
A Novel Approach for Scalability -Two Way Sequential Pattern1

Mining using UDDAG2

Dr.P.Raguraman13

1 SRI SANKARA ARTS AND SCIENCE COLLEGE4

Received: 9 December 2012 Accepted: 3 January 2013 Published: 15 January 20135

6

Abstract7

Traditional pattern growth-based approaches for sequential pattern mining derive length- (k +8

1) patterns based on the projected databases of length-k patterns recursively. At each level of9

recursion, they unidirectionally grow the length of detected patterns by one along the suffix of10

detected patterns, which needs k levels of recursion to find a length-k pattern. In this paper, a11

novel data structure, UpDown Directed Acyclic Graph (UDDAG), is invented for efficient12

sequential pattern mining. UDDAG allows bidirectional pattern growth along both ends of13

detected patterns. Thus, a length-k pattern can be detected in | log2 k + 1| levels of recursion14

at best, which results in fewer levels of recursion and faster pattern growth. When minSup is15

large such that the average pattern length is close to 1, UDDAG and PrefixSpan have similar16

performance because the problem degrades into frequent item counting problem. However,17

UDDAG scales up much better. It often outperforms PrefixSpan by almost one order of18

magnitude in scalability tests. UDDAG is also considerably faster than Spade and19

LapinSpam. Except for extreme cases, UDDAG uses comparable memory to that of20

PrefixSpan and less memory than Spade and LapinSpam. Additionally, the special feature of21

UDDAG enables its extension toward applications involving searching in large spaces.22

23

Index terms— data mining algorithm, directed acyclic graph, performance analysis, sequential pattern,24
transaction database.25

1 Introduction26

EQUENTIAL pattern mining is an important data mining problem, which detects frequent subsequences in a27
sequence database. A major technique for sequential pattern mining is pattern growth. Traditional pattern28
growth-based approaches (e.g., PrefixSpan) derive length-(k + 1) patterns based on the projected databases29
of a length-k pattern recursively. At each level of recursion, the length of detected patterns is grown by 1, and30
patterns are grown unidirectionally along the suffix direction. Consequently, we need k levels of recursion to mine31
a length-k pattern, which is expensive due to the large number of recursive database projections. In this paper, a32
new approach based on UpDown Directed Acyclic Graph (UDDAG) is proposed for fast pattern growth. UDDAG33
is a novel data structure, which supports bidirectional pattern growth from both ends of detected patterns. With34
UDDAG, at level i recursion, wemay grow the length of patterns by 2i_1 at most. Thus, a length-k pattern35
can be detected in | log 2 k + 1| levels of recursion at minimum, which results in better scale-up property for36
UDDAG compared to PrefixSpan. Our extensive experiments clearly demonstrated the strength of UDDAG with37
its bidirectional pattern growth strategy. When minSup is very large such that the average length of patterns38
is very small (close to 1), UDDAG and PrefixSpan have similar performance because in this case, the problem39
degrades into a basic frequent item counting problem. However, UDDAG scales up much better compared to40
PrefixSpan. It often outperforms PrefixSpan by one order of magnitude in our scalability tests. UDDAG is also41
considerably faster than two other representative algorithms, Spade and LapinSpam. Except for some extreme42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

6 III. UDDAG BASED PATTERN MINING

cases, the memory usage of UDDAG is comparable to that of PrefixSpan. UDDAG generally uses less memory43
than Spade and LapinSpam. UDDAG may be extended to other areas where efficient searching in large searching44
spaces is necessary.45

2 II.46

3 Related Work47

The problem of sequential pattern mining was introduced by Agrawal and Srikant [1]. Among the many algorithms48
proposed to solve the problem, GSP ??17] and PrefixSpan[13], [14] represent two major types of approaches: a49
prioribased and pattern growth-based. A priori principle states that any supersequence of a nonfrequent sequence50
must not be frequent. A priori based approaches can be considered as breadth-first traversal algorithms because51
they construct all length-k patterns before constructing length-(k+1) patterns. The AprioriAll algorithm [1] is52
one of the earliest a prioribased approaches. It first finds all frequent item sets, transforms the database so that53
each transaction is replaced by all frequent item sets it contains, and then finds patterns. The GSP algorithm [16]54
is an improvement over AprioriAll. To reduce candidates, GSP only creates a new length-k candidate when there55
are two frequent length-(k _1) sequences with the prefix of one equal to the suffix of the other. To test whether56
a candidate is a frequent length-k pattern, the support of each length-k candidate is counted by examining all57
the sequences. The PSP algorithm ??12] is similar to GSP except that the placement of candidates is improved58
through a prefix tree arrangement to speed up pattern(D D D D D D D D)59

discovery. The SPIRIT algorithm [9] uses regular expressions as constraints and developed a family of60
algorithms for pattern mining under constraints based on a priori rule. The SPaRSe algorithm [3] improves61
GSP by using both candidate generation and projected databases to achieve higher efficiency for high pattern62
density conditions.63

