
Data Aggregators1

Dr. P. Prabhakar1 and S. Nageswara Rao22

1 M.Tech Student, Dept of CSE, Madanapalle Institute of Technology and Science, AP,3

India.4

Received: 15 December 2011 Accepted: 31 December 2011 Published: 15 January 20125

6

Abstract7

Typically a user desires to obtain the value of some aggregation function over distributed data8

items. We present a low-cost, scalable technique to answer continuous aggregation queries9

using a network of aggregators of dynamic data items. In such a network of data aggregators,10

each data aggregator serves a set of data items at specific coherencies. Our technique involves11

decomposing a client query into sub-queries and executing sub-queries on judiciously chosen12

data aggregators with their individual subquery incoherency bounds. We provide a technique13

for getting the optimal set of sub-queries with their incoherency bounds, which satisfies client14

query?s coherency requirement with least number of refresh messages sent from aggregators to15

the client. For estimating the number of refresh messages, we build a query cost model which16

can be used to estimate the number of messages required to satisfy the client specified17

incoherency bound. Performance results using real-world traces show that our cost based18

query planning leads to queries being executed using less than one third the number of19

messages required by existing schemes.20

21

Index terms— Content distribution network, continuous query, online decision making, data dissemination,22
coherency, performance.23

1 INTRODUCTION24

pplication such as auctions, personal portfolio for financial decisions, sensors based monitoring, route planning25
based on traffic information, etc., make extensive use of dynamic data. For such applications, data from one or26
more independent data sources may be aggregated to determine if some action is warranted. Given the increasing27
number of such applications that make use of highly dynamic data, there is significant interest in systems that28
can efficiently deliver the relevant updates automatically. Many data intensive applications delivered over the29
Web suffer from performance and scalability issues. Content distribution networks (CDNs) solved the problem30
for static content using caches at the edge nodes of the networks. CDNs continue to evolve to serve more31
and more dynamic applications [1,2]. A dynamically generated web page is usually assembled using a number32
of static or dynamically generated fragments. The static fragments are served from the local caches whereas33
dynamic fragments are created either by using the cached data Author ? : M.Tech Student, Dept of CSE,34
Madanapalle Institute of Technology and Science, AP, India. E-mail : prabhakar.mth@gmail.com Author ?35
: Assistant Professor, Dept of CSE, Madanapalle Institute of Technology and Science, AP, India. E-mail :36
nag_sirisala@yahoo.com or by fetching the data items from the origin data sources. One important question37
for satisfying client requests through a network of nodes is how to select the best node(s) to satisfy the request.38
For static pages content requested, proximity to the client and load on the nodes are the parameters generally39
used to select the appropriate node [3]. In dynamic CDNs, while selecting the nodes node(s) to satisfy the client40
request, the central site (top-level CDN node) has to ensure that page/data served meets client’s coherency41
requirements also. Techniques to efficiently serve fast changing data items with guaranteed incoherency bounds42
have been proposed in the literature [4,5]. Such dynamic data dissemination networks can be used to disseminate43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

3 A) PROBLEM STATEMENT AND CONTRIBUTIONS

data such as stock quotes, temperature data from sensors, traffic information, and network monitoring data. In44
this paper we propose a method to efficiently answer aggregation queries involving such data items. In data45
dissemination schemes proposed in literature [4,11], a hierarchical network of data aggregators is employed such46
that each data aggregator serves the data item at some guaranteed incoherency bound. Incoherency of a data47
item at a given node is defined as the difference in value of the data item at the data source and the value at48
that node. Although CDNs use page-purge [8] based coherency management, we assume that in dynamic data49
dissemination networks, these messages carry the new data values thereby an invalidation message becomes a50
refresh message. For maintaining a certain incoherency bound, a data aggregator gets data updates from the data51
source or some higher level data aggregator so that the data incoherency is not more than the data incoherency52
bound. In a hierarchical data dissemination network a higher level aggregator guarantees a tighter incoherency53
bound compared to a lower level aggregator. Thus, data refreshes are pushed from the data sources to the clients54
through the network of aggregators.55

