
© 2012. P. Prabhakar & S. Nageswara Rao. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Network, Web & Security
Volume 12 Issue 14 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Data Aggregators
 By P. Prabhakar & S. Nageswara Rao

 Madanapalle Institute of Technology and Science, AP, India

Abstract - Typically a user desires to obtain the value of some aggregation function over distributed
data items. We present a low-cost, scalable technique to answer continuous aggregation queries
using a network of aggregators of dynamic data items. In such a network of data aggregators, each
data aggregator serves a set of data items at specific coherencies. Our technique involves
decomposing a client query into sub-queries and executing sub-queries on judiciously chosen data
aggregators with their individual sub-query incoherency bounds. We provide a technique for getting
the optimal set of sub-queries with their incoherency bounds, which satisfies client query’s coherency
requirement with least number of refresh messages sent from aggregators to the client. For
estimating the number of refresh messages, we build a query cost model which can be used to
estimate the number of messages required to satisfy the client specified incoherency bound.
Performance results using real-world traces show that our cost based query planning leads to
queries being executed using less than one third the number of messages required by existing
schemes.

Keywords : Content distribution network, continuous query, online decision making, data
dissemination, coherency, performance.

GJCST-E Classification : C.2.1

Analyzing the Query Performance over a Distributed Network of Data Aggregators

Strictly as per the compliance and regulations of:

Analyzing the Query Performance Over a Distributed Network of

Analyzing the Query Performance Over a
Distributed Network of Data Aggregators

P. Prabhakar α & S. Nageswara Rao σ

Abstract - Typically a user desires to obtain the value of some
aggregation function over distributed data items. We present a
low-cost, scalable technique to answer continuous
aggregation queries using a network of aggregators of
dynamic data items. In such a network of data aggregators,
each data aggregator serves a set of data items at specific
coherencies. Our technique involves decomposing a client
query into sub-queries and executing sub-queries on
judiciously chosen data aggregators with their individual sub-
query incoherency bounds. We provide a technique for getting
the optimal set of sub-queries with their incoherency bounds,
which satisfies client query’s coherency requirement with least
number of refresh messages sent from aggregators to the
client. For estimating the number of refresh messages, we
build a query cost model which can be used to estimate the
number of messages required to satisfy the client specified
incoherency bound. Performance results using real-world
traces show that our cost based query planning leads to
queries being executed using less than one third the number
of messages required by existing schemes.
Keywords : Content distribution network, continuous
query, online decision making, data dissemination,
coherency, performance.

I. INTRODUCTION

pplication such as auctions, personal portfolio for
financial decisions, sensors based monitoring,
route planning based on traffic information, etc.,

make extensive use of dynamic data. For such
applications, data from one or more independent data
sources may be aggregated to determine if some action
is warranted. Given the increasing number of such
applications that make use of highly dynamic data, there
is significant interest in systems that can efficiently
deliver the relevant updates automatically. Many data
intensive applications delivered over the Web suffer from
performance and scalability issues. Content distribution
networks (CDNs) solved the problem for static content
using caches at the edge nodes of the networks. CDNs
continue to evolve to serve more and more dynamic
applications [1, 2]. A dynamically generated web page
is usually assembled using a number of static or
dynamically generated fragments. The static fragments
are served from the local caches whereas dynamic
fragments are created either by using the cached data

Author

α

:

M.Tech Student, Dept of CSE, Madanapalle Institute of

Technology and Science, AP, India.

E-mail : prabhakar.mth@gmail.com

Author

σ

: Assistant Professor, Dept of CSE, Madanapalle

Institute of

Technology and Science, AP, India.

