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Abstract - Typically a user desires to obtain the value of some 
aggregation function over distributed data items. We present a 
low-cost, scalable technique to answer continuous 
aggregation queries using a network of aggregators of 
dynamic data items. In such a network of data aggregators, 
each data aggregator serves a set of data items at specific 
coherencies. Our technique involves decomposing a client 
query into sub-queries and executing sub-queries on 
judiciously chosen data aggregators with their individual sub-
query incoherency bounds. We provide a technique for getting 
the optimal set of sub-queries with their incoherency bounds, 
which satisfies client query’s coherency requirement with least 
number of refresh messages sent from aggregators to the 
client. For estimating the number of refresh messages, we 
build a query cost model which can be used to estimate the 
number of messages required to satisfy the client specified 
incoherency bound. Performance results using real-world 
traces show that our cost based query planning leads to 
queries being executed using less than one third the number 
of messages required by existing schemes. 
Keywords : Content distribution network, continuous 
query, online decision making, data dissemination, 
coherency, performance.  

I. INTRODUCTION 

pplication such as auctions, personal portfolio for 
financial decisions, sensors based monitoring, 
route planning based on traffic information, etc., 

make extensive use of dynamic data. For such 
applications, data from one or more independent data 
sources may be aggregated to determine if some action 
is warranted. Given the increasing number of such 
applications that make use of highly dynamic data, there 
is significant interest in systems that can efficiently 
deliver the relevant updates automatically. Many data 
intensive applications delivered over the Web suffer from 
performance and scalability issues. Content distribution 
networks (CDNs) solved the problem for static content 
using caches at the edge nodes of the networks. CDNs 
continue to evolve to serve more and more dynamic 
applications [1, 2].  A dynamically generated web page 
is usually assembled using a number of static or 
dynamically generated fragments. The static fragments 
are served from the local caches whereas dynamic 
fragments are created either by  using the  cached  data 
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or by fetching the data items from the origin data 
sources. One important question for satisfying client 
requests through a network of nodes is how to select 
the best node(s) to satisfy the request. For static pages 
content requested, proximity to the client and load on 
the nodes are the parameters generally used to select 
the appropriate node [3]. In dynamic CDNs, while 
selecting the nodes node(s) to satisfy the client request, 
the central site (top-level CDN node) has to ensure that 
page/data served meets client’s coherency 
requirements also. Techniques to efficiently serve fast 
changing data items with guaranteed incoherency 
bounds have been proposed in the literature [4, 5]. Such 
dynamic data dissemination networks can be used to 
disseminate data such as stock quotes, temperature 
data from sensors, traffic information, and network 
monitoring data. In this paper we propose a method to 
efficiently answer aggregation queries involving such 
data items. In data dissemination schemes proposed in 
literature [4, 11], a hierarchical network of data 
aggregators is employed such that each data 
aggregator serves the data item at some guaranteed 
incoherency bound. Incoherency of a data item at a 
given node is defined as the difference in value of the 
data item at the data source and the value at that node. 
Although CDNs use page-purge [8] based coherency 
management, we assume that in dynamic data 
dissemination networks, these messages carry the new 
data values thereby an invalidation message becomes a 
refresh message. For maintaining a certain incoherency 
bound, a data aggregator gets data updates from the 
data source or some higher level data aggregator so 
that the data incoherency is not more than the data 
incoherency bound. In a hierarchical data dissemination 
network a higher level aggregator guarantees a tighter 
incoherency bound compared to a lower level 
aggregator. Thus, data refreshes are pushed from the 
data sources to the clients through the network of 
aggregators.    

Data incoherency: data accuracy can be 
specified in terms of incoherency of a data item, defined 
as the absolute difference in value of the data item at 
the data source and the value known to a client of the 
data. Let νi (t ) denote the value of i th  data item at the data 
source at time t; and  let the value the data item known 
to the client be ui (t ). Then the data incoherency at the 
client is given by |ui (t )-νi (t )|. For a data item which 
needs to be refreshed at an incoherency bound C a 

A 
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data refresh message is sent to the client as soon as 
data  exceeds C, i.e., |ui (t )-νi (t )|>C. 