Data incoherency: data accuracy can be specified in terms of incoherency of a data item, defined as the56
absolute difference in value of the data item at the data source and the value known to a client of the data. Let57
? i (t) denote the value of i th data item at the data source at time t; and let the value the data item known to58
the client be u i (t). Then the data incoherency at the client is given by |u i (t)-? i (t)|. For a data item which59
needs to be refreshed at an incoherency bound C aA (D D D D)60

data refresh message is sent to the client as soon as data exceeds C, i.e., |u i (t)-? i (t)|>C.61
Network of data aggregators: Data aggregators are one kind of secondary server it serves as data sources (data62

items). The data refreshes can be done using two mechanisms.(a)Push based mechanism data source send update63
messages to client on their own.(b)Pull based mechanism data sources send messages to the client only when64
client makes a request. For scalable handling of push based data dissemination, network of DA’s are proposed in65
the literature [12,15,16].66

2 Sources67

Clients Figure 1 : Data dissemination network for multiple data items68
In such network of DA’s, data refreshes occur from data sources to the client through one or more DA’s. In this69

paper we assume that each DA maintains its configured incoherency bounds for various data items. Dissemination70
networks for various data items can be overlaid over a single network of data aggregators as shown in Figure 1.71
Thus, From a data dissemination capability point of view, each data aggregator (DA) is characterized by a set72
of (d i ,c i) pairs, where d i is a data item which the DA can disseminate at an incoherency bound C i .The73
configured incoherency bound of data item at a DA can be maintained using any of following methods: (a) the74
data source refreshes the data value of the DA whenever DA’s incoherency bound is about to get violated. This75
method is scalability problems. (b) data aggregators with tighter incoherency bound help the DA to maintain76
its incoherency bound in scalable manner as explained in [4,7].77

Example 1: In a network of data aggregators managing data items D1-D4, various aggregators can be78
characterized as-A1: {(D1, 0.5), (D3, 0.2)} A2: {(D1, 1.0), (D2, 0.1), (D4, 0.2)}79

Aggregator A1 can serve values of D1 with an incoherency bound greater than or equal to 0.5 whereas A2 can80
disseminate the same data item at a looser incoherency bound of 1.0 or more. Usually, client is interested in an81
aggregation of these dynamic data items at a certain incoherency bound. These continuous queries are used to82
monitor changes in dynamic data and provide results useful for online decision-making.83

For generating the result of a query, data from multiple sources is required. As a result, the query has to84
be evaluated either at data aggregators or at the client. In this work, our aim is to satisfy the client’s query85
requirements while minimizing the query execution cost in terms of number of dissemination messages. Towards86
that end, we have achieved the following: 1. Developed techniques for estimating the cost of disseminating a87
data item, at specified incoherency bound. 2. Using the estimated data dissemination cost, we developed query88
cost model for estimating the cost of executing an incoherency bounded continuous query. 3. Used the query89
cost model for assigning a client query to one or more data aggregators so that the query can be executed with90
the least number of messages.91

Our work involves dividing the client query into sub-queries and allocating it to different data aggregators for92
optimal execution. In comparison, all the related work in literature [3,5] propose getting individual data items93
from the aggregators which, as we show in this report, leads to large number of dissemination messages. In the94
rest of the Introduction, we present basic concepts underlying incoherency bounded continuous query execution95
using a distributed network of data aggregators.96

3 a) Problem Statement and Contributions97

In this paper, we develop query cost model for aggregation query involving multiple data items: -Additive98
aggregation with each data item possibly different weights, and -MIN/MAX aggregation queries. The weighted99
aggregation query can be mathematically written as: () ()1 q q q i i i n s i v t s t w = = = × ?(1)100

V s q is the value of a client query q involving n q data items with the weight of the i th data item being w q101
i , 1< i< n q . s i (t) is the value of the i th data item at the data source at time t. Such a query encompasses102
SQL aggregation operators SUM and AVG besides general weighted aggregation queries such as portfolio queries,103