E-mail : nag_sirisala@yahoo.com

or by fetching the data items from the origin data
sources. One important question for satisfying client
requests through a network of nodes is how to select
the best node(s) to satisfy the request. For static pages
content requested, proximity to the client and load on
the nodes are the parameters generally used to select
the appropriate node [3]. In dynamic CDNs, while
selecting the nodes node(s) to satisfy the client request,
the central site (top-level CDN node) has to ensure that
page/data served meets client’s coherency
requirements also. Techniques to efficiently serve fast
changing data items with guaranteed incoherency
bounds have been proposed in the literature [4, 5]. Such
dynamic data dissemination networks can be used to
disseminate data such as stock quotes, temperature
data from sensors, traffic information, and network
monitoring data. In this paper we propose a method to
efficiently answer aggregation queries involving such
data items. In data dissemination schemes proposed in
literature [4, 11], a hierarchical network of data
aggregators is employed such that each data
aggregator serves the data item at some guaranteed
incoherency bound. Incoherency of a data item at a
given node is defined as the difference in value of the
data item at the data source and the value at that node.
Although CDNs use page-purge [8] based coherency
management, we assume that in dynamic data
dissemination networks, these messages carry the new
data values thereby an invalidation message becomes a
refresh message. For maintaining a certain incoherency
bound, a data aggregator gets data updates from the
data source or some higher level data aggregator so
that the data incoherency is not more than the data
incoherency bound. In a hierarchical data dissemination
network a higher level aggregator guarantees a tighter
incoherency bound compared to a lower level
aggregator. Thus, data refreshes are pushed from the
data sources to the clients through the network of
aggregators.

Data incoherency: data accuracy can be
specified in terms of incoherency of a data item, defined
as the absolute difference in value of the data item at
the data source and the value known to a client of the
data. Let νi (t) denote the value of i th data item at the data
source at time t; and let the value the data item known
to the client be ui (t). Then the data incoherency at the
client is given by |ui (t)-νi (t)|. For a data item which
needs to be refreshed at an incoherency bound C a

A

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

13

(
DDDD

)
E

20

12
Y
e
a
r

data refresh message is sent to the client as soon as
data exceeds C, i.e., |ui (t)-νi (t)|>C.

Network of data aggregators: Data aggregators
are one kind of secondary server it serves as data
sources (data items). The data refreshes can be done
using two mechanisms.(a)Push based mechanism data
source send update messages to client on their
own.(b)Pull based mechanism data sources send
messages to the client only when client makes a
request. For scalable handling of push based data
dissemination, network of DA’s are proposed in the
literature [12,15,16].

 Sources

 Clients

Figure 1 : Data dissemination network for multiple data

items

In such network of DA’s, data refreshes occur
from data sources to the client through one or more
DA’s. In this paper we assume that each DA maintains
its configured incoherency bounds for various data
items. Dissemination networks for various data items
can be overlaid over a single network of data
aggregators as shown in Figure 1. Thus, From a data
dissemination capability point of view, each data
aggregator (DA) is characterized by a set of (di,ci) pairs,
where di is a data item which the DA can disseminate at
an incoherency bound Ci.The configured incoherency
bound of data item at a DA can be maintained using
any of following methods: (a) the data source refreshes
the data value of the DA whenever DA’s incoherency
bound is about to get violated. This method is scalability
problems. (b) data aggregators with tighter incoherency
bound help the DA to maintain its incoherency bound in
scalable manner as explained in [4,7].

Example 1: In a network of data aggregators
managing data items D1-D4, various aggregators can
be characterized as-
A1: {(D1, 0.5), (D3, 0.2)}
A2: {(D1, 1.0), (D2, 0.1), (D4, 0.2)}

Aggregator A1 can serve values of D1 with an
incoherency bound greater than or equal to 0.5 whereas
A2 can disseminate the same data item at a looser
incoherency bound of 1.0 or more. Usually, client is
interested in an aggregation of these dynamic data
items at a certain incoherency bound. These continuous
queries are used to monitor changes in dynamic data
and provide results useful for online decision-making.
For generating the result of a query, data from multiple
sources is required. As a result, the query has to be
evaluated either at data aggregators or at the client.

In this work, our aim is to satisfy the client’s
query requirements while minimizing the query
execution cost in terms of number of dissemination
messages. Towards that end, we have achieved the
following:
1. Developed techniques for estimating the cost of

disseminating a data item, at specified incoherency
bound.

2. Using the estimated data dissemination cost, we
developed query cost model for estimating the cost
of executing an incoherency bounded continuous
query.

3. Used the query cost model for assigning a client
query to one or more data aggregators so that the
query can be executed with the least number of
messages.