4 III.64

Problem Definition a) Updown Directed Acyclic Graph-Based Sequential Pattern Mining UDDAG-based pattern65
mining approach, which first transforms a database based on frequent item sets, then partitions the problem,66
and finally, detects each subset using UDDAG. The absolute support for an item set in a sequence database is67
the number of tuples whose sequences contain the item set. An item set with a support larger than minSup is68
called a frequent item (FI) set. Based on frequent item sets, we transform each sequence in a database D into69
an alternative representation.70

5 i. Transformed Database Definition71

Let D be a database and P be the complete set of sequential patterns in D, D’ be its transformed database,72
substituting the ids of each item pattern contained in D’ with the corresponding item sets, and denoting the73
resulted pattern set by P’, we have P = P’.74

Based on frequent item sets, we transform each sequence in a database D into an alternative representation.75
Steps involved in Database Transformation: 1. Find the set of frequent items in D. 2. Assign a unique id to76

each FI in D and then replace each item set in each sequence with the ids of all the FIs contained in the item77
For the database in Table 1, the FIs are: (1),(??), (3), (??), (??), (??), (1,2), (2,3).78

By assigning a unique id to each FI, e.g., (1)-1, (1,2)-2, (2)-3, (2,3)-4, (3)-5, (4)-6, (5)-7, (6)-8, we can transform79
the database as shown in Table 2 (infrequent items are eliminated).80

ii. Problem Partitioning Definition Let {x1, x2, . . . , xt} be the frequent item sets in a database D, x1 <81
x2 <. . . . < xt, the complete set of patterns (P) in D can be divided into t disjoint subsets. The ith subset82
(denoted by P xi, 1 < = i <= t) is the set of patterns that contains xi and FIs smaller than xi.83

iii. (Projected database) collection of all the tuples whose sequences contain an item set in a database D is84
called x-projected denoted by x The total number of different Frequent Items FIs in the Sequential Database are85
found by Database Transformation module. For a database with n different frequent items, its patterns can be86
divided into n disjoint subsets. The subset (1 < i < n) is the set of patterns that contain (the root item of the87
subset) and items smaller than i.Each subset i of the problem is mapped into a projected database denoted by (88
i D).89

P is partitioned into eight subsets as there are 8 FIs in table-2, the one contains 1 (P1), the one contains 290
and smaller ids (P2), . . . ,and the one contains 8 and smaller ids (P8).91

Given the following database (P8) alone is found as given by 892

6 iii. UDDAG based Pattern Mining93

In the ith subset, each pattern in the projected database (x D) can be divided into two parts, prefix and suffix94
of i.95

The collection of all the prefix/suffix tuples of a frequent item set X in x D is called the prefix/suffixprojected96
database of x, denoted by Pre(x D) / Suf(x D).97

2

To detect the sequential pattern in projected database (x D) P x , Detect patterns in Pre(x D) called pattern98
prefix (PP). Detect pattern in Suf(x D) called pattern suffix (PS) The above steps are repeated recursively until99
no frequent items are found in the pre(x D) / suf(x D). Combine the patterns of all the to derive P x .100

The complete set of patterns the union of patterns of the all subsets or projected database (x D) detected101
above.102

The Apriori property is used to reduce the number of candidate sets to be considered103

7 Example for Pattern Mining104

8 Performance Evaluation105

We conducted an extensive set of experiments to compare our approach with other representative algorithms. All106
the experiments were performed on a windows Server 2003 with 3.0 GHz Quad Core Intel Xeon Server and 16107
GB memory. The algorithms we compared are PrefixSpan, Spade, and LapinSpam, which were all implemented108
in C++ by their authors (Minor changes have been made to adapt Spade to Windows). Two versions of UDDAG109
were tested. UDDAG-bv uses bit vector to verify candidates and UDDAG-co uses co-occurrences to verify110
candidates whenever possible. We perform two studies using the same data generator as in [14]: 1) Comparative111
study, which uses similar data sets as that in [14]; 2) Scalability study. The data sets were generated by112
maintaining all except one of the parameters shown in Table ?? fixed, and exploring different values for the113
remaining ones.114

