
© 2013. Dr. P. Raguraman, Mr. S. Hariharan & Dr. J. Jaya A Celin. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 10 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Novel Approach for Scalability – Two Way Sequential Pattern
Mining using UDDAG

 By Dr. P. Raguraman, Mr. S. Hariharan & Dr. J. Jaya A Celin
Noorul Islam University, India

Abstract - Traditional pattern growth-based approaches for sequential pattern mining derive length- (k + 1)
patterns based on the projected databases of length-k patterns recursively. At each level of recursion, they
unidirectionally grow the length of detected patterns by one along the suffix of detected patterns, which needs
k levels of recursion to find a length-k pattern. In this paper, a novel data structure, UpDown Directed Acyclic
Graph (UDDAG), is invented for efficient sequential pattern mining. UDDAG allows bidirectional pattern growth
along both ends of detected patterns. Thus, a length-k pattern can be detected in | log2 k + 1| levels of
recursion at best, which results in fewer levels of recursion and faster pattern growth. When minSup is large
such that the average pattern length is close to 1, UDDAG and PrefixSpan have similar performance because
the problem degrades into frequent item counting problem. However, UDDAG scales up much better. It often
outperforms PrefixSpan by almost one order of magnitude in scalability tests. UDDAG is also considerably
faster than Spade and LapinSpam. Except for extreme cases, UDDAG uses comparable memory to that of
PrefixSpan and less memory than Spade and LapinSpam. Additionally, the special feature of UDDAG enables
its extension toward applications involving searching in large spaces.

Indexterms : data mining algorithm, directed acyclic graph, performance analysis, sequential pattern,
transaction database.

GJCST-C Classification : H.2.8

A Novel Approach for Scalability Two WaySequential Pattern Mining usingUDDAG

Strictly as per the compliance and regulations of:

A Novel Approach for Scalability – Two Way
Sequential Pattern Mining using UDDAG

Dr. P. Raguraman , Mr. S. Hariharan & Dr. J. Jaya A Celin

Abstract - Traditional pattern growth-based approaches for
sequential pattern mining derive length- (k + 1) patterns
based on the projected databases of length-k patterns
recursively. At each level of recursion, they unidirectionally
grow the length of detected patterns by one along the suffix of
detected patterns, which needs k levels of recursion to find a
length-k pattern. In this paper, a novel data structure, UpDown
Directed Acyclic Graph (UDDAG), is invented for efficient
sequential pattern mining. UDDAG allows bidirectional pattern
growth along both ends of detected patterns. Thus, a length-k
pattern can be detected in | log2 k + 1| levels of recursion at
best, which results in fewer levels of recursion and faster
pattern growth. When minSup is large such that the average
pattern length is close to 1, UDDAG and PrefixSpan have
similar performance because the problem degrades into
frequent item counting problem. However, UDDAG scales up
much better. It often outperforms PrefixSpan by almost one
order of magnitude in scalability tests. UDDAG is also
considerably faster than Spade and LapinSpam. Except for
extreme cases, UDDAG uses comparable memory to that of
PrefixSpan and less memory than Spade and LapinSpam.
Additionally, the special feature of UDDAG enables its
extension toward applications involving searching in large
spaces.
Indexterms : data mining algorithm, directed acyclic
graph, performance analysis, sequential pattern,
transaction database.

I. Introduction

EQUENTIAL pattern mining is an important data
mining problem, which detects frequent
subsequences in a sequence database. A major

technique for sequential pattern mining is pattern
growth. Traditional pattern growth-based approaches
(e.g., PrefixSpan) derive length-(k + 1) patterns based
on the projected databases of a length-k pattern
recursively. At each level of recursion, the length of
detected patterns is grown by 1, and patterns are grown
unidirectionally along the suffix direction. Consequently,
we need k levels of recursion to mine a length-k pattern,
which is expensive due to the large number of recursive
database projections. In this paper, a new approach
based on UpDown Directed Acyclic Graph (UDDAG) is
proposed for fast pattern growth. UDDAG is a novel
data structure, which supports bidirectional pattern