Our work involves dividing the client query into
sub-queries and allocating it to different data
aggregators for optimal execution. In comparison, all the
related work in literature [3,5] propose getting individual
data items from the aggregators which, as we show in
this report, leads to large number of dissemination
messages. In the rest of the Introduction, we present
basic concepts underlying incoherency bounded
continuous query execution using a distributed network
of data aggregators.

a) Problem Statement and Contributions
In this paper, we develop query cost model for

aggregation query involving multiple data items:
- Additive aggregation with each data item possibly
different weights, and - MIN/MAX aggregation queries.
The weighted aggregation query can be mathematically
written as:

() ()
1

q

q q

ii

i n

s
i

v t s t w
=

=

= ×∑ (1)

Vs
q is the value of a client query q involving nq

data items with the weight of the i th data item being w q
i,

1< i< nq. si (t) is the value of the i th data item at the data
source at time t. Such a query encompasses SQL
aggregation operators SUM and AVG besides general
weighted aggregation queries such as portfolio queries,
involving aggregation of stock prices, weighted with
number of shares of stocks in the portfolio. Due to

Network
 of data aggregators

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

14

(
DDDD

)
E

20

12
Y
e
a
r

space limitations, we are not presenting execution
schemes for other aggregation queries such as
MIN/MAX. Interested readers are referred to [13] for the
extended version of this paper.

Let the value of i th data item, in Equation (1),
known to the client/DA be di(t). Then the data
incoherency is given by |si(t)-di(t)|. For a data item
which needs to be disseminated at an incoherency
bound C the data refresh is sent to the client or lower
level DA, if the |si (t) - d i (t)| is more than C. If user
specified incoherency bound for the query q is C q, then
the dissemination network has to ensure that:

()()
1

q

q q

i i i

n

i
s t d w c

=

− × ≤∑ (2)

Whenever data values at sources change such
that query incoherency bound is violated, the updated
value(s) is disseminated to the client. If the network of
aggregators can ensure that the i th data item has
incoherency bound C i then the following condition
ensure that the query incoherency bound C q is satisfied:

1

q

q q

i i

n

i
c w c

=

× ≤∑

 (3)

For additive aggregation queries, a client
specified query incoherency bound needs to be
translated into incoherency bounds for individual data
items or sub-queries such that these satisfy Equation
(3).

MIN/MAX queries involve set of data items,
whose extremes are the required result, and its
incoherency bound. In a MIN (MAX) query, even if one
data value changes it is possible that that value is
minimum (maximum) thus individual data incoherency
bound cannot be more than query incoherency bound.
Thus in case of MIN/MAX queries the dissemination
network has to ensure that Ci ≤ Cq for all the data items
appearing in the query.

b) Summary of Distributed Execution approach
Consider a client query Q=50 D1 + 200 D2 +

150 D3 with a required incoherency bound of 80 (in a
stock portfolio D1, D2, D3 can be different stocks and
incoherency bound can be $80).We want to execute this
query over data aggregators given in Example1,
minimizing number of refreshes. There are various
options for the client to get the data items.

The client may get the data items D1, D2 and
D3 separately. The query incoherency bounds can be
divided among data items in various ways while
satisfying Equation 3. In this report, we show that getting
data items independently is a costly option. This
strategy ignores facts that the client is interested only in

the aggregated value of the data items and various
aggregators can disseminate more than one data item.

If a single DA can disseminate all three data
items required to answer the client query, the DA can
construct a composite data item corresponding to the
client query (Sq=50 D1 + 200 D2+ 150 D3) and
disseminate the result to the client so that the query
incoherency bound is not violated. It is obvious that if we
get the query result from a single DA, the number of
refreshes will be minimum (as in this case data item
updates may cancel out each other, thereby keeping the
query result within the incoherency bound). As different
data aggregators disseminate different subsets of data
items, no data aggregator may have all the data items
required to execute the client query, which is indeed the
case in Example1. Further, even if an aggregator can
disseminate all the data items, it may not be able to
satisfy the query coherency requirements. In such
cases, the query has to be executed with data from
multiple aggregators.
 Another option is to divide the query into a
number of sub-queries and get their values from
individual DAs. In that case, the client query result is
obtained by combining the results of more than one
sub-query. For the DAs given in Example1, the query Q
can be divided in two alternative ways:

Plan1: A1 {50 D1 + 150 D3 }; D2 {D2 }

Plan2: A1 {D3}; D2 {50 D1, + 200 D2 }

i.e., in plan1 result of sub-query 50 D1 + 150
D3 is served by A1 whereas value of (or 200 D2) by D2
is served by A2. In plan2, value of D3 is served by A1
whereas result of sub-query 50 D1 + 200 D2 is served
by A2. Combining them at the client gives the query
result.

