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A Survey of Techniques for Answering Top-k 
Queries 

Neethu C V α & Rejimol Robinson R R σ 

Abstract - Top-k queries are useful in retrieving top-k records 
from a given set of records depending on the value of a 
function F on their attributes. Many techniques have been 
proposed in database literature for answering top-k queries. 
These are mainly categorized into three: Sorted-list based, 
layer based and View based. In first category, records are 
sorted along   each dimension and then assigned a rank to 
each of the records using parallel scanning method. 
Threshold   Algorithm (TA)   and   Fagin’s Algorithm (FA) are 
the examples of sorted-list based category. Second category 
is layer based category, in which all the records are organized 
into layers such as in onion technique and robust indexing 
technique. Third category includes methods such as PREFER   
and   LPTA (Linear   Programming   Adaptation   of Threshold   
Algorithm)   and   processing   is   based   on   the 
materialized views. 
Keywords : monotone functions, prefer, linearly 
optimally ordered set, convex hull. 

I. Introduction 

op-k queries are intended for retrieving top-k 
records from the database which  are  subjected  
to  minimization  or maximization  of  the  function  

F  on  the  attributes  of  the relation. This kind of 
queries appears frequently in many applications such 
as college ranking, job ranking etc. Due to the 
popularity  of  top-k  queries,  many  techniques  have  
been proposed  which  are  mainly includes  sorted-list  
based, layer based and view based techniques. 

a) Sorted-list based 
Methods in this category sorts all records along 

each dimension and then assigned an overall grade to 
each of the records based on the sorted lists. For 
example, consider the example of college ranking. A 
student wants to join a college for doing graduation and 
he has some preferences based on the attributes like 
distance to the college, tuition fee and university under 
which college is working, performance of the college for 
previous four years etc. He then assigns grades to each 
of the attributes and sorted lists are created   based on 
this assignment corresponding to each of the attributes. 
Then a list of colleges has retrieved based on their 
value for the query function. Here, the query function is 
a linear function in terms of the attributes of the records. 
FA and TA [1], [2], [3] are the two techniques included 
in this category. 
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b) Layer Based Category 
The algorithms in this category organize all 

records into consecutive layers, such as Onion [4] and 
Robust Indexing Techniques [5]. The organization 
strategy is based on the common property among the 
records, such as the same convex hull layer in Onion 
[4]. Any top-k query can be answered by up to k layers 
of records. The Onion indexing is based on a geometric 
property of convex hull, which guarantees that the 
optimal value can always be found at one or more of its 
vertices. 

The Onion indexing makes use of this property 
to construct convex hulls in layers with outer layers 
enclosing inner layers geometrically. A data record is 
indexed by its layer number or equivalently its depth in 
the layered convex hull. Queries with linear weightings 
issued at run time are evaluated from the outmost layer 
inwards. Onion indexing achieves orders of magnitude 
speedup against sequential linear scan when N is small 
compared to the cardinality of the set. The Onion 
technique also enables progressive retrieval, which 
processes and returns ranked results in a progressive 
manner. Furthermore, the proposed indexing can be 
extended into a hierarchical organization of data to 
accommodate both global and local queries. 

Robust indexing [5] method is a kind layered 
technique for answering ranked queries. The layered 
indexing methods are less sensitive to the query 
weights.  A key observation is that it may be beneficial 
to push a tuple as deeply as possible so that it has less 
chance to be touched in query execution. Motivated by 
this, a new criterion for sequentially layered indexing 
had been proposed: for any k, the number of tuples in 
top k layers is minimal in comparison with all the other 
layered alternatives. Since any top-k query can be 
answered by at most k layers, this proposal aims at 
minimizing the worst case performance on any top-k 
queries. Hence the proposed index is robust. While 
Onion and other layered techniques are sensitive to the 
query weights, this method, even though not optimal in 
some cases, has the best expected performance. 
Another appealing advantage of our proposal is that the 
top-k query processing can be seamlessly integrated 
into current commercial databases. Both Onion and 
other layered methods require the advanced query 
execution algorithms, which are not supported by many 
database query engines so far. 
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Figure 1 : Classification of Top-k query evaluation 
techniques 

c) View based category 
In view based techniques, the materialized 

views created from the relation can be used to answer 
top-k queries. PREFER [6] answers preference queries 
efficiently by using materialized   views   that   have   
been   preprocessed   and stored. Queries with different 
weights will be first mapped to the pre-computed order 
and then answered by determining the lower bound 
value on that order. When the query weights are close 
to the pre-computed weights, the query can be 
answered extremely fast. Unfortunately, this method is 
very sensitive to weighting parameters. A reasonable 
derivation of the query weights (from the pre-computed 
weights) may severely deteriorate the query 
performance. PREFER is a layer on top of commercial 
relational databases and allows the efficient evaluation   
of multi parametric ranked queries. LPTA [7]   is a linear 
programming adaptation of the classical TA algorithm 
to solve top-k query problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Example of top-k query processing 

II. Taxonomy of Processing Top-K 
Queries 

Due to the high popularity of the top-k queries, 
various techniques    have    been    proposed    for    

solving  such situations.  Supporting efficient top-k 
query processing in database system is relatively recent 
and active line of research. In the following subsection, 
all the important techniques included in above 
explained categoris have been explored in detail. 

a) Naïve Algorithm 
To determine the top k objects, that is, k 

objects with the highest overall grades, the naive 
algorithm must access every object in the database, to 
find its grade under each attribute. 

Step of the Naïve algorithm [1] are given below. 
• If   (x1, x2,…,xm) are the grades