2

involving aggregation of stock prices, weighted with number of shares of stocks in the portfolio. Due to(D D D104
D)105

Year space limitations, we are not presenting execution schemes for other aggregation queries such as106
MIN/MAX. Interested readers are referred to [13] for the extended version of this paper.107

Let the value of i th data item, in Equation (1), known to the client/DA be d i (t). Then the data incoherency108
is given by |s i (t)-d i (t)|. For a data item which needs to be disseminated at an incoherency bound C the data109
refresh is sent to the client or lower level DA, if the |s i (t)d i (t)| is more than C. If user specified incoherency110
bound for the query q is C q , then the dissemination network has to ensure that: () ()1 q q q i i i n i s t d w c111
= ? × ? ?(2)112

Whenever data values at sources change such that query incoherency bound is violated, the updated value(s)113
is disseminated to the client. If the network of aggregators can ensure that the i th data item has incoherency114
bound C i then the following condition ensure that the query incoherency bound C q is satisfied:1 q q q i i n i c115
w c = × ? ?(3)116

For additive aggregation queries, a client specified query incoherency bound needs to be translated into117
incoherency bounds for individual data items or sub-queries such that these satisfy Equation (3).118

MIN/MAX queries involve of data items, whose extremes are the required result, and its incoherency bound.119
In a MIN (MAX) query, even if one data value changes it is possible that that value is minimum (maximum) thus120
individual data incoherency bound cannot be more than query incoherency bound. Thus in case of MIN/MAX121
queries the dissemination network has to ensure that Ci ? Cq for all the data items appearing in the query.122

4 b) Summary of Distributed Execution approach123

Consider a client query Q=50 D1 + 200 D2 + 150 D3 with a required incoherency bound of 80 (in a stock124
portfolio D1, D2, D3 can be different stocks and incoherency bound can be $80).We want to execute this query125
over data aggregators given in Example1, minimizing number of refreshes. There are various options for the126
client to get the data items.127

The client may get the data items D1, D2 and D3 separately. The query incoherency bounds can be divided128
among data items in various ways while satisfying Equation 3. In this report, we show that getting data items129
independently is a costly option. This strategy ignores facts that the client is interested only in the aggregated130
value of the data items and various aggregators can disseminate more than one data item.131

If a single DA can disseminate all three data items required to answer the client query, the DA can construct132
a composite data item corresponding to the client query (Sq=50 D1 + 200 D2+ 150 D3) and disseminate the133
result to the client so that the query incoherency bound is not violated. It is obvious that if we get the query134
result from a single DA, the number of refreshes will be minimum (as in this case data item updates may cancel135
out each other, thereby keeping the query result within the incoherency bound). As different data aggregators136
disseminate different subsets of data items, no data aggregator may have all the data items required to execute137
the client query, which is indeed the case in Example1. Further, even if an aggregator can disseminate all the138
data items, it may not be able to satisfy the query coherency requirements. In such cases, the query has to be139
executed with data from multiple aggregators.140

Another option is to divide the query into a number of sub-queries and get their values from individual DAs.141
In that case, the client query result is obtained by combining the results of more than one sub-query. For the142
DAs given in Example1, the query Q can be divided in two alternative ways:Plan1: A1 {50 D1 + 150 D3 }; D2143
{D2 } Plan2: A1 {D3 }; D2 {50 D1, + 200 D2 }144

i.e., in plan1 result of sub-query 50 D1 + 150 D3 is served by A1 whereas value of (or 200 D2) by D2 is145
served by A2. In plan2, value of D3 is served by A1 whereas result of sub-query 50 D1 + 200 D2 is served by146
A2. Combining them at the client gives the query result.147