Selecting the optimal plan among various
options is not-trivial. As a thumb-rule, we should be
selecting the plan with lesser number of sub-queries.
But that is not guaranteed to be the plan with the least
number of messages. Further, we should select the sub-
queries such that updates to various data items
appearing in a sub-query have more chances of
cancelling each other as that will reduce the need for
refresh to the client (Equation 2). In the above example,
if updates to D1 and D3 are such that when D1
increases, D3 decreases, and vice-versa, then selecting
plan1 may be beneficial. We give an algorithm to select
the query plan based on these observations.

While solving the above problem of selecting
the optimal plan we ensure that each data item for a
client query is disseminated by one and only one data
aggregator. Although a query can be divided in such a
way that a single data item is served by multiple DAs
(e.g., 50 D1 + 200 D2 + 150 D3 is divided into two sub-
queries 50 D1 + 130 D2 and 70 D2 + 150 D3); but in
doing so the same data item needs to be processed at

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

15

(
DDDD

)
E

20

12
Y
e
a
r

multiple aggregators, increasing the unnecessary
processing load. By dividing the client query into disjoint
sub-queries we ensure that a data item update is
processed only once for each query (For example, in
case of paid data subscriptions it is not prudent to get
the same data item from the multiple sources).

The query incoherency bound needs to be
divided among sub-query incoherency bounds such
that, besides satisfying the client coherency
requirements, the chosen DA (where the sub-query is to
be executed) is capable of satisfying the allocated sub-
query incoherency bound. For example, in plan1
allocated incoherency bound to the sub-query 50D1 +
150D3 should be greater than 55 (=50*0.5+150*0.2)
as that is the tightest incoherency bound which the
aggregator D1 can satisfy. We prove that the number of
refreshes depends on the division of the query
incoherency bounds among sub-query incoherency
bounds.

Thus, what we need is a method of (a) optimally
dividing client query into sub-queries and (b) assigning
incoherency bounds to them; such that (c) selected
sub-queries can be executed at chosen. And (d) total
query execution cost, in terms of number of refreshes, is
minimized.

II. DATA DISSEMINATION COST MODEL

Cost of disseminating a data item at a certain
given incoherency bound C can be estimated by
combining two models:

a) Incoherency bound model
The incoherency bound model is used for

estimating dependency of data dissemination cost over
the desired incoherency bound. As per this model, we

have shown in [13] that the number of data refreshes is
inversely proportional to the square of the incoherency
bound (1/C2). Similar result was earlier reported in [4]
where the data dynamics was modeled as a random
walk process.

Data dissemination cost α 1/C2 (4)

b) Data synopsis Model
The Data synopsis model is used for estimating

the effect of data dynamics on number of data
refreshes. We define a data dynamics measure called,
sumdiff, to obtain a synopsis of the data for predicting
the dissemination cost. The number of update
messages for a data item is likely to be higher if the data
item changes more in a given time window. Thus we
hypothesize that cost of data dissemination for a data
item will be proportional to data synopsis, called
sumdiff, defined as:

()1s i i
i

R s s
−

= −∑ (5)

Where Si and Si-1 are the sampled values of the
data item at i th and (i-1) th time instances (consecutive
ticks). Data sumdiff can be maintained at the source or
aggregators. For calculating this quantity, the data
source can accumulate the absolute value of changes in
data items or the data aggregator can estimate this
quantity using changes in pushed values. Next we use
this result for developing the query cost model.

