
© 2013. Dr. P. K. Suri & Er. Karambir. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 13 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Simulation of Reliability of Software Component
By Dr. P. K. Suri & Er. Karambir

India

Abstract- Component-Based Software Engineering (CBSE) is increasingly being accepted worldwide for
software development, in most of the industries. Software reliability is defined as the probability that a software
system operates with no failure within a specified time on specified operating conditions. Software component
reliability and failure intensity are two important parameters that Estimates the reliability of system after
integration of component. The estimation of reliability of software can save loss of time, life and cost. In this
paper, software reliability has been estimated by analyzing the failure data. The Imperfect Software Reliability
Growth Models (SRGMs) model have been used for simulating the software reliability by estimating the
number of remaining faults and the model parameters of the fault content rate function. We aim for simulating
software reliability by connecting the imperfect debugging and Goel-Okumoto model. The estimation of
reliability gives the time of stopping the unending testing of that component or time of release of software
component.

Keywords: component based software engineering (cbse), software reliability growth model (srgm), reliability,
goel- okumoto model.

GJCST-C Classification :

SimulationofReliabilityofSoftwareComponent

 Strictly as per the compliance and regulations of:

University Institute of Eengg and Technology,

D.2.4

Simulation of Reliability of Software Component
Dr. P. K. Suri α & Er. Karambir σ

Abstract- Component-Based Software Engineering (CBSE) is
increasingly being accepted worldwide for software
development, in most of the industries. Software reliability is
defined as the probability that a software system operates with
no failure within a specified time on specified operating
conditions. Software component reliability and failure intensity
are two important parameters that Estimates the reliability of
system after integration of component. The estimation of
reliability of software can save loss of time, life and cost. In this
paper, software reliability has been estimated by analyzing the
failure data. The Imperfect Software Reliability Growth Models
(SRGMs) model have been used for simulating the software
reliability by estimating the number of remaining faults and the
model parameters of the fault content rate function. We aim for
simulating software reliability by connecting the imperfect
debugging and Goel-Okumoto model. The estimation of
reliability gives the time of stopping the unending testing of
that component or time of release of software component.
Keywords: component based software engineering
(cbse), software reliability growth model (srgm),
reliability, goel- okumoto model.

I. Introduction

ith the popularity of the web and networked
computers are finding their way into a wide and
spread range of working environments. This

new computing model have made a competition of early
development, reliable and distributed software
components that communicate with one another across
the underlying networked and extendable infrastructure
as per the requirement of different user. A distributed
software component can be plugged into distributed
applications and can be used for some specific
purpose. The intention of most of the developers behind
is reuse or slight modification of old or reliable
component and this makes more reliable by using
distributed software components to build new systems.
Even though, it is also important for developer to know
the functionality of distributed or compatible software
component in any system. The design of component
and requirement specification should clearly document
the functional input, output with conditions and
moreover it is the reliability percentage wise. Software
reliability has been defined as the probability that a
software system operates with no failure for a specified

 Author

α:

Dean

(R &D), Professor & Chairman

(CSE/IT/MCA)

HCTM

Technical Campus,

Kaithal

(Haryana) India.

 e-mail: pksurikuk@gmail.com
 Author

σ:

Assistant Professor, Department of Computer Science and

Engineering, University

Institute

of Engg and Technology,
 Kurukshetra Univeristy, Kurukshetra

(Haryana) India.

 e-mail: bidhankarambir@rediffmail.com

time on specified operating conditions. In other words,
by estimating or predicting the reliability [1] of
component, the quality of software product can be
estimated. The satisfaction of customers is directly
dependent on the quality of that software. The analysis
report that is commonly used to describe software
reliability has been derived from observed or failure
intensity. Failure intensity is defined as the number of
failures observed per unit time period. Failure intensity is
a also good measure for reflecting the user perspective
of software quality. As Computer applications are going
more diverse and spreading through almost every area
of everyday life then reliability factor becomes a very
important characteristic of software or component
systems. The reliable component is a base of system
and part of system i.e. client, administrator and working
environment. Since it is a matter of cost and
performance to produce a system having documented
and estimated reliability [2] of system. Therefore, it is
necessary to measure its reliability before releasing any
software. When reliability reaches at threshold level then
the software component can be released for further use.
To do this, a number of models [3] have been proposed
and has been being developed. Software modeling is a
statistical estimation [4] method applied to failure data
collected or simulated the software component or
system developed after integration of software
component by different approach of joining in software
engineering .This can be one after a component testing
has been executed so that failure data are available. The
implementation of newly developed and modified
models tries to make system better and help in
predicting the reliability in a accurate way. The most
important parameter of any software product are level of
quality, time of delivery, and final cost of the product.
The time of delivery and cost should be quantitative and
pre decided, whereas these attributes is difficult to
define Quantitatively. Reliability is one, and probably the
most Software reliability is related directly to operation
and performance instead of designing of a component.