Selecting the optimal plan among various options is not-trivial. As a thumb-rule, we should be selecting the148
plan with lesser number of sub-queries. But that is not guaranteed to be the plan with the least number of149
messages. Further, we should select the subqueries such that updates to various data items appearing in a sub-150
query have more chances of cancelling each other as that will reduce the need for refresh to the client (Equation151
2). In the above example, if updates to D1 and D3 are such that when D1 increases, D3 decreases, and vice-versa,152
then selecting plan1 may be beneficial. We give an algorithm to select the query plan based on these observations.153
While solving the above problem of selecting the optimal plan we ensure that each data item for a client query154
is disseminated by one and only one data aggregator. Although a query can be divided in such a way that a155
single data item is served by multiple DAs multiple aggregators, increasing the unnecessary processing load. By156
dividing the client query into disjoint sub-queries we ensure that a data item update is processed only once for157
each query (For example, in case of paid data subscriptions it is not prudent to get the same data item from the158
multiple sources).159

The query incoherency bound needs to be divided among sub-query incoherency bounds such that, besides160
satisfying the client coherency requirements, the chosen DA (where the sub-query is to be executed) is capable161
of satisfying the allocated subquery incoherency bound. For example, in plan1 allocated incoherency bound to162
the sub-query 50D1 + 150D3 should be greater than 55 (=50*0.5+150*0.2) as that is the tightest incoherency163
bound which the aggregator D1 can satisfy. We prove that the number of refreshes depends on the division of164
the query incoherency bounds among sub-query incoherency bounds.165

3

9 QUERY COST MODEL

Thus, what we need is a method of (a) optimally dividing client query into sub-queries and (b) assigning166
incoherency bounds to them; such that (c) selected sub-queries can be executed at chosen. And (d) total query167
execution cost, in terms of number of refreshes, is minimized.168

5 II.169

6 DATA DISSEMINATION COST MODEL170

Cost of disseminating a data item at a certain given incoherency bound C can be estimated by combining two171
models:172

7 a) Incoherency bound model173

The incoherency bound model is used for estimating dependency of data dissemination cost over the desired174
incoherency bound. As per this model, we have shown in [13] that the number of data refreshes is inversely175
proportional to the square of the incoherency bound (1/C2). Similar result was earlier reported in [4] where the176
data dynamics was modeled as a random walk process.Data dissemination cost ? 1/C 2 (4) b) Data synopsis177
Model178

The Data synopsis model is used for estimating the effect of data dynamics on number of data refreshes. We179
define a data dynamics measure called, sumdiff, to obtain a synopsis of the data for predicting the dissemination180
cost. The number of update messages for a data item is likely to be higher if the data item changes more in a181
given time window. Thus we hypothesize that cost of data dissemination for a data item will be proportional to182
data synopsis, called sumdiff, defined as: ()1 s i i i R s s ? = ? ?(5)183

Where S i and S i-1 are the sampled values of the data item at i th and (i-1) th time instances (consecutive184
ticks). Data sumdiff can be maintained at the source or aggregators. For calculating this quantity, the data185
source can accumulate the absolute value of changes in data items or the data aggregator can estimate this186
quantity using changes in pushed values. Next we use this result for developing the query cost model.187

Consider a case where a query consists of two data items P and Q with weights w p and w q respectively; and188
we want to estimate its dissemination cost. If data items are disseminated separately query sumdiff will be:189

Instead, if the aggregator uses the information Instead, if the aggregator uses the information that client is190
interested in a query over P and Q (rather than their individual values), it makes a composite data item w pP +191
w q q and disseminates that data item then the query sumdiff will be: (7) R query is clearly less than or equal192
compared to R data . Thus we need to estimate the sumdiff of an aggregation query (i.e., R query) given the193
sumdiff values of individual data items (i.e., R p and R q). Only data aggregators are in position to calculate R194
query as different data items may be from different sources.195

8 III.196

9 QUERY COST MODEL197

For getting an estimation of the query dissemination cost what we need is R query whereas we know R p and R198
q (in Equation (6) and (7). As different data items may be disseminated by different servers, R query can be199
calculated only at data aggregators. If two data items are correlated such that if value of one data item increases200
other also increases, then R query will be closer R data ; whereas if the data items are inversely correlated then201
R query will be much less than R data . Thus, institutively, we can represent the relationship between R query202
and sumdiff of individual data items involved using a correlation measure between data items. Specifically, if ?203
is the correlation measure then R query can be written as:204