Consider a case where a query consists of two
data items P and Q with weights wp and wq respectively;
and we want to estimate its dissemination cost. If data
items are disseminated separately query sumdiff will be:

 (6)

 Instead, if the aggregator uses the information
Instead, if the aggregator uses the information that client
is interested in a query over P and Q (rather than their
individual values), it makes a composite data item wpP+
wqq and disseminates that data item then the query
sumdiff will be:

 (7)

Rquery is clearly less than or equal compared to
Rdata. Thus we need to estimate the sumdiff of an
aggregation query (i.e., Rquery) given the sumdiff values
of individual data items (i.e., Rp and Rq). Only data
aggregators are in position to calculate Rquery as different
data items may be from different sources.

III. QUERY COST MODEL

For getting an estimation of the query
dissemination cost what we need is Rquery whereas we
know Rp and Rq (in Equation (6) and (7). As different
data items may be disseminated by different servers,

Rquery can be calculated only at data aggregators. If two
data items are correlated such that if value of one data
item increases other also increases, then Rquery will be
closer Rdata ; whereas if the data items are inversely
correlated then Rquery will be much less than Rdata. Thus,
institutively, we can represent the relationship between
Rquery and sumdiff of individual data items involved using
a correlation measure between data items. Specifically,
if ρ is the correlation measure then Rquery can be written
as:

()2 2 2 2 2

2
p p q q p p q qqueryR w R w R w R w Rρ∞ + +

(8)

The correlation measure is defined such that–
1≤ρ≤ +1, so, Rquery will always be less than
|wpRp+wqRq| (as explained earlier) and always be more
than |wpRp− wqRq|.

The correlation measure ρ can be interpreted as
cosine similarity [19] between two streams represented

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

16

(
DDDD

)
E

20

12
Y
e
a
r

Rdata = wpRp +wqRq=wp∑| pi – pi-1 | +wq∑| qi−qi-1 |

Rquery=Σ|wp(pi−pi-1)+wq(qi−qi-1)|

by data items P and Q. Cosine similarity is a widely used
measure in information retrieval domain where
documents are represented using a vector-space model
and document similarity is measured using cosine of
angle between two document representations. For data
streams P and Q, 𝜌𝜌 can be calculated as:

(9)

a) Executing queries using sub queries

For executing an incoherency bounded
continuous query, a query plan is required which
includes the set of sub-queries, their individual
incoherency bounds and data aggregators which can
execute these sub-queries. We need to find the optimal
query execution plan which satisfies client coherency
requirement with the least number of refreshes. What we
need is a mechanism to:

Task 1: Divide the aggregation query into sub-
queries; and

Task 2: Allocate the query incoherency bound
among them.

While satisfying the following conditions
identified in Section 1.2:

Condition 1. Query incoherency bound is
satisfied.

Condition 2. The chosen DA should be able to
provide all the data items appearing in the sub-query
assigned to it.

Condition 3. Data incoherency bounds at the
chosen DA should be such that the sub-query
incoherency bound can be satisfied at the chosen DA.
Objective: Number of refreshes should be minimized.

b) Minimum Cost
Figure 2 shows the outline of greedy heuristics

where different criteria (ψ) can be used to select sub-
queries. In this section we describe the case where the
estimate of query execution cost is minimized in each
step of the algorithm (min-cost) whereas in the next
section we present the case where gain due to
executing a query using sub-queries is maximized (max-
gain).

c) Query Plan with Pre-decided Incoherency Bound
Allocation

For the given client query (q) and mapping
between data aggregators and the corresponding
{data-item, data incoherency bound } pairs (f : D→(S,
C)) maximal sub-queries can be obtained for each data
aggregator. Let A be the set of such maximal sub
queries. In this set, each query a € A can be
disseminated by a designated data aggregator at the
assigned incoherency bound. For each sub-query a €A,
its sumdiff Ra is calculated. Using the set A and sub-

query sumdiffs, we use the algorithm outlined in Figure 2
to get the set of sub-queries minimizing the query cost.
In this Figure each sub-query a € A is represented by
the set of data items covered by it. As we need to
minimize the query cost, a sub-query with minimum cost
per data item is chosen in each iteration of the algorithm
i.e., criteria ψ ≡ minimize (Ra/Ca 2|a|).

All data items covered by the selected sub
query are removed from all the remaining sub-queries in
A before performing the next iteration.