Therefore, software reliability is estimated by
analyzing the observed failure data [5] of component
and then applying Goel –Okumoto Model [6][7] , rather
than the number of remaining faults in a component.
So, estimation of reliability of system is more useful than
finding the number of remaining fault. The uncertainty
involved in the estimation for a specific interval
expressed in terms of confidence interval and estimation
of parameter used. This paper evaluates the estimates
the reliability of component by using the Goel- Okumoto

W

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
III

 V
er
sio

n
I

13

(
DDDD D DDD

)
Y
e
a
r

01
3

2
C

model on the set of failure data taken from simulating
the real software applications. This should be done
before any component release .The reusability of that
component enhances the overall reliability of system
and gives accurate estimation of value of reliability. The
result shows that the proposed model has a technical
point for improving software reliability and providing
additional metrics for development project evaluation,
management and time of delivery of new developed
system.

II. Goel Okumoto Model : NHPP SRGM
Exponential Model

Non Homogeneous Poisson Process (NHPP)
based software reliability growth models are generally
classified into two groups. The first group contains
models, which use the machine execution time or
calendar time [8] as a unit of fault detection/removal
period. Such models are called continuous time models.
The second group contains models, which use the
number of test occasions/cases as a unit of fault
detection period. Such models are called discrete time
models [9], since the unit of software fault detection
period is countable. A Goel Okumoto Model also known
as exponential NHPP model is based on the following
assumptions:(a) All fault in a component are
independent from the failure detected. (b)The number of
failures detected at any time is proportional to the
current number of fault in a component. (c) The fault is
removed immediately as soon as the failure happens,
no new faults are introduced during the removal of fault.

The following differential Equation1 include the
above assumptions. Where m(t) is expected number of
component failures by time t, a is Total fault content
rate function, i.e., the sum of expected number of initial
software faults and introduced faults by time t and b is
Failure detection rate per fault at time t.
important, aspect of software quality. S

𝜕𝜕𝜕𝜕 (𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝑏𝑏[𝑎𝑎 −𝑚𝑚(𝑡𝑡)] (1)

The mean value solution of above differential
equation is given by Equation 2 where tn is time of nth
failure occurrence

 𝑚𝑚(𝑡𝑡) = 𝑎𝑎�1 − e−bt n � (2)

Failure intensity function is given by Equation 3
as follows
 𝜆𝜆(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑒𝑒−𝑏𝑏𝑡𝑡𝑛𝑛 (3)

III. Estimation of Parameter

The different a and b parameter also reflect
different assumptions of the software testing processes.
In this section, we derive a new NHPP model for an
interrelationship dependent function between a and b
parameter by a common parameter from a generalized

class of model. The most common method for the
estimation of parameters is the Maximum Likelihood
Estimation (MLE) method. MLE method of estimation of
a broad collection of software reliability for grouped data
is discussed in detail. To estimate a and b for a sample
of n units, first obtain the likelihood function: take the
natural logarithm on both sides. The equation for
estimation of a and b is given in Equation 4 where

 a = yn
(1−𝑒𝑒−𝑏𝑏𝑡𝑡𝑛𝑛

 (4)

Where yn is actual value of nth failure observed
at time t. The parameter a can be estimated using MLE
method based on the number o failures in a particular
interval. Suppose that an observation interval {0, tk} is
divided into set of sub intervals (0,ti],(t1,t2]………(tk-
1,tk] , Equation 5 was used to determine the value of b .

yn tn e−bt n

1−e−bt n
= � �(yk−𝑦𝑦𝑘𝑘−1)(tk e−bt k −tk−1e−bt k−1)

(e−bt k−1− e−bt k)
�

𝑛𝑛

𝑘𝑘=1
 (5)

The number of failures per subinterval [8] is
recorded as ni(i=1,2,3..,k) with respect to the number of
failures in(ti-1,ti].The parameters a and b are estimated
using iterative Newton Raphson Method, which is given
as in Equation 6 Equation 7 and Equation 8 .