V.115

9 Conclusion116

In this paper, a novel data structure UDDAG is invented for efficient pattern mining. The new approach grows117
patterns from both ends (prefixes and suffixes) of detected patterns, which results in faster pattern growth118
because of less levels of database projection compared to traditional approaches. Extensive experiments on both119
comparative and scalability studies have been performed to evaluate the proposed algorithm.120

One major feature of UDDAG is that it supports efficient pruning of invalid candidates. This represents a121
promising approach for applications involving searching in large spaces. Thus, it has great potential to related122
areas of data mining and artificial intelligence. In the future, we expect to further improve UDDAG-based123
pattern mining algorithm as follows: 1) Currently, FI detection is independent from pattern mining. Practically,124
the knowledge gained from FI detection may be useful for pattern mining. In the future, we will integrate the125
solutions of the two so that they can benefit from each other. 2) Different candidate verification strategies may126
have different impacts to the efficiency of the algorithm. In the future, we will study more efficient verification127
strategy. 3) UDDAG has big impact to the memory usage when the number of patterns in a subset is extremely128
large. In the future, we will find an efficient way to store UDDAG. 1129

1© 2013 Global Journals Inc. (US) Global Journal of Computer Science and Technology

3

9 CONCLUSION

2

Figure 1: C 2 .

8

Figure 2: Assuming 8

Figure 3: C

1

Figure 4: Table 1 :

4

2

Figure 5: Table 2 :

5

9 CONCLUSION

6

[Berkovich et al. ()] ‘A Bit-Counting Algorithm Using the Frequency Division Principle’. S Berkovich , G Lapir130
, M Mack . Software: Practice and Experience 2000. 30 (14) p. .131

[Chen and Xiao] ‘BISC: A Binary Itemset Support Counting Approach Towards Efficient Frequent Itemset132
Mining’. J Chen , K Xiao . ACM Trans. Knowledge Discovery in Data133

[Grahne and Zhu ()] ‘Efficiently Using Prefix-Trees in Mining Frequent Itemsets’. G Grahne , J Zhu . Proc.134
Workshop Frequent Itemset Mining Implementations (FIMI ’03), (Workshop Frequent Itemset Mining135
Implementations (FIMI ’03)) 2003.136

[Agrawal and Srikant ()] ‘Fast Algorithms for Mining Association Rules’. R Agrawal , R Srikant . Proc. 20th Int’l137
Conf. Very Large Data Bases (VLDB), (20th Int’l Conf. Very Large Data Bases (VLDB)) 1994. p. .138

[Antunes and Oliveira ()] ‘Generalization of Pattern-Growth Methods for Sequential Pattern Mining with Gap139
Constraints’. C Antunes , A L Oliveira . Proc. Int’l Conf. Machine Learning and Data Mining, (Int’l Conf.140
Machine Learning and Data Mining) 2003. 2003. p. .141

[Chen and Cook (2007)] ‘Mining Contiguous Sequential Patterns from Web Logs’. J Chen , T Cook . Proc. World142
Wide Web Conf. (WWW ’07) Poster Session, (World Wide Web Conf. (WWW ’07) Poster Session) May143
2007.144

[Agrawal and Srikant ()] ‘Mining Sequential Patterns’. R Agrawal , R Srikant . CHEN:145
ANUPDOWNDIRECTEDACYCLICGRAPHAPPROACHFOREQUENTIALPATTERNMINING927 Proc. Int’l Conf.146
Data Eng. (ICDE ’95), (Int’l Conf. Data Eng. (ICDE ’95)) 1995. p. .147

[Ayres et al. ()] ‘Sequential Pattern Mining Using a Bitmap Representation’. J Ayres , J Gehrke , T Yu , J148
Flannick . Proc. Int’l Conf. Knowledge Discovery and Data Mining, (Int’l Conf. Knowledge Discovery and149
Data Mining) 2002. 2002. p. .150

[Garofalakis et al. ()] ‘SPIRIT: Sequential Pattern Mining with Regular Expression Constraints’. M Garofalakis151
, R Rastogi , K Shim . Proc. Int’l Conf. Very Large Data Bases (VLDB ’99), (Int’l Conf. Very Large Data152
Bases (VLDB ’99)) 1999. p. .153

7

CHEN:ANUPDOWNDIRECTEDACYCLICGRAPHAPPROACHFOREQUENTIALPATTERNMINING927
CHEN:ANUPDOWNDIRECTEDACYCLICGRAPHAPPROACHFOREQUENTIALPATTERNMINING927
CHEN:ANUPDOWNDIRECTEDACYCLICGRAPHAPPROACHFOREQUENTIALPATTERNMINING927