Network of data aggregators: Data aggregators 
are one kind of secondary server it serves as data 
sources (data items). The data refreshes can be done 
using two mechanisms.(a)Push based mechanism data 
source send update messages to client on their 
own.(b)Pull based mechanism data sources send 
messages to the client only when client makes a 
request. For scalable handling of push based data 
dissemination, network of DA’s are proposed in the 
literature [12,15,16].   
  
  Sources 
 
 
 
 
 
 
 
 
                                                                   
 
 
 
              
 
 
                                                  Clients 
 
Figure 1 : Data dissemination network for multiple data 

items 

In such network of DA’s, data refreshes occur 
from data sources to the client through one or more 
DA’s. In this paper we assume that each DA maintains 
its configured incoherency bounds for various data 
items. Dissemination networks for various data items 
can be overlaid over a single network of data 
aggregators as shown in Figure 1. Thus, From a data 
dissemination capability point of view, each data 
aggregator (DA) is characterized by a set of (di,ci) pairs, 
where di is a data item which the DA can disseminate at 
an incoherency bound Ci.The configured incoherency 
bound of data item at a DA can be maintained using  
any of following methods: (a) the data source refreshes 
the data value of the DA whenever DA’s incoherency 
bound is about to get violated. This method is scalability 
problems. (b) data aggregators with tighter incoherency 
bound help the DA to maintain its incoherency bound in 
scalable manner as explained in [4,7]. 

Example 1: In a network of data aggregators 
managing data items D1-D4, various aggregators can 
be characterized as- 
A1: {(D1, 0.5), (D3, 0.2)} 
A2: {(D1, 1.0), (D2, 0.1), (D4, 0.2)} 

Aggregator A1 can serve values of D1 with an 
incoherency bound greater than or equal to 0.5 whereas 
A2 can disseminate the same data item at a looser 
incoherency bound of 1.0 or more. Usually, client is 
interested in an aggregation of these dynamic data 
items at a certain incoherency bound. These continuous 
queries are used to monitor changes in dynamic data 
and provide results useful for online decision-making. 
For generating the result of a query, data from multiple 
sources is required. As a result, the query has to be 
evaluated either at data aggregators or at the client.  

In this work, our aim is to satisfy the client’s 
query requirements while minimizing the query 
execution cost in terms of number of dissemination 
messages. Towards that end, we have achieved the 
following: 
1. Developed techniques for estimating the cost of 

disseminating a data item, at specified incoherency 
bound. 

2. Using the estimated data dissemination cost, we 
developed query cost model for estimating the cost 
of executing an incoherency bounded continuous 
query. 

3. Used the query cost model for assigning a client 
query to one or more data aggregators so that the 
query can be executed with the least number of 
messages. 

Our work involves dividing the client query into 
sub-queries and allocating it to different data 
aggregators for optimal execution. In comparison, all the 
related work in literature [3,5] propose getting individual 
data items from the aggregators which, as we show in 
this report, leads to large number of dissemination 
messages. In the rest of the Introduction, we present 
basic concepts underlying incoherency bounded 
continuous query execution using a distributed network 
of data aggregators. 

a) Problem Statement and Contributions 
In this paper, we develop query cost model for 

aggregation query involving multiple data items: 
- Additive aggregation with each data item possibly 
different weights, and - MIN/MAX aggregation queries. 
The weighted aggregation query can be mathematically 
written as: 

( ) ( )
1

q

q q

ii

i n

s
i

v t s t w
=

=

= ×∑  (1) 

Vs
q is the value of a client query q involving nq 

data items with the weight of the i th data item being w q
i, 

1< i< nq. si (t ) is the value of  the i th data item at the data 
source at time t. Such a query encompasses SQL 
aggregation operators SUM and AVG besides general 
weighted aggregation queries such as portfolio queries, 
involving aggregation of stock prices, weighted with 
number of shares of stocks in the portfolio. Due to 
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space limitations, we are not presenting execution 
schemes for other aggregation queries such as 
MIN/MAX. Interested readers are referred to [13] for the 
extended version of this paper. 