Algorithm:

Result ←∅
 while A ≠ ∅
choose a sub-query a𝛜𝛜A with criteria ψ
 Result ←Result ∪a
 A←A-{a}
 for each data element e 𝛜𝛜 a
 for each b 𝛜𝛜 A
 b←b-{e}
 if b =∅
 A←A-{b}
 else
 Calculate sumdiff for modified b
Return Result

Figure 2 : Greedy algorithm for query plan selection

The decision is taken based on client query
information. The greedy method is the most straight
forward method. It is popular for obtaining the optimized
solutions. In the greedy method there are some
important activities. (a) A selection of solution from the
given input domain is performed. (b). The feasibility of
the solution is performed and then all the feasible
solutions are obtained. (c) From the set of feasible
solutions, the particular solution that minimizes or
maximizes the given objective function is obtained. Such
a solution is called optimal solution. For an algorithm
that uses greedy method works in stages. At each stage
only one input is considered at a time. Based on this
input it is decided whether particular input gives the
optimal solution or not.

d) Maximum Gain
In this section we present an algorithm which,

instead of minimizing the estimated query execution
cost, maximizes the estimated gains of executing client
query using sub-queries. In this algorithm, for each sub-
query, we calculate the relative gain of executing it by
finding the sumdiff difference between cases when each
data item is obtained separately and when all the data
items are aggregated as a single sub-query. (i.e.,
maximal sub-query).

IV. Related work

We divide the related work on scalable
answering of aggregation queries over a network of data
aggregators in to two interrelated topics.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

17

(
DDDD

)
E

20

12
Y
e
a
r

  

   

1 1

1 1

2 2

i i i i

i i i i

p p q q

p p q q

  

 

 


 



 

a) Answering Incoherency bounded aggregation
queries

Various mechanism for efficiently answering
incoherency bounded aggregation queries over
continuously changing data items are proposed in the
literature [3,4,9]. i.e., in this thesis, to develop and
evaluate client-pull-based techniques for refreshing data
so that the results of the queries over distributed data
can be correctly reported, conforming to the limited
incoherency acceptable to the users. Here considered
the problem of answering queries for online decision
making at web data aggregators.

Our work distinguishes itself by employing sub-
query based evaluation to minimize number of
refreshes. Pull based data dissemination techniques,
where client or data aggregators pull data items such
that query requirements are met, are described in [3].
For minimizing the number of pulls, both predict data
values and pull instances. In comparison, we use push
based mechanism to refresh sub-query values at the
client. In [4], authors propose push based scheme
using data filters at the sources. i.e., distributed data
sources continuously stream updates to a centralized
processor that monitors continuous queries over the
distributed data. Based on we specified a new
approach for reducing communication cost in an
environment of centralized continuous query processing
over distributed data streams.

This approach hinges on specifying precision
constraints for continuous queries, which are used to
generate adaptive filters at remote data sources that
significantly reduce update stream rates while still
guaranteeing sufficient precision of query results at all
times. And enables users or applications to trade
precision for lower communication cost at a fine
granularity by individually adjusting precision constraints
of continuous queries. Imprecision of query results is
bounded numerically so applications need not deal with
any uncertainty. To validate our approach we performed
a number of experiments using simulations and a real
network monitoring implementation approach in
achieving low communication overhead. According to
that work can an aggregation query, the number of
refresh messages can be minimized by performing
incoherency bound allocation to individual data items
such that the number of messages from different data
sources is the same. Instead we execute more dynamic
assigning incoherency bounds. And minimizing the total
number of messages send by DAs. Like us ,authors of
[9],also assume that dissemination tree from sensor
node[data source] to root[client]already exist; and they
also install error filters on partial aggregates (similar to
in coherency bound assign to sub queries) but, in our
work each data aggregator can only discriminates data
at some pre-specified incoherency bound depending
on its capability where as such a constraints does not
exist for [9].further, we also be give method to select

partial aggregates (sub queries)to be used to answering
the query.

Authors propose using data filters at the
sources; instead we assign incoherency bounds to sub-
queries which reduce the number of refreshes for query
evaluation, Further, we propose that more dynamic data
items should be executed as part of larger sub-query. In
[8], i.e., here discuss various techniques of reorganizing
a data dissemination network when client requirements
change. Instead, we try to answer the client query using
the existing network. Reorganizing aggregators is a
longer term activity whereas query planning can be
done for short as well as long running queries on more
dynamic basis.