()2 2 2 2 2 2 p p q q p p q q query R w R w R w R w R ? ? + +(8)205
The correlation measure is defined such that-1??? +1, so, Rquery will always be less than |w p R p +w q206

R q | (as explained earlier) and always be more than |w p R p ? w q R q |. R data = w p R p + w q R q207
=w p ?| pi -p i-1 | +w q ?| q i ?q i-1 | R query =?|w p (p i ?p i-1)+w q (q i ?q i-1)| by data items P and208
Q. Cosine similarity is a widely used measure in information retrieval domain where documents are represented209
using a vector-space model and document similarity is measured using cosine of angle between two document210
representations. For data streams P and Q, ?? can be calculated as: (9) a) Executing queries using sub queries211
For executing an incoherency bounded continuous query, a query plan is required which includes the set of sub-212
queries, their individual incoherency bounds and data aggregators which can execute these sub-queries. We need213
to find the optimal query execution plan which satisfies client coherency requirement with the least number of214
refreshes. What we need is a mechanism to: While satisfying the following conditions identified in Section 1.2:215
Condition 1. Query incoherency bound is satisfied.216

Condition 2. The chosen DA should be able to provide all the data items appearing in the sub-query assigned217
to it. Condition 3. Data incoherency bounds at the chosen DA should be such that the sub-query incoherency218
bound can be satisfied at the chosen DA. Objective: Number of refreshes should be minimized.219

4

10 b) Minimum Cost220

Figure 2 shows the outline of greedy heuristics where different criteria (?) can be used to select subqueries. In221
this section we describe the case where the estimate of query execution cost is minimized in each step of the222
algorithm (min-cost) whereas in the next section we present the case where gain due to executing a query using223
sub-queries is maximized (maxgain).224

11 c) Query Plan with Pre-decided Incoherency Bound Alloca-225

tion226

For the given client query (q) and mapping between data aggregators and the corresponding {data-item, data227
incoherency bound } pairs (f : D?(S, C)) maximal sub-queries can be obtained for each data aggregator. Let A228
be the set of such maximal sub queries. In this set, each query a ? A can be disseminated by a designated data229
aggregator at the assigned incoherency bound. For each sub-query a ?A, its sumdiff Ra is calculated. Using the230
set A and sub-query sumdiffs, we use the algorithm outlined in Figure 2 to get the set of sub-queries minimizing231
the query cost.232

12 In this Figure each sub-query a ? A is represented by233

the set of data items covered by it. As we need to minimize the query cost, a sub-query with minimum cost per234
data item is chosen in each iteration of the algorithm i.e., criteria ? ? minimize (Ra/Ca 2 |a|).235

All data items covered by the selected sub query are removed from all the remaining sub-queries in A before236
performing the next iteration.237

13 Algorithm:238

Result The decision is taken based on client query information. The greedy method is the most straight forward239
method. It is popular for obtaining the optimized solutions. In the greedy method there are some important240
activities. (a) A selection of solution from the given input domain is performed. (b). The feasibility of the241
solution is performed and then all the feasible solutions are obtained. (c) From the set of feasible solutions, the242
particular solution that minimizes or maximizes the given objective function is obtained. Such a solution is called243
optimal solution. For an algorithm that uses greedy method works in stages. At each stage only one input is244
considered at a time. Based on this input it is decided whether particular input gives the optimal solution or245
not.246

14 d) Maximum Gain247

In this section we present an algorithm which, instead of minimizing the estimated query execution cost,248
maximizes the estimated gains of executing client query using sub-queries. In this algorithm, for each subquery,249
we calculate the relative gain of executing it by finding the sumdiff difference between cases when each data250
item is obtained separately and when all the data items are aggregated as a single sub-query. (i.e., maximal251
sub-query).252

