set of transactions99
are identified by the tag <transactions> and each transaction in the transactions set is identified by the tag100
<transaction>. The set of items in each transaction is: Transaction document (transactions.xml) is identified by101
the tag <items> and an item is identified by the tag <item>. Consider the problem of mining all ARs among102
items that emerge in the transactions document. With the understanding of traditional AR mining is expected103
to obtain the large item sets document and ARs document from the source document.104

Let the minimum support (minsupp) = 35% and minimum confidence (minconfi) = 99%.105
V.106

7 Performance Assessment107

The number of messages that ODAM exchanges among various locations to generate the globally frequent item108
sets in a distributed environment, the original data set is partitioned into five partitions. To decrease the109
dependency among dissimilar partitions, each one contains only 25 percent of the original data set’s transactions.110
So, the number of identical transactions among different partitions is very low.111

ODAM provides a proficient method for generating ARs from different datasets, distributed among various112
locations.113

The datasets are generated arbitrarily depending on the number of different items, the maximum number of114
items in each transaction and the number of transactions. The performance of the XQuery implementation is115
dependent on the number of large item sets found and the size of the dataset as shown in the The running time for116
dataset-1 with minimum support 20% is much higher than the running time of dataset-2 and dataset-3, since the117
number of large item sets found for dataset-1 is about 2 times more than the other datasets. The Response time118
of the parallel and distributed data mining task on XML data is carried out by the time taken for communication,119
computation cost involved [6]. Communication time is largely dependent on the DDM operational model and120
the architecture of the DDM systems. The computation time is the time to perform the mining process on the121
distributed data sets. AR mining is a vital problem of DM. It’s a new and challenging area to perform AR mining122
on XML data due to the difficulty of XML data. In our approach, numerous problems in XML data is handled123
suitably to assure the correctness of the result. The ODAM Algorithm is used for the mining process in a parallel124
and distributed setting. The response time with the communication and computation factors are measured to125
achieve an improved response time. The performance examination is done by increasing the number of processors126
in a distributed environment. As the mining process is done in parallel an optimal solution is obtained.

2013

Figure 1: A © 2013
127

3

7 PERFORMANCE ASSESSMENT

1

Figure 2: CFigure 1 :

4

Figure 3:

5

7 PERFORMANCE ASSESSMENT

NF= {Non-frequent global 1-itemset} for all transaction
t £ D {for all 2-subsets s of t
if (s £ C2) s.sup++:
t/=delete_nonfrequent_items(t);
Table.add (t/);}
Send_to_receiver (C2);
/* Global Frequent support counts from receiver*/
F2=receive_from_receiver (F?);
C3= (Candidate item set);
T=Table.getTransactions (); k=3;
While (Ck ?{}) {For all transaction t £ T
For all k-subsets s of t
If (s £ Ck) s.sup++;
k++; Send_to_receiver (Ck);
/* Generating candidate item set of k+1 pass*/
Ck+1={Candidate item set); }
Volume XIII Issue XII Version I
Global Journal of Computer Science and Technology
© 2013 Global Journals Inc. (US)

Figure 4:

6

[Cheung ()] ‘A Fast Distributed Algorithm for Mining Association Rules’. D W Cheung . Proc. Parallel and128
Distributed Information Systems, (Parallel and Distributed Information Systems) 1996. IEEE CS Press. p. .129

[Park et al. ()] ‘An Effective Hash Based Algorithm for Mining Association Rules’. J S Park , M Chen , P S Yu .130
Proc. 1995 ACM SIGMOD Int’l Conf. Management of Data, (1995 ACM SIGMOD Int’l Conf. Management131
of Data) 1995. ACM Press. p. .132

[Savasere et al. ()] ‘An Efficient Algorithm for Mining Association Rules in Large Database’. A Savasere , E133
Omiecinski , S B Navathe . Proc. 21st Int’l Conf. Very Large Databases (VLDB 94), (21st Int’l Conf. Very134
Large Databases (VLDB 94)) 1995. Morgan Kaufmann. p. .135

[Cheung ()] ‘Efficient Mining of Association Rules in Distributed Databases’. D W Cheung . IEEE136
Trans.Knowledge and Data Eng 1996. 8 (6) p. .137

[Agrawal and Srikant ()] ‘Fast Algorithms for Mining Association Rules in Large Database’. R Agrawal , R138
Srikant . Proc. 20th Int’l Conf. Very Large Databases, (20th Int’l Conf. Very Large Databases) 1994. Morgan139
Kaufmann. p. .140

[Zaki and Pin ()] ‘Introduction: Recent Developments in Parallel and Distributed Data Mining’. M J Zaki , Y141
Pin . J. Distributed and Parallel Databases 2002. 11 (2) p. .142

[Han et al. ()] ‘Mining Frequent Patterns without Candidate Generation’. J Han , J Pei , Y Yin . Proc. ACM143
SIGMOD Int’l. Conf. Management of Data, (ACM SIGMOD Int’l. Conf. Management of Data) 2000. ACM144
Press. p. .145

[Zaki ()] Parallel Data Mining for Association Rules on Shared-Memory Multiprocessors, M J Zaki . TR 618.146
1996. Computer Science Dept., Univ. of Rochester (tech. report)147

[Shafer ()] ‘Parallel Mining of Association Rules’. R , J C Shafer . IEEE Tran March 2004. 1996. 8 (6) p. . (Data148
Eng.)149

[Zaki ()] ‘Scalable Algorithms for Association Mining’. M J Zaki . IEEE Trans. Knowledge and Data Eng 2000.150
12 (2) p. .151

7

	1 Introduction
	2 II. Association Rule Mining Algorithms
	3 a) Apriori Algorithm
	4 They have decayed the difficulty of mining ARs into two (2) pieces
	5 III. Optimized Distributed Mining Algorithm
	6 Pada Rule with Xml Data
	7 Performance Assessment

