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Abstract6

A straight line drawing of a planar graph is called a convex drawing if the boundaries of all7

faces of that graph are drawn as convex polygon. A graph is planar if it has at least one8

embedding in the plane such that no two edges intersect at any point except at their common9

end vertex. Not all planar graphs have convex drawing. In this thesis, we study the10

characteristics of convex drawing of a planar graph. We develop a method for examining11

whether a face is drawn as a convex polygon or not.Finally, using that method we develop a12

linear algorithm for examining whether a planar graph has a convex drawing or not.13

14

Index terms— Planar graph, convex drawing, linear algorithm.15

1 Introduction16

ome planar graphs can be drawn in such a way that each edge is drawn as a straight line segment and each face17
is drawn as a convex polygon, as illustrated in Figure ??.1. Such a drawing is called a convex drawing. The18
drawings in Figs. 3.2 are not convex drawings.19

Although not every planar graph has a convex drawing, Tutte showed that every 3-connected planar graph has20
a convex drawing, and obtained a necessary and sufficient condition for a plane graph to have a convex drawing21
[5]. Furthermore, he gave a ”barycentric mapping” method for finding a convex drawing of a plane graph, which22
requires solving a system of O(n) linear equations [6]. The system of equations can be solved either in O(n3) time23
and O(n2) space using the ordinary Gaussian elimination method, or in O(n1.5) time and O(n log n) space using24
the sparse Gaussian elimination method [LRT79]. Thus the barycentric mapping method leads to an O(n1.5 )25
time convex drawing algorithm for planar graphs. In this chapter we first give a lemma for a face is drawn as26
convex polygon or not. Then using that lemma finally we device a linear time algorithm to examine whether a27
planar graph has convex drawing or not.28

2 Definition29

By extensively examining the characteristics of convex drawing of a planar graph we derive a lemma for examining30
whether a planar graph has convex drawing or not. Before introducing the lemma we need to define some terms.31
If G is a planar graph, then any plane drawing of G divides the plane into regions, called faces ??9]. That is, a32
face is an area bounded by the edges .One of these faces is unbounded, and is called the infinite face. If f is any33
face, then the degree of f (denoted by deg f) is the number of edges encountered in a walk around the boundary of34
the face f. If all faces have the same degree (g, say), the G is face-regular of degree g. For example, the following35
graph G depicts in Figure ??.4 has six faces, f6 being the infinite face. It is easy to see from above graph that36
degf 1 =3, deg f 2 =4, deg f 3 =3, deg f 4 =7, f 5 =437

. Note that the sum of all the degrees of the faces is equal to twice the number of edges in the graph, since38
each edge either borders two different faces (such as bg , cd, and cf) or occurs twice when walk around a single39
face (such as ab and gh). The Euler’s formula relates the number of vertices, edges and faces of a planar graph.40
If n, m, and f denote the number of vertices, edges, and faces respectively of a connected planar graph, then we41
get n-m+f = 2.The Euler formula tells us that all plane drawings of a connected planar graph have the same42
number of faces namely, 2+m-n.43
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5 CONCLUSIONS

3 III.44

Theorem (Euler’s Formula) Let G be a connected planar graph, and let n, m and f denote, respectively, the45
numbers of vertices, edges, and faces in a plane drawing of G. Then n-m + f = 2.46

Proof We employ mathematical induction on edges, m. The induction is obvious for m=0 since in this case47
n=1 and f=1. Assume that the result is true for all connected plane graphs with fewer than m edges, where m is48
greater than or equal to 1, and suppose that G has m edges. If G is a tree, then n=m+1 and f=1 so the desired49
formula follows. On the other hand, if G is not a tree, let e be a cycle edge of G and consider G-e. ? Every50
internal angle is less than 180 degrees.51

? Every line segment between two vertices remains inside or on the boundary of the polygon.52
A simple polygon is strictly convex if every internal angle is strictly less than 180 degrees. A face is drawn as53

convex polygon if and only if the cross products of adjacent edges of each vertex of that face are same sign.54

4 Proof55

Let, a face is assumed to be described by N vertices ordered by, v 0 (x 0 , y 0 ), v 1 (x 1 , y 1 ), v 2 (x 2 , y56
2 ), . . . v n-1 (x n-1 , y n-1 ) Figure ??.6 (a) and (b) depicts a face in clockwise and anti-clockwise vertex57
ordering respectively. A simple test of vertex ordering for examining a face is drawn as convex polygon is based58
on considerations of the cross product between adjacent edges of each vertex of that face. If the cross product is59
positive then it rises above the plane (z axis up out of the plane) and if negative then the cross product is into60
the plane. cross product = ((x i -x i-1 ), (y i -y i-1 )) x ( ( x i+1 -x i ),(y i+1 -y i ) ) = ( x i -x i-1 ) * ( y i+1 -y61
i ) -( y i -y i-1 ) * ( x i+1 -x i ) A non-convex face has mixture of cross products sign of adjacent edges of each62
vertex of that face. Hence, a face is drawn as convex polygon if and only if the cross products of adjacent edges63
of each vertex of that face are same sign.64

[Proved] ( D D D D ) F 2012 Year v0(x0, y0) v1(x1, y1) v2(x2, y2) v3(x3, y3) v3(x3, y3) v0(x0, y0)65
v1(x1, y1) v2(x2, y2) - - - - ++ + + z z y x x y v0(x0, y0) v1(x1, y1) v2(x2, y2) v3(x3, y3) v4(x4, y4) v5(x5,66
y5) v0(x0, y0) v1(x1, y1) v2(x2, y2) v3(x3, y3) v4(x4, y4) v5(x5, y5) - - - - - + +67

5 Conclusions68

In this thesis we have studied the convex drawing of a planar graph. Not every planar graph has convex drawing.69
The results of this thesis are summarized as follows: ? We have derived a method for determining whether a70
face is drawn as convex polygon or not. ? Finally, using that method we develop a linear time algorithm for71
examining whether a planar graph has a convex drawing or not. Some interesting directions in which the future72
research works can be done are as follows: 1

1112

Figure 1: Figure 1 . 1 :Figure 1 . 2 :

2



1© 2012 Global Journals Inc. (US)Global Journal of Computer Science and Technology

3



5 CONCLUSIONS

Begin
Step 1: Check input planar graph has curved edges.

if (curved edges)
then replace curved edges by straightline edges.
else
go to step 2.
end if

2012
Year

Step 2:
Step 3.

3(a): if ( cross product C j = 0)

then go to step 5.
else
go to step 3(b).
end if.
3(b): if (j=0)
then increment j by 1.
else
check cross product C j and C j-1 are same sign.

D
D
D
D
)
F

if (cross product C j and C j-1 are same sign) then increment j by 1. else

( go to step 5.
end if
end if
end do
end for.

go to step 4.
Step 4:
End

? We develop a linear time
algorithm for examining
whether a planar graph has a
convex drawing or
not. One can develop an algo-
rithm for converting
non-convex drawing of a pla-
nar graph to convex
drawing.
? One can develop a convex
grid drawing of a planar
graph on an (n-2) x (n-2) grid.

Figure 2:
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