Like us, author of [9] also assume that
dissemination tree from sensor nodes (data-

sources) to

root (clients) already exists. In-network data aggregation
has been recently proposed as an effective means to
reduce the number of messages exchanged in wireless
sensor networks. Nodes of the network form

an

aggregation tree, in which parent nodes aggregate the
values received from their children and propagate the
result to their own parents. However, this schema
provides little flexibility for the end-user to control the
operation of the nodes in a data sensitive manner. For
large sensor networks with severe energy constraints,
the reduction (in the number of messages exchanged)
obtained through the aggregation tree might not be
sufficient. In this thesis we present new algorithms for
obtaining approximate

aggregate statistics from large

sensor networks. The user specifies the maximum error
that he is willing to tolerate and, in turn, our algorithms
program the nodes in a way that seeks to minimize the
number of messages exchanged in the network, while
always guaranteeing that the produced estimate lies
within the specified error from the exact answer. And
they also install error filters on partial aggregates. But in
our work, each data aggregators can only disseminate
data some pre-specified incoherency bound depending
on its capability whereas such a constraint does not
exist for [9].

Further, we also give a method to select partial
aggregates (sub queries) to be used for answering the
query. In [12] Pull based data dissemination techniques,
where clients or data aggregators pull data items such
that query requirements are met, are described in [3].
i.e., we develop and evaluate client-pull-based
techniques for refreshing data so that the results of the
queries over distributed data can be correctly reported,
conforming to the limited incoherency acceptable to the
users. For minimizing the number of pulls, both model
the individual data items and predict data values. In
comparison, we consider the situation where different
sub-queries, involving multiple data

items, can be

evaluated at different nodes. Further, incoherency
bound is applied over the sub-query rather than to

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

18

(
DDDD

)
E

20

12
Y
e
a
r

individual data items, leading to efficient evaluation of
the query.

Spatial and temporal correlations between
sensor data are used to reduce data refresh instances in
[5,6]. We also consider correlation in terms of cosine
similarity between data items, but we use it for dividing
client query into sub-queries.

b) Construction and maintenance of network of data
aggregators

Authors of [1,2,8] describe Construction and
maintenance of hierarchical network of data aggregators
for providing scalability and fidelity in disseminating
dynamic data items to large number of clients.. In these
works, fidelity is defined as fraction of time when the
client coherence requirements are met. Each data
aggregators is given client requirements in the form of
data items and their respective incoherency bounds.
Instead we use such networks for efficiently answering
client’s aggregation queries. One can use client
queries to optimally construct a network of data
aggregators while, on the other hand, one can also use
a given network of aggregators to efficiently answer
client queries. Authors of [1,2,8] deal with the first part
where as we have studied the second part. Changes in
data dynamics may lead to reorganization of the
network of data aggregators which, in turn necessitate
changes in query plans. Whereas query plan can
change more often depending on data dynamics.

Instead of optimizing fidelity of data items at
data aggregators, as proposed in [2], using our work,
one can optimize fidelity all the way up to client queries.
Fidelity of a data item can be approximately calculated
as number of dissemination messages multiplied by the
total delay in the message transmission. Author of [2]
assume that each client’s requirements are fulfilled by a
single data aggregator. But in case of data aggregators
may need to disseminate a large number of data items
which will lead to processing large number of refresh
messages, hence increase in delay. Thus , each client
getting all its data items from a single data
aggregators(using a single sub-query) is optimal from
number of messages point of view but not necessarily
from the query fidelity point of view. By using our work,
one can model expected number of messages for client
query. Thus, our work can complement the of [2] for
end-to-end (source-to-client) fidelity optimization.

V. Conclusion and future work

In this literature presents a cost based
approach to minimize the number of refreshes required
to execute an incoherency bounded continuous query.
For optimal execution we divide the query into sub-
queries and evaluate each sub-query at a chosen
aggregator. Performance results show that by our
method the query can be executed using less than one
third the messages required for existing schemes.