Let the value of i th data item, in Equation (1), 
known to the client/DA be di(t). Then the data 
incoherency is given by |si(t)-di(t)|. For a data item 
which needs to be disseminated at an incoherency 
bound C the data refresh is sent to the client or lower 
level DA, if the |si (t) - d i (t)| is more than C. If user 
specified incoherency bound for the query q is C q, then 
the dissemination network has to ensure that: 

                

( )( )
1

q

q q

i i i

n

i
s t d w c

=

− × ≤∑       (2)                                   

Whenever data values at sources change such 
that query incoherency bound is violated, the updated 
value(s) is disseminated to the client. If the network of 
aggregators can ensure that the i th data item has 
incoherency bound C i  then the following condition 
ensure that the query incoherency bound C q is satisfied: 

1

q

q q

i i

n

i
c w c

=

× ≤∑
           

 (3) 

For additive aggregation queries, a client 
specified query incoherency bound needs to be 
translated into incoherency bounds for individual data 
items or sub-queries such that these satisfy Equation 
(3).  

MIN/MAX queries involve set of data items, 
whose extremes are the required result, and its 
incoherency bound. In a MIN (MAX) query, even if one 
data value changes it is possible that that value is 
minimum (maximum) thus individual data incoherency 
bound cannot be more than query incoherency bound. 
Thus in case of MIN/MAX queries the dissemination 
network has to ensure that Ci ≤ Cq for all the data items 
appearing in the query. 

b) Summary of Distributed Execution approach 
Consider a client query Q=50 D1 + 200 D2 + 

150 D3 with a required incoherency bound of 80 (in a 
stock portfolio D1, D2, D3 can be different stocks and 
incoherency bound can be $80).We want to execute this 
query over data aggregators given in Example1, 
minimizing number of refreshes. There are various 
options for the client to get the data items. 

The client may get the data items D1, D2 and 
D3 separately. The query incoherency bounds can be 
divided among data items in various ways while 
satisfying Equation 3. In this report, we show that getting 
data items independently is a costly option. This 
strategy ignores facts that the client is interested only in 

the aggregated value of the data items and various 
aggregators can disseminate more than one data item. 

If a single DA can disseminate all three data 
items required to answer the client query, the DA can 
construct a composite data item corresponding to the 
client query (Sq=50 D1 + 200 D2+ 150 D3 ) and 
disseminate the result to the client so that the query 
incoherency bound is not violated. It is obvious that if we 
get the query result from a single DA, the number of 
refreshes will be minimum (as in this case data item 
updates may cancel out each other, thereby keeping the 
query result within the incoherency bound). As different 
data aggregators disseminate different subsets of data 
items, no data aggregator may have all the data items 
required to execute the client query, which is indeed the 
case in Example1. Further, even if an aggregator can 
disseminate all the data items, it may not be able to 
satisfy the query coherency requirements. In such 
cases, the query has to be executed with data from 
multiple aggregators. 
 Another option is to divide the query into a 
number of sub-queries and get their values from 
individual DAs. In that case, the client query result is 
obtained by combining the results of more than one 
sub-query. For the DAs given in Example1, the query Q 
can be divided in two alternative ways: 

Plan1: A1 {50 D1 + 150 D3 }; D2 {D2 } 

Plan2: A1 {D3}; D2 {50 D1, + 200 D2 } 

i.e., in plan1 result of sub-query 50 D1 + 150 
D3 is served by A1 whereas value of (or 200 D2 ) by D2 
is served by A2. In plan2, value of D3 is served by A1 
whereas result of sub-query 50 D1 + 200 D2 is served 
by A2. Combining them at the client gives the query 
result. 

Selecting the optimal plan among various 
options is not-trivial. As a thumb-rule, we should be 
selecting the plan with lesser number of sub-queries. 
But that is not guaranteed to be the plan with the least 
number of messages. Further, we should select the sub-
queries such that updates to various data items 
appearing in a sub-query have more chances of 
cancelling each other as that will reduce the need for 
refresh to the client (Equation 2). In the above example, 
if updates to D1 and D3 are such that when D1 
increases, D3 decreases, and vice-versa, then selecting 
plan1 may be beneficial. We give an algorithm to select 
the query plan based on these observations. 