15 IV.253

16 Related work254

We divide the related work on scalable answering of aggregation queries over a network of data aggregators in to255
two interrelated topics.(D D D D) E 2012 Year ? ?? ? ? ? ? ? 1 1 1 1 2 2 i i i i i i i i p p q q p p q q ? ? ? ? ?256
? ? ? ? ? ? ? ? a)257

17 Answering Incoherency bounded aggregation queries258

Various mechanism for efficiently answering incoherency bounded aggregation queries over continuously changing259
data items are proposed in the literature [3,4,9]. i.e., in this thesis, to develop and evaluate client-pull-based260
techniques for refreshing data so that the results of the queries over distributed data can be correctly reported,261
conforming to the limited incoherency acceptable to the users. Here considered the problem of answering queries262
for online decision making at web data aggregators.263

Our work distinguishes itself by employing subquery based evaluation to minimize number of refreshes.264
Pull based data dissemination techniques, where client or data aggregators pull data items such that query265
requirements are met, are described in [3]. For minimizing the number of pulls, both predict data values and266
pull instances. In comparison, we use push based mechanism to refresh sub-query values at the client. In [4],267
authors propose push based scheme using data filters at the sources. i.e., distributed data sources continuously268
stream updates to a centralized processor that monitors continuous queries over the distributed data. Based on269
we specified a new approach for reducing communication cost in an environment of centralized continuous query270
processing over distributed data streams.271

5

18 B) CONSTRUCTION AND MAINTENANCE OF NETWORK OF DATA
AGGREGATORS

This approach hinges on specifying precision constraints for continuous queries, which are used to generate272
adaptive filters at remote data sources that significantly reduce update stream rates while still guaranteeing273
sufficient precision of query results at all times. And enables users or applications to trade precision for lower274
communication cost at a fine granularity by individually adjusting precision constraints of continuous queries.275
Imprecision of query results is bounded numerically so applications need not deal with any uncertainty. To276
validate our approach we performed a number of experiments using simulations and a real network monitoring277
implementation approach in achieving low communication overhead. According to that work can an aggregation278
query, the number of refresh messages can be minimized by performing incoherency bound allocation to individual279
data items such that the number of messages from different data sources is the same. Instead we execute more280
dynamic assigning incoherency bounds. And minimizing the total number of messages send by DAs. Like us281
,authors of [9],also assume that dissemination tree from sensor node[data source] to root[client]already exist; and282
they also install error filters on partial aggregates (similar to in coherency bound assign to sub queries) but, in283
our work each data aggregator can only discriminates data at some pre-specified incoherency bound depending284
on its capability where as such a constraints does not exist for [9].further, we also be give method to select partial285
aggregates (sub queries)to be used to answering the query.286

Authors propose using data filters at the sources; instead we assign incoherency bounds to subqueries which287
reduce the number of refreshes for query evaluation, Further, we propose that more dynamic data items should288
be executed as part of larger sub-query. In [8], i.e., here discuss various techniques of reorganizing a data289
dissemination network when client requirements change. Instead, we try to answer the client query using the290
existing network. Reorganizing aggregators is a longer term activity whereas query planning can be done for291
short as well as long running queries on more dynamic basis.292