 𝑏𝑏 = b0 −
f(b0)
f′ (b0)

 (6)

𝑓𝑓(𝑏𝑏) =
yn tn e−bt n

1 − e−bt n
−

� �(yk−𝑦𝑦𝑘𝑘−1)(tk e−bt k −tk−1e−bt k−1)
(e−bt k−1− e−bt k)

� = 0
𝑛𝑛

𝑘𝑘=1
 (7)

𝑓𝑓′(𝑏𝑏) = � �(yk−𝑦𝑦𝑘𝑘−1)(tk−t k−1)2e−b (tk +tk−1)
(e−bt k−1− e−bt k)2 �

𝑛𝑛

𝑘𝑘=1
 (8)

IV. Model Analysis and Results

a) Data and Model Criteria

Once the analytical expression for the mean
value function m(t) is derived, in this paper, the model
parameters to be estimated in the mean value function
can then be obtained with the help of a developed
octave program based on the least squares estimate
(LSE) method. Goel and Okumoto described failure
detection as a non-homogeneous Poisson process with
an exponentially decaying rate function .It is a simple
non-homogeneous Poisson process model. The data of
failure of 25 days have been observed here for
estimating the reliability [10]. In table 1, the data of 25
days failure and cumulated failure have been shown
here.

The two function of Reliability and Remaining
fault function can be used to find the release of date or
the additional testing time is required to reach ready
state. After simulation the result of 25 days of testing
were observed. Based on these data and using the MLE

Simulation of Reliability of Software Component

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
III

 V
er
sio

n
I

14

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

method, the estimated values for the two parameter are
given in the table. Each data set provides the cumulative
number of faults by each week up to 25 weeks. The Fig.
1 represents the cumulative number of faults versus the
cumulative system test hours at the end of each The
Phase 2 data set is given in Table 2. We developed a

Octave program to perform the analysis and all the
calculations for LSE estimates. The parameter a is the
number of initial faults in the software and the parameter
b is related to the failure detection rate during testing
process.

Table 1 : Number of Failure Observed

Days Failure Observed Cumulative Failure Days Failure Observed CumulativeFailure

1 32 32 14 5 127

2 23 55 15 5 132

3 11 66 16 6 138

4 10 76 17 3 141

5 11 87 18 5 146

6 7 94 19 1 147

7 2 96 20 1 148

8 5 101 21 3 151

9 6 107 22 1 152

10 2 109 23 2 154

11 4 113 24 1 155

12 7 120 25 1 156

13 2 122

The software reliability R(x/t) is defined as the
probability of a failure free operations of a complete
software for a specified time i.e. interval

(t, t +x) in a

specified environment in Equation 9. The interval
methods of estimation are explained by applying the
results to the software failure data .The set of software

errors analyzed here is borrowed from a simulated data
(an 1 days interval). where R(s|t) is reliability of
component during (t, t+s) time.

 𝑅𝑅(𝑥𝑥𝑥𝑥𝑥𝑥) = 𝑒𝑒−𝑎𝑎(𝑒𝑒−𝑏𝑏𝑏𝑏 −𝑒𝑒−𝑏𝑏(𝑡𝑡+𝑥𝑥))

 (9)

Table 2 :

Remaining Fault,Reliability, Failure Intensity

Day

A

B

Remaining

Fault

Reliability

Failure Intensity

15

138.38

0.1333

16

80.5

2.1844

16

133.71

0.1432

12

84.66

1.6769

17

141.25

0.1274

14

83.48

1.8162

18

139.72

0.1304

12

85.91

1.5286

19

138.85

0.1322

87.86

10

1.3030

20

140.34

0.1290

9

88.71

1.2052

21

140.10

0.1295

8

1.0495

90.09

22

141.91

0.1255

8

0.9929

90.60

23

142.03

0.1252

7

0.8801

91.62

24

142.3154

0.1246

6

0.7869

92.48

25

141.13

0.1275

5

0.6538

93.71

b)

Analysis

In fig 1 the cumulative failure observed have

been shown as per number of days of testing. It is
obviously seen that the number of fault observed is
decreasing with days. The number of fault is initially is
more but with time the number of fault is decreasing.
The estimation of remaining fault decreases rapidly then
it becomes straight and it is at low level in fig 2. The
remaining fault is never zero as per fig 2. The reliability
graph 3 shows that

the growth is initially is fast but with
time it is also decreasing. It reaches above of 90% after

21

days. The graph of comparision of reliability versus
remaining fault describes that the as the reliability is not
inversely proportional to the remaining fault as shown in
fig 4. The failure intensity of component is slightly
decreasing with the number of days of testing from fig 5.
As per the solution of problem definition mentioned in
25 days of additional testing is required to get an
benchmarks level of reliability and acceptable number
of remaining faults so that the software can be released
for final delivery.