Authors : Assistant Professor, Department of Computer Science, Sri
Sankara Arts and Science College, Enathur, Kanchipuram, TN, India.
E-mail : contactragu84@gmail.com
Author : Associate Professor, Department of IT Noorul Islam
University, India.

growth from both ends of detected patterns. With
UDDAG, at level i recursion, wemay grow the length of
patterns by 2i_1 at most. Thus, a length-k pattern can be
detected in | log2 k + 1| levels of recursion at minimum,
which results in better scale-up property for UDDAG
compared to PrefixSpan. Our extensive experiments
clearly demonstrated the strength of UDDAG with its
bidirectional pattern growth strategy. When minSup is
very large such that the average length of patterns is
very small (close to 1), UDDAG and PrefixSpan have
similar performance because in this case, the problem
degrades into a basic frequent item counting problem.
However, UDDAG scales up much better compared to
PrefixSpan. It often outperforms PrefixSpan by one order
of magnitude in our scalability tests. UDDAG is also
considerably faster than two other representative
algorithms, Spade and LapinSpam. Except for some
extreme cases, the memory usage of UDDAG is
comparable to that of PrefixSpan. UDDAG generally
uses less memory than Spade and LapinSpam. UDDAG
may be extended to other areas where efficient
searching in large searching spaces is necessary.

II. Related Work

The problem of sequential pattern mining was
introduced by Agrawal and Srikant [1]. Among the many
algorithms proposed to solve the problem, GSP [17]
and PrefixSpan[13], [14] represent two major types of
approaches: a prioribased and pattern growth-based. A
priori principle states that any supersequence of a
nonfrequent sequence must not be frequent. A priori
based approaches can be considered as breadth-first
traversal algorithms because they construct all length-k
patterns before constructing length-(k+1) patterns. The
AprioriAll algorithm [1] is one of the earliest a
prioribased approaches. It first finds all frequent item
sets, transforms the database so that each transaction
is replaced by all frequent item sets it contains, and then
finds patterns. The GSP algorithm [16] is an
improvement over AprioriAll. To reduce candidates, GSP
only creates a new length-k candidate when there are
two frequent length-(k _ 1) sequences with the prefix of
one equal to the suffix of the other. To test whether a
candidate is a frequent length-k pattern, the support of
each length-k candidate is counted by examining all the
sequences. The PSP algorithm [12] is similar to GSP
except that the placement of candidates is improved
through a prefix tree arrangement to speed up pattern

S

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
 V

er
sio

n
I

5

(
DDDD DDDD

)
Ye
ar

01
3

2
C

discovery. The SPIRIT algorithm [9] uses regular
expressions as constraints and developed a family of
algorithms for pattern mining under constraints based
on a priori rule. The SPaRSe algorithm [3] improves GSP
by using both candidate generation and projected
databases to achieve higher efficiency for high pattern
density conditions.

III. Problem Definition

a) Updown Directed Acyclic Graph-Based Sequential
Pattern Mining

UDDAG-based pattern mining approach, which
first transforms a database based on frequent item sets,
then partitions the problem, and finally, detects each
subset using UDDAG. The absolute support for an item
set in a sequence database is the number of tuples
whose sequences contain the item set. An item set with
a support larger than minSup is called a frequent item
(FI) set. Based on frequent item sets, we transform each
sequence in a database D into an alternative
representation.

i. Transformed Database
Definition

Let D be a database and P be the complete set
of sequential patterns in D, D’ be its transformed
database, substituting the ids of each item pattern
contained in D’ with the corresponding item sets, and
denoting the resulted pattern set by P’, we have P = P’.

Based on frequent item sets, we transform each
sequence in a database D into an alternative
representation. Steps involved in Database
Transformation:
1. Find the set of frequent items in D.
2. Assign a unique id to each FI in D and then replace

each item set in each sequence with the ids of all
the FIs contained in the item set.