Like us, author of [9] also assume that dissemination tree from sensor nodes (data-sources) to root (clients)293
already exists. In-network data aggregation has been recently proposed as an effective means to reduce the294
number of messages exchanged in wireless sensor networks. Nodes of the network form an aggregation tree,295
in which parent nodes aggregate the values received from their children and propagate the result to their own296
parents. However, this schema provides little flexibility for the end-user to control the operation of the nodes297
in a data sensitive manner. For large sensor networks with severe energy constraints, the reduction (in the298
number of messages exchanged) obtained through the aggregation tree might not be sufficient. In this thesis299
we present new algorithms for obtaining approximate aggregate statistics from large sensor networks. The user300
specifies the maximum error that he is willing to tolerate and, in turn, our algorithms program the nodes in a301
way that seeks to minimize the number of messages exchanged in the network, while always guaranteeing that302
the produced estimate lies within the specified error from the exact answer. And they also install error filters303
on partial aggregates. But in our work, each data aggregators can only disseminate data some pre-specified304
incoherency bound depending on its capability whereas such a constraint does not exist for [9]. Further, we also305
give a method to select partial aggregates (sub queries) to be used for answering the query. In [12] Pull based306
data dissemination techniques, where clients or data aggregators pull data items such that query requirements307
are met, are described in [3]. i.e., we develop and evaluate client-pull-based techniques for refreshing data so that308
the results of the queries over distributed data can be correctly reported, conforming to the limited incoherency309
acceptable to the users. For minimizing the number of pulls, both model the individual data items and predict310
data values. In comparison, we consider the situation where different sub-queries, involving multiple data items,311
can be evaluated at different nodes. Further, incoherency bound is applied over the sub-query rather than to312
Spatial and temporal correlations between sensor data are used to reduce data refresh instances in [5,6]. We also313
consider correlation in terms of cosine similarity between data items, but we use it for dividing client query into314
sub-queries.315

18 b) Construction and maintenance of network of data aggre-316

gators317

Authors of [1,2,8] describe Construction and maintenance of hierarchical network of data aggregators for providing318
scalability and fidelity in disseminating dynamic data items to large number of clients.. In these works, fidelity is319
defined as fraction of time when the client coherence requirements are met. Each data aggregators is given client320
requirements in the form of data items and their respective incoherency bounds. Instead we use such networks321
for efficiently answering client’s aggregation queries.322

One can use client queries to optimally construct a network of data aggregators while, on the other hand, one323
can also use a given network of aggregators to efficiently answer client queries. Authors of [1,2,8] deal with the324
first part where as we have studied the second part. Changes in data dynamics may lead to reorganization of the325
network of data aggregators which, in turn necessitate changes in query plans. Whereas query plan can change326
more often depending on data dynamics.327

Instead of optimizing fidelity of data items at data aggregators, as proposed in [2], using our work, one can328
optimize fidelity all the way up to client queries. Fidelity of a data item can be approximately calculated as329
number of dissemination messages multiplied by the total delay in the message transmission. Author of [2] assume330
that each client’s requirements are fulfilled by a single data aggregator. But in case of data aggregators may331
need to disseminate a large number of data items which will lead to processing large number of refresh messages,332

6

hence increase in delay. Thus , each client getting all its data items from a single data aggregators(using a single333
sub-query) is optimal from number of messages point of view but not necessarily from the query fidelity point334
of view. By using our work, one can model expected number of messages for client query. Thus, our work can335
complement the of [2] for end-to-end (source-to-client) fidelity optimization.336

V.337

19 Conclusion and future work338

In this literature presents a cost based approach to minimize the number of refreshes required to execute an339
incoherency bounded continuous query. For optimal execution we divide the query into subqueries and evaluate340
each sub-query at a chosen aggregator. Performance results show that by our method the query can be executed341
using less than one third the messages required for existing schemes.342

Further we showed that by executing queries such that more dynamic data items are part of a larger sub-query343
we can improve performance. Our query cost model can also be used for other purposes such as load balancing344
various aggregators, optimal query execution plan at an aggregator node, etc.345

Developing efficient strategies for multiple invocations of our algorithm, considering hierarchy of data346
aggregators. Another area for future research is changing a query plan as data dynamics changes. Another347
area of our future work is using the cost model for these applications and developing the cost model for more348
complex queries.