Further we showed that by executing queries such that
more dynamic data items are part of a larger sub-query
we can improve performance. Our query cost model can
also be used for other purposes such as load balancing
various aggregators, optimal query execution plan at an
aggregator node, etc.
 Developing efficient strategies for multiple
invocations of our algorithm, considering hierarchy of
data aggregators. Another area for future research is
changing a query plan as data dynamics changes.
Another area of our future work is using the cost model
for these applications and developing the cost model for
more complex queries.

References Références Referencias

1.

A. Davis, J.Parikh and

W.Weihl. “Edge Computing:

Extending Enterprise Applications to the Edge of the
Internet”. WWW 2004.

2.

D. Vander Meer, A. Datta, K. Dutta, H. Thomas and
K.Ramamritham. Proxy-Based Acceleration of
Dynamically

Generated Content on the World Wide

Web. ACM Transactions on Database Systems
(TODS) Vol. 29, June 2004.

3.

J. Dilley, B. Maggs, J. Parikh, H. Prokop, R.
Sitaraman and B. Weihl. Globally Distributed
Content Delivery, IEEE Internet Computing Sept
2002

4.

S. Shah, K. Ramamritham, and P. Shenoy.
Maintaining Coherency of Dynamic Data in
Cooperating Repositories. VLDB 2002

5.

Query cost model validation for sensor
data.www.cse.iitb.ac.in/~ravivj/BTP06.pdf.

6.

C. Olston, J. Jiang, and J. Widom. Adaptive Filter for
Continuous Queries over Distributed Data Streams.
SIGMOD 2003.

7.

D. S. Hochbaum. Approximation algorithms for the
set covering and vertex cover problems. SIAM
Journal on Computing, vol. 11 (3), 1982.

8.

Zongming Fei. A Novel Approach to Managing
Consistency in Content Distribution. WCW 2001.

9.

R. Gupta, A. Puri, and K. Ramamritham. Executing
Incoherency Bounded Continuous Queries at Web
Data Aggregators. WWW 2005.

10.

NEFSC Scientific Computer System http://

sole.

wh.

whoi.edu/jmanning//cruise/serve1et.cgi

11.

Pearson Product moment correlation coefficient.

http://www.nyx.net/~tmacfarl/STAT_TUT/correlat.ssi
/.

12.

S. Agrawal, K. Ramamritham and S. Shah.
Construction of a Temporal Coherency Preserving
Dynamic Data Dissemination networks”, RTSS 2004

13.

Optimized Execution of Continuous Queries,
APS2006,www.cse.iitb.ac.in/~grajeev/APS06.PDF

14.

S. Rangarajan, S. Mukerjee and P. Rodriguez. User
Specific Request Redirection in a Content Delivery

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

19

(
DDDD

)
E

20

12
Y
e
a
r

http://www.cse.iitb.ac.in/~grajeev/APS06.PDF�

Network, 8th Intl. Workshop on Web Content
Caching and Distribution (IWCW), 2003.

15. R Guptha and K. Ramamritham, “Optimized Query
Planning of Continuous Aggregation Queries in
Dynamic Data Dissemination Networks”, WWW
2007.

16. R Guptha and K. Ramamritham, “Query Planning for
Continuous Aggregation Queries over a network of
Data Aggregators”, IEEE 2011.

17. S. Shah, K. Ramamritham, and C. Ravishankar.
Client Assignment in Content Dissemination
Networks for Dynamic Data, VLDB 2005.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

20

(
DDDD

)
E

20

12
Y
e
a
r

	Analyzing the Query Performance over a Distributed Network ofData Aggregators
	Author's

	Keywords
	I. INTRODUCTION
	a) Problem Statement and Contributions
	b) Summary of Distributed Execution approach

	II. DATA DISSEMINATION COST MODEL
	a) Incoherency bound model
	b) Data synopsis Model

	III. QUERY COST MODEL
	a) Executing queries using sub queries
	b) Minimum Cost
	c) Query Plan with Pre-decided Incoherency BoundAllocation
	d) Maximum Gain

	IV. Related work
	a) Answering Incoherency bounded aggregationqueries
	b) Construction and maintenance of network of dataaggregators

	V. Conclusion and future work
	References Références Referencias