While solving the above problem of selecting 
the optimal plan we ensure that each data item for a 
client query is disseminated by one and only one data 
aggregator. Although a query can be divided in such a 
way that a single data item is served by multiple DAs 
(e.g., 50 D1 + 200 D2 + 150 D3 is divided into two sub-
queries 50 D1 + 130 D2 and 70 D2 + 150 D3 ); but in 
doing so the same data item needs to be processed at 
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multiple aggregators, increasing the unnecessary 
processing load. By dividing the client query into disjoint 
sub-queries we ensure that a data item update is 
processed only once for each query (For example, in 
case of paid data subscriptions it is not prudent to get 
the same data item from the multiple sources). 

The query incoherency bound needs to be 
divided among sub-query incoherency bounds such 
that, besides satisfying the client coherency 
requirements, the chosen DA (where the sub-query is to 
be executed) is capable of satisfying the allocated sub-
query incoherency bound. For example, in plan1 
allocated incoherency bound to the sub-query 50D1 + 
150D3 should be greater than 55 (=50*0.5+150*0.2) 
as that is the tightest incoherency bound which the 
aggregator D1 can satisfy. We prove that the number of 
refreshes depends on the division of the query 
incoherency bounds among sub-query incoherency 
bounds.  

Thus, what we need is a method of (a) optimally 
dividing client query into sub-queries and (b) assigning 
incoherency bounds to them; such that (c) selected 
sub-queries can be executed at chosen. And (d) total 
query execution cost, in terms of number of refreshes, is 
minimized. 

II. DATA DISSEMINATION COST MODEL 

Cost of disseminating a data item at a certain 
given incoherency bound C can be estimated by 
combining two models: 

a) Incoherency bound model 
The incoherency bound model is used for 

estimating dependency of data dissemination cost over 
the desired incoherency bound. As per this model, we 

have shown in [13] that the number of data refreshes is 
inversely proportional to the square of the incoherency 
bound (1/C2 ). Similar result was earlier reported in [4] 
where the data dynamics was modeled as a random 
walk process. 

Data dissemination cost α 1/C2                         (4) 

b) Data synopsis Model 
The Data synopsis model is used for estimating 

the effect of data dynamics on number of data 
refreshes. We define a data dynamics measure called, 
sumdiff, to obtain a synopsis of the data for predicting 
the dissemination cost. The number of update 
messages for a data item is likely to be higher if the data 
item changes more in a given time window. Thus we 
hypothesize that cost of data dissemination for a data 
item will be proportional to data synopsis, called 
sumdiff, defined as: 

( )1s i i
i

R s s
−

= −∑                                         (5) 

Where Si and Si-1 are the sampled values of the 
data item at i th and (i-1) th time instances (consecutive 
ticks). Data sumdiff can be maintained at the source or 
aggregators. For calculating this quantity, the data 
source can accumulate the absolute value of changes in 
data items or the data aggregator can estimate this 
quantity using changes in pushed values. Next we use 
this result for developing the query cost model. 

Consider a case where a query consists of two 
data items P and Q with weights wp and wq respectively; 
and we want to estimate its dissemination cost. If data 
items are disseminated separately query sumdiff will be: 

      (6) 

 Instead, if the aggregator uses the information 
Instead, if the aggregator uses the information that client 
is interested in a query over P and Q (rather than their 
individual values), it makes a composite data item wpP+ 
wqq and disseminates that data item then the query 
sumdiff will be: 

                 (7) 

Rquery is clearly less than or equal compared to 
Rdata. Thus we need to estimate the sumdiff of an 
aggregation query (i.e., Rquery) given the sumdiff values 
of individual data items (i.e., Rp and Rq). Only data 
aggregators are in position to calculate Rquery as different 
data items may be from different sources.  

III. QUERY COST MODEL 

For getting an estimation of the query 
dissemination cost what we need is Rquery whereas we 
know Rp and Rq (in Equation (6) and (7). As different 
data items may be disseminated by different servers, 

Rquery can be calculated only at data aggregators. If two 
data items are correlated such that if value of one data 
item increases other also increases, then Rquery will be 
closer Rdata ; whereas if the data items are inversely 
correlated then Rquery  will be much less than Rdata. Thus, 
institutively, we can represent the relationship between 
Rquery and sumdiff of individual data items involved using 
a correlation measure between data items. Specifically, 
if ρ is the correlation measure then Rquery can be written 
as: 

( )2 2 2 2 2

2
p p q q p p q qqueryR w R w R w R w Rρ∞ + +

           

(8)
 

The correlation measure is defined such that–
1≤ρ≤ +1, so, Rquery will always be less than 
|wpRp+wqRq| (as explained earlier) and always be more 
than |wpRp− wqRq|. 