Figure 1:
349

7

19 CONCLUSION AND FUTURE WORK

8

[NEFSC Scientific Computer System] , http://sole.wh.whoi.edu/jmanning//cruise/serve1et.cgi350
NEFSC Scientific Computer System351

[Pearson Product moment correlation coefficient] , http://www.nyx.net/~tmacfarl/STAT_TUT/352
correlat.ssi/ Pearson Product moment correlation coefficient353

[Fei ()] A Novel Approach to Managing Consistency in Content Distribution, Zongming Fei . 2001. WCW.354

[Olston et al. ()] Adaptive Filter for Continuous Queries over Distributed Data Streams, C Olston , J Jiang , J355
Widom . 2003.356

[Hochbaum ()] ‘Approximation algorithms for the set covering and vertex cover problems’. D S Hochbaum .357
SIAM Journal on Computing 1982. 11 (3) .358

[Shah et al. ()] Client Assignment in Content Dissemination Networks for Dynamic Data, S Shah , K Ramam-359
ritham , C Ravishankar . 2005.360

[Agrawal et al. ()] Construction of a Temporal Coherency Preserving Dynamic Data Dissemination networks, S361
Agrawal , K Ramamritham , S Shah . 2004. (RTSS)362

[Davis et al. ()] Edge Computing: Extending Enterprise Applications to the Edge of the Internet, A Davis , J363
Parikh , W Weihl . 2004. WWW.364

[Gupta et al. ()] Executing Incoherency Bounded Continuous Queries at Web Data Aggregators, R Gupta , A365
Puri , K Ramamritham . 2005. WWW.366

[Dilley et al. (2002)] ‘Globally Distributed Content Delivery’. J Dilley , B Maggs , J Parikh , H Prokop , R367
Sitaraman , B Weihl . IEEE Internet Computing Sept 2002.368

[Shah et al. ()] Maintaining Coherency of Dynamic Data in Cooperating Repositories, S Shah , K Ramamritham369
, P Shenoy . 2002.370

[Optimized Execution of Continuous Queries, APS2006] Optimized Execution of Continuous Queries, APS2006,371
www.cse.iitb.ac.in/~grajeev/APS06.PDF372

[Guptha and Ramamritham ()] Optimized Query Planning of Continuous Aggregation Queries in Dynamic Data373
Dissemination Networks, R Guptha , K Ramamritham . 2007. WWW.374

[Vander Meer et al. (2004)] ‘Proxy-Based Acceleration of Dynamically Generated Content on the World Wide375
Web’. D Vander Meer , A Datta , K Dutta , H Thomas , K Ramamritham . ACM Transactions on Database376
Systems (TODS June 2004. 29.377

[Query cost model validation for sensor data] Query cost model validation for sensor data, www.cse.iitb.ac.378
in/~ravivj/BTP06.pdf379

[Guptha and Ramamritham] Query Planning for Continuous Aggregation Queries over a network of Data380
Aggregators, R Guptha , K Ramamritham . IEEE 2011.381

[Rangarajan et al. ()] ‘User Specific Request Redirection in a Content Delivery Year Network, 8th Intl’. S382
Rangarajan , S Mukerjee , P Rodriguez . Workshop on Web Content Caching and Distribution (IWCW),383
2003.384

9

http://sole.wh.whoi.edu/jmanning//cruise/serve1et.cgi
http://www.nyx.net/~tmacfarl/STAT_TUT/correlat.ssi/
http://www.nyx.net/~tmacfarl/STAT_TUT/correlat.ssi/
http://www.nyx.net/~tmacfarl/STAT_TUT/correlat.ssi/
www.cse.iitb.ac.in/~grajeev/APS06.PDF
www.cse.iitb.ac.in/~ravivj/BTP06.pdf
www.cse.iitb.ac.in/~ravivj/BTP06.pdf
www.cse.iitb.ac.in/~ravivj/BTP06.pdf

	1 INTRODUCTION
	2 Sources
	3 a) Problem Statement and Contributions
	4 b) Summary of Distributed Execution approach
	5 II.
	6 DATA DISSEMINATION COST MODEL
	7 a) Incoherency bound model
	8 III.
	9 QUERY COST MODEL
	10 b) Minimum Cost
	11 c) Query Plan with Pre-decided Incoherency Bound Allocation
	12 In this Figure each sub-query a ? A is represented by
	13 Algorithm:
	14 d) Maximum Gain
	15 IV.
	16 Related work
	17 Answering Incoherency bounded aggregation queries
	18 b) Construction and maintenance of network of data aggregators
	19 Conclusion and future work