Table 1 : Sequence Database

 Table 2

: Transformed Database

 For the database in Table 1, the FIs are:

(1),(2),

(3), (4), (5), (6), (1,2), (2,3).
 By assigning a unique id to each FI, e.g., (1)-1,

(1,2)-2, (2)-3, (2,3)-4, (3)-5, (4)-6, (5)-7, (6)-8, we can
transform the database as shown in Table 2

(infrequent

items are eliminated).
 ii.

Problem Partitioning

 Definition
 Let {x1, x2, . . . , xt} be the frequent item sets in

a database D, x1 < x2 <. . . . < xt, the complete set of
patterns (P) in D can be divided into t disjoint subsets.
The ith subset (denoted by Pxi,

1 < = i <= t) is the set

of patterns that contains xi and FIs smaller than xi.
 iii.

Definition (Projected database)

 The collection of all the tuples whose
sequences contain an item set x in a database D is
called x-projected database, denoted by xD.

 The total number of different Frequent Items FIs
in the Sequential Database are found by Database
Transformation module. For a database with n different
frequent items, its patterns can be divided into n disjoint
subsets. The ith subset (1 < i < n) is the set of patterns
that contain i (the root item of the subset) and items
smaller than i.Each subset i of the problem is mapped
into a projected database denoted by (i

D).
 P is partitioned into eight subsets as there are 8

FIs in table-2, the one contains 1 (P1), the one contains
2 and smaller ids (P2), . . . ,and the one contains 8 and
smaller ids (P8).

 Given the following database (P8) alone is
found as given by 8D:

 1.

<9 4 5 8 3 6>
 2.

<3 9 4 5 8 3 1 5>

 3.

<3 8 2 4 6 3 9>
 4.

<2 8 4 3 6>

 5.

<9 6 3>
 8D is,

 1.

<4 5 8 3 6>
 2.

<3 4 5 8 3 1 5>

 3.

<3 8 2 4 6 3>
 4.

<2 8 4 3 6>

b)

UpDown Directed Acyclic Graph

 i.

Definition
 Directed acyclic graph (UDDAG) is a graphical

approach that represents patterns as vertices and
contain relationships as directed edges in between
vertices.

 Given an FI x and xD, an UpDown Directed
Acyclic Graph based on Px, denoted by x-UDDAG, is
constructed as follows:

 1.

Each pattern in Px

corresponds to a vertex in x-
UDDAG. <x> corresponds to the root vertex,
denoted by Vx

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
 V

er
sio

n
I

6

(
DDDD DDDD

)
Ye
ar

01
3

2
C

A Novel Approach for Scalability – Two Way Sequential Pattern Mining using UDDAG

2. Let PU be the set of length-2 patterns ending with x
in Px . Add a directed edge from Vx to Uv called up
root child of Vx. This represents the common prefix
set to root X.

3. Let PD be the set of length-2 patterns starting with x
in Px, add a directed edge from Vx to VD called a
down root child of Vx. This represents the common
suffix set to root X.

Such a DAG can be recursively constructed in
an efficient way to derive the contain relationship of
patterns
Example of UDDAG Construction

By concatenating the patterns
{<3>,<4>,<5>,<4 5>} of Pre(8D) with 8, we derive
patterns {<3 8>, <4 8>, <5 8>, <4 5 8>} in
figure-a.

By concatenating patterns {<3>, <4>, <6>,
<3 6>, <4 3>, <4 6>} of Suf(8D) with 8,we derive
patterns {<8 3>, <8 4>, <8 6>, <8 3 6>, <8 4 3>,
<8 4 6>} in figure-b.

iii. UDDAG based Pattern Mining
In the ith subset, each pattern in the projected

database (xD) can be divided into two parts, prefix and
suffix of i.

The collection of all the prefix/suffix tuples of a
frequent item set X in xD is called the prefix/suffix-
projected database of x, denoted by Pre(xD) / Suf(xD).