Simulation of Reliability of Software Component

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
III

 V
er
sio

n
I

15

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Number of Days

Figure 1 : Number of Fault Observed Wrt Number of
Days of Testing

For example the component can be released
the software if the expected reliability is greater than the
threshold value i.e 90.09778 %and above 90%.

Number of Days

Figure 2

:

Remaining Fault wrt number of Days of testing

5 Number of Days 15 20 25

 Figure

3

:

Reliability wrt Number of Days of Testing

 5 Number of Days

15 20 25

 Figure

4

:

Comparision

of Remaining Fault and
Reliability wrt Number of Days of Testing

Number of Days

Figure

5 :

Failure Intensity wrt Number of Days of
Testing

V.

Conclusion

This work has proposed a method of estimating

the reliability of reusable architecture which can be used
to build a software by using Goel-Okumoto Software
Reliability Growth Model. The data available from an
exponential distribution are grouped and the this model
used to illustrate the parameter estimation problem. The
measurement of reliability decides the quality and level
of reliability decides the time of delivery of any software
the reliability is increased with testing time but the
reliability never becomes 100% even when the observed
fault is close to zero. As per the other criteria in the
above analysis, the best estimate for the remaining fault
is less than 10 and then the component can be
released. The integration of more reliable component
can make the system more reliable. This solution will
help the developer of third party component to predict
the release the component with the specified marked
reliability.

References Références Referencias

1.

H. Pham. “System Software Reliability”, Springer
Series in Reliability Engineering, Springer, London,
pp.149-149,

2006.

2.

X. Teng, H. Pham. “A New Methodology for
Predicting Soft-ware Reliability in the Random Field
Environments”. IEEE Transactions on Reliability, vol.
55, no. 3, pp. 458-468,

2006.

3.

L. Pham, H. Pham. “Software Reliability Models with
Time dependent Hazard Function Based on
Bayesian Approach”, IEEE Transactions on
Systems, Man, and Cybernetics Part A, vol. 30, no.
1, pp. 25-35, 2000.

4.

H. Pham. “Software Reliability Assessment:
Imperfect Debugging and Multiple Failure Types in
Software Development”, EG and G-RAAM-10737,
Idaho National EngineeringLaboratory, 1993.

 N
u m

be
r o

f F
au

lt
O

bs
er

ve
d

Re
m

ai
ni

ng
 F

au
lt

Re
lia

bi
lit

y

Simulation of Reliability of Software Component

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
III

 V
er
sio

n
I

16

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

5. H. Pham. “A Software Cost Model with Imperfect
Debugging, Random Life Cycle and Penalty Cost”,
International Journal of Systems Science, vol. 27,
no. 5, pp. 455-463, 1996.

6.

A. L. Goel, K. Okumoto. “Time-dependent Fault-
detection Rate Model for Software and Other
Performance Measures”, .IEEE Transactions on
Reliability, vol. 28, pp. 206-211,

1979.

7.

S. Yamada, S. Osaki., “Software Reliability Growth
Modeling: Models and Applications”, IEEE
Transactions on Software Engineering, vol. 11, no.
12, pp. 1431-1437, 1985.

8.

Dr. R.Satya Prasad, Bandla Srinivasa Rao, Dr. R.R.
L. Kantham, “Assessing Software Reliability using
Inter Failures Time Data”, International Journal of
Computer Applications Volume18-No-7, March 2011

9.

X. Zhang, X. Teng, H. Pham. “Considering Fault
Removal Efficiency in Software Reliability
Assessment”, IEEE Transactions on Systems, Man,
and Cybernetics -

Part A, vol.33, no. 1, pp.
114-120, 2003.

10.

H. Pham, X. Zhang,” An NHPP Software Reliability
Models and its Comparison”, International Journal
of Reliability, Quality and Safety Engineering, vol. 4,
no. 3, pp. 269-282,

1997.

Simulation of Reliability of Software Component

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
III

 V
er
sio

n
I

17

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

This page is intentionally left blank

Simulation of Reliability of Software Component

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
III

 V
er
sio

n
I

18

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

	Simulation of Reliability of Software Component
	Author
	Keywords
	I. Introduction
	II. Goel Okumoto Model : NHPP SRGMExponential Model
	III. Estimation of Parameter
	IV. Model Analysis and Results
	V. Conclusion
	References Références Referencias