The correlation measure ρ can be interpreted as 
cosine similarity [19] between two streams represented 
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Rdata = wpRp +wqRq=wp∑| pi – pi-1 | +wq∑| qi−qi-1 |                  

Rquery=Σ|wp(pi−pi-1)+wq(qi−qi-1)|   



by data items P and Q. Cosine similarity is a widely used 
measure in information retrieval domain where 
documents are represented using a vector-space model 
and document similarity is measured using cosine of 
angle between two document representations. For  data 
streams P and Q, 𝜌𝜌  can be calculated as:  

           

(9) 

 
a) Executing queries using sub queries 

For executing an incoherency bounded 
continuous query, a query plan is required which 
includes the set of sub-queries, their individual 
incoherency bounds and data aggregators which can 
execute these sub-queries. We need to find the optimal 
query execution plan which satisfies client coherency 
requirement with the least number of refreshes. What we 
need is a mechanism to: 

Task 1: Divide the aggregation query into sub-
queries; and  

Task 2: Allocate the query incoherency bound 
among them.   

While satisfying the following conditions 
identified in Section 1.2:  

Condition 1. Query incoherency bound is 
satisfied. 

Condition 2. The chosen DA should be able to 
provide all the data items appearing in the sub-query 
assigned to it. 

Condition 3. Data incoherency bounds at the 
chosen DA should be such that the sub-query 
incoherency bound can be satisfied at the chosen DA. 
Objective: Number of refreshes should be minimized. 

b) Minimum Cost  
Figure 2 shows the outline of greedy heuristics 

where different criteria (ψ) can be used to select sub-
queries. In this section we describe the case where the 
estimate of query execution cost is minimized in each 
step of the algorithm (min-cost) whereas in the next 
section we present the case where gain due to 
executing a query using sub-queries is maximized (max-
gain). 

c) Query Plan with Pre-decided Incoherency Bound 
Allocation 

For the given client query (q) and mapping 
between data aggregators and the corresponding 
{data-item, data incoherency bound } pairs (f : D→(S, 
C )) maximal sub-queries can be obtained for each data 
aggregator. Let A be the set of such maximal sub 
queries. In this set, each query a € A can be 
disseminated by a designated data aggregator at the 
assigned incoherency bound. For each sub-query a €A, 
its sumdiff Ra is calculated. Using the set A and sub-

query sumdiffs, we use the algorithm outlined in Figure 2 
to get the set of sub-queries minimizing the query cost. 
In this Figure each sub-query a € A is represented by 
the set of data items covered by it. As we need to 
minimize the query cost, a sub-query with minimum cost 
per data item is chosen in each iteration of the algorithm 
i.e., criteria ψ ≡ minimize (Ra/Ca 2|a|). 

All data items covered by the selected sub 
query are removed from all the remaining sub-queries in 
A before performing the next iteration. 

Algorithm:  

Result ←∅ 
  while A ≠ ∅ 
choose a sub-query a𝛜𝛜A with criteria ψ  
         Result ←Result ∪a 
        A←A-{a} 
           for each data element e 𝛜𝛜 a 
               for each b 𝛜𝛜 A 
                       b←b-{e} 
              if b =∅ 
                      A←A-{b} 
              else  
                    Calculate sumdiff for modified b 
Return Result 

Figure 2 : Greedy algorithm for query plan selection 

The decision is taken based on client query 
information. The greedy method is the most straight 
forward method. It is popular for obtaining the optimized 
solutions. In the greedy method there are some 
important activities. (a) A selection of solution from the 
given input domain is performed.    (b). The feasibility of 
the solution is performed and then all the feasible 
solutions are obtained.  (c) From the set of feasible 
solutions, the particular solution that minimizes or 
maximizes the given objective function is obtained. Such 
a solution is called optimal solution. For an algorithm 
that uses greedy method works in stages. At each stage 
only one input is considered at a time. Based on this 
input it is decided whether particular input gives the 
optimal solution or not. 