To detect the sequential pattern in projected
database (xD) Px,

 Detect patterns in Pre(xD) called pattern prefix (PP).
 Detect pattern in Suf(xD) called pattern suffix (PS)
 The above steps are repeated recursively until no

frequent items are found in the pre(x
 D) / suf(x

 D).
 Combine the patterns of all the iterations to derive

Px.
The complete set of patterns is the union of

patterns of the all subsets or projected database (xD)
detected above.

The Apriori property is used to reduce the
number of candidate sets to be considered
Example for Pattern Mining
Assuming 8D is,

1. <4 5 8 3 6>

2. <3 4 5 8 3 1 5>

3. <3 8 2 4 6 3>

4. <2 8 4 3 6>.
The prefix subsequences of 8 in 8D, or Pre(8D) is

:{<3 8>, <4 8>, <5 8>, <4 5 8>} the patterns with 8
at the end.

The suffix subsequences of 8 in 8D, or Suf(8D)
is : {<8 3>, <8 4>,<8 6>, <8 3 6>, <8 4 3>, <8 4
6>} the patterns with 8 at the beginning.

The patterns with 8 in between the beginning
and end of each pattern is: {<3 8 3>,<4 8 3>, <5 8
3>, <4 5 8 3>}

Example: UDDAG based Pattern Mining

Figure : (a) UP DAG, (b) DOWN DAG & (c) UPDOWN

DAG

Algorithm 1 : UDDAG based pattern Mining.
Input : A database D and the minimum support
Output : P, the complete set of patterns in D
Method : findP (D, minSup){
P =
FISet=D:getAllFI(minSup);
D.transform();
for each FI x in FISet{
UDVertexrootVT = newUDVertex(x)
findP(D.getPreD(x), rootVT, up, minSup)
findP(D.getSurD(x),rootVT,down,minSup)
findPUDDAG(rootVT)
P = P U rootVT.getAllPatterns()
}
}

Subroutine
findP(PD,rootVT,type, minSup){
FISet=PD.getAllFI(minSup);
for each FI x in FISet{
UDVertexcurVT=new DVertex(x, rootVT)
if(type==up) rooVT.addUpChild(curVT)
else rootVT.addDownChild(curVT)
findP(PD. getPreD(x), curVT, up, minSup)
findP(PD.getSufD(x),curVT,down,minSup)
findPUDDAG(curVT)
}
}

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
 V

er
sio

n
I

7

(
DDDD DDDD

)
Ye
ar

01
3

2
C

A Novel Approach for Scalability – Two Way Sequential Pattern Mining using UDDAG

Subroutine
findPUDDAG(rootVT){
upQueue.enQueue (rootVT.upChildren)
while(!upQueue.isEmpty()){
UDVertex upVT=upQueue.deQueue()
if(upVT.upParent==rootVT)
downQueue.enQueue(rootVT.downChildren)
else if (upVT.downParent==null)
downQueue.enQueue(upVT.upParent.VDVS)
else downQueue.enQueue(upVT.upParent.VDVS n
upVT.downParent.VDVS)
while(!downQueue.isEmpty()){
UDVertexdownVT=downQueue.deQueue()
if(isValid(upVT, downVT){
UDVertexcurVT=new UDVertex (upVT, downVT)
upVT.addVDVS(downVT)
if(upVT.upParent==rootVT)
downQueue.enQueue(downVT.children)
}
}
if(upVT.VDVS.size>0)upQueue.enQueue(upVT.children)
}
}

IV. Performance Evaluation

We conducted an extensive set of experiments
to compare our approach with other representative
algorithms. All the experiments were performed on a
windows Server 2003 with 3.0 GHz Quad Core Intel
Xeon Server and 16 GB memory. The algorithms we
compared are PrefixSpan, Spade, and LapinSpam,
which were all implemented in C++ by their authors
(Minor changes have been made to adapt Spade to
Windows). Two versions of UDDAG were tested.
UDDAG-bv uses bit vector to verify candidates and
UDDAG-co uses co-occurrences to verify candidates
whenever possible. We perform two studies using the
same data generator as in [14]: 1) Comparative study,
which uses similar data sets as that in [14]; 2) Scalability
study. The data sets were generated by maintaining all
except one of the parameters as shown in Table 4 fixed,
and exploring different values for the remaining ones.