d) Maximum Gain  
In this section we present an algorithm which, 

instead of minimizing the estimated query execution 
cost, maximizes the estimated gains of executing client 
query using sub-queries. In this algorithm, for each sub-
query, we calculate the relative gain of executing it by 
finding the sumdiff difference between cases when each 
data item is obtained separately and when all the data 
items are aggregated as a single sub-query. (i.e., 
maximal sub-query).  

IV. Related work 

We divide the related work on scalable 
answering of aggregation queries over a network of data 
aggregators in to two interrelated topics. 
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a) Answering Incoherency bounded aggregation 
queries 

Various mechanism for efficiently answering 
incoherency bounded aggregation queries over 
continuously changing data items are proposed in the 
literature [3,4,9]. i.e., in this thesis, to develop and 
evaluate client-pull-based techniques for refreshing data 
so that the results of the queries over distributed data 
can be correctly reported, conforming to the limited 
incoherency acceptable to the users. Here considered 
the problem of answering queries for online decision 
making at web data aggregators.   

Our work distinguishes itself by employing sub-
query based evaluation to minimize number of 
refreshes. Pull based data dissemination techniques, 
where client or data aggregators pull data items such 
that query requirements are met, are described   in [3]. 
For minimizing the number of pulls, both predict data 
values and pull instances. In comparison, we use push 
based mechanism to refresh sub-query values at the 
client. In [4], authors propose push based scheme 
using data filters at the sources. i.e., distributed data 
sources continuously stream updates to a centralized 
processor that monitors continuous queries over the 
distributed data. Based on  we specified a new 
approach for reducing communication cost in an 
environment of centralized continuous query processing 
over distributed data streams.  

This approach hinges on specifying precision 
constraints for continuous queries, which are used to 
generate adaptive filters at remote data sources that 
significantly reduce update stream rates while still 
guaranteeing sufficient precision of query results at all 
times.  And enables users or applications to trade 
precision for lower communication cost at a fine 
granularity by individually adjusting precision constraints 
of continuous queries. Imprecision of query results is 
bounded numerically so applications need not deal with 
any uncertainty. To validate our approach we performed 
a number of experiments using simulations and a real 
network monitoring implementation approach in 
achieving low communication overhead. According to 
that work can an aggregation query, the number of 
refresh messages can be minimized by performing 
incoherency bound allocation to individual data items 
such that the number of messages from different data 
sources is the same. Instead we execute more dynamic 
assigning incoherency bounds. And minimizing the total 
number of messages send by DAs. Like us ,authors of 
[9],also assume that dissemination tree from sensor 
node[data source] to root[client]already exist; and they 
also install error filters  on partial aggregates (similar to 
in coherency bound assign to sub queries) but, in our 
work each data aggregator can only discriminates data 
at some pre-specified  incoherency bound depending 
on its capability where as such a constraints does not 
exist for [9].further, we also be give method to select 

partial aggregates (sub queries)to be used to answering 
the query. 

Authors propose using data filters at the 
sources; instead we assign incoherency bounds to sub-
queries which reduce the number of refreshes for query 
evaluation, Further, we propose that more dynamic data 
items should be executed as part of larger sub-query. In 
[8], i.e., here discuss various techniques of reorganizing 
a data dissemination network when client requirements 
change. Instead, we try to answer the client query using 
the existing network. Reorganizing aggregators is a 
longer term activity whereas query planning can be 
done for short as well as long running queries on more 
dynamic basis.  