V. Conclusion

In this paper, a novel data structure UDDAG is
invented for efficient pattern mining. The new approach
grows patterns from both ends (prefixes and suffixes) of
detected patterns, which results in faster pattern growth
because of less levels of database projection compared
to traditional approaches. Extensive experiments on
both comparative and scalability studies have been
performed to evaluate the proposed algorithm.

One major feature of UDDAG is that it supports
efficient pruning of invalid candidates. This represents a
promising approach for applications involving searching
in large spaces. Thus, it has great potential to related

areas of data mining and artificial intelligence. In the
future, we expect to further improve UDDAG-based
pattern mining algorithm as follows: 1) Currently, FI
detection is independent from pattern mining.
Practically, the knowledge gained from FI detection may
be useful for pattern mining. In the future, we will
integrate the solutions of the two so that they can benefit
from each other. 2) Different candidate verification
strategies may have different impacts to the efficiency of
the algorithm. In the future, we will study more efficient
verification strategy. 3) UDDAG has big impact to the
memory usage when the number of patterns in a subset
is extremely large. In the future, we will find an efficient
way to store UDDAG.

References Références Referencias

1. R. Agrawal and R. Srikant, “Mining Sequential
Patterns,” Proc. Int’l Conf. Data Eng. (ICDE ’95), pp.
3-14, 1995. CHEN: AN UPDOWN DIRECTED
ACYCLIC GRAPH APPROACH FOR EQUENTIAL
PATTERN MINING 927

2. R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules,” Proc. 20th Int’l Conf.
Very Large Data Bases (VLDB), pp. 487-499, 1994.

3. C. Antunes and A.L. Oliveira, “Generalization of
Pattern-Growth Methods for Sequential Pattern
Mining with Gap Constraints,” Proc. Int’l Conf.
Machine Learning and Data Mining 2003, pp. 239-
251, 2003.

4. J. Ayres, J. Gehrke, T. Yu, and J. Flannick,
“Sequential Pattern Mining Using a Bitmap
Representation,” Proc. Int’l Conf. Knowledge
Discovery and Data Mining 2002, pp. 429-435,
2002.

5. S. Berkovich, G. Lapir, and M. Mack, “A Bit-
Counting Algorithm Using the Frequency Division
Principle,” Software: Practice and Experience, vol.
30, no. 14, pp. 1531-1540, 2000.

6. J. Chen and T. Cook, “Mining Contiguous
Sequential Patterns from Web Logs,” Proc. World
Wide Web Conf. (WWW ’07) Poster Session, May
2007.

7. J. Chen and K. Xiao, “BISC: A Binary Itemset
Support Counting Approach Towards Efficient
Frequent Itemset Mining,” to be published in ACM
Trans. Knowledge Discovery in Data.

8. G. Grahne and J. Zhu, “Efficiently Using Prefix-Trees
in Mining Frequent Itemsets,” Proc. Workshop
Frequent Itemset Mining Implementations (FIMI ’03),
2003.

9. M. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT:
Sequential Pattern Mining with Regular Expression
Constraints,” Proc. Int’l Conf. Very Large Data
Bases (VLDB ’99), pp. 223-234, 1999.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
 V

er
sio

n
I

8

(
DDDD DDDD

)
Ye
ar

01
3

2
C

10. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.C. Hsu, “FreeSpan: Frequent Pattern-
Projected Sequential Pattern

A Novel Approach for Scalability – Two Way Sequential Pattern Mining using UDDAG

	A Novel Approach for Scalability – Two Way Sequential Pattern Mining using UDDAG
	Author's
	Indexterms
	I. Introduction
	II. Related Work
	III. Problem Definition
	a) Updown Directed Acyclic Graph-Based Sequential Pattern Mining
	b) UpDown Directed Acyclic Graph

	IV. Performance Evaluation
	V. Conclusion
	References Références Referencias