Like us, author of [9] also assume that 
dissemination tree from sensor nodes (data-

 
sources) to 

root (clients) already exists. In-network data aggregation 
has been recently proposed as an effective means to 
reduce the number of messages exchanged in wireless 
sensor networks. Nodes of the network form

 
an 

aggregation tree, in which parent nodes aggregate the 
values received from their children and propagate the 
result to their own parents. However, this schema 
provides little flexibility for the end-user to control the 
operation of the nodes in a data sensitive manner. For 
large sensor networks with severe energy constraints, 
the reduction (in the number of messages exchanged) 
obtained through the aggregation tree might not be 
sufficient. In this thesis we present new algorithms for 
obtaining approximate

 
aggregate statistics from large 

sensor networks. The user specifies the maximum error 
that he is willing to tolerate and, in turn, our algorithms 
program the nodes in a way that seeks to minimize the 
number of messages exchanged in the network, while 
always guaranteeing that the produced estimate lies 
within the specified error from the exact answer. And 
they also install error filters on partial aggregates. But in 
our work, each data aggregators can only disseminate 
data some pre-specified incoherency bound depending 
on its capability whereas such a constraint does not 
exist for [9].

 

Further, we also give a method to select partial 
aggregates (sub queries) to be used for answering the 
query. In [12] Pull based data dissemination techniques, 
where clients or data aggregators pull data items such 
that query requirements are met, are described in [3]. 
i.e., we develop and evaluate client-pull-based 
techniques for refreshing data so that the results of the 
queries over distributed data can be correctly reported, 
conforming to the limited incoherency acceptable to the 
users. For minimizing the number of pulls, both model 
the individual data items and predict data values. In 
comparison, we consider the situation where different 
sub-queries, involving multiple data

 
items, can be 

evaluated at different nodes. Further, incoherency 
bound is applied over the sub-query rather than to 
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individual data items, leading to efficient evaluation of 
the query.   

Spatial and temporal correlations between 
sensor data are used to reduce data refresh instances in 
[5,6]. We also consider correlation in terms of cosine 
similarity between data items, but we use it for dividing 
client query into sub-queries.  

b) Construction and maintenance of network of data 
aggregators 

Authors of [1,2,8] describe Construction and 
maintenance of hierarchical network of data aggregators 
for providing scalability and fidelity in disseminating 
dynamic data items  to large number of clients.. In these 
works, fidelity is defined as fraction of time when the 
client coherence requirements are met. Each data 
aggregators is given client requirements in the form of 
data items and their respective incoherency bounds. 
Instead we use such networks for efficiently answering 
client’s aggregation queries.   One can use client 
queries to optimally construct a network of data 
aggregators while, on the other hand, one can also use 
a given network of aggregators to efficiently answer 
client queries. Authors of [1,2,8] deal  with the first part 
where as  we have studied the second part. Changes in 
data dynamics may lead to reorganization of the 
network of data aggregators which, in turn necessitate 
changes in query plans. Whereas query plan can 
change more often depending on data dynamics. 

Instead of optimizing fidelity of data items at 
data aggregators, as proposed in [2], using our work, 
one can optimize fidelity all the way up to client queries. 
Fidelity of a data item can be approximately calculated 
as number of dissemination messages multiplied by the 
total delay in the message transmission. Author of [2] 
assume that each client’s requirements are fulfilled by a 
single data aggregator. But in case of data aggregators 
may need to disseminate a large number of data items 
which will lead to processing large number of refresh 
messages, hence increase in delay. Thus , each client 
getting all its data items from a single data  
aggregators(using a single sub-query) is optimal from 
number of messages  point of view but not necessarily 
from the query fidelity point  of view. By using our work, 
one can model expected number of messages for client 
query. Thus, our work can complement the of [2] for 
end-to-end (source-to-client) fidelity optimization. 

V. Conclusion and future work 

In this literature presents a cost based 
approach to minimize the number of refreshes required 
to execute an incoherency bounded continuous query. 
For optimal execution we divide the query into sub-
queries and evaluate each sub-query at a chosen 
aggregator. Performance results show that by our 
method the query can be executed using less than one 
third the messages required for existing schemes. 

Further we showed that by executing queries such that 
more dynamic data items are part of a larger sub-query 
we can improve performance. Our query cost model can 
also be used for other purposes such as load balancing 
various aggregators, optimal query execution plan at an 
aggregator node, etc. 
  Developing efficient strategies for multiple 
invocations of our algorithm, considering hierarchy of 
data aggregators. Another area for future research is 
changing a query plan as data dynamics changes. 
Another area of our future work is using the cost model 
for these applications and developing the cost model for 
more complex queries.  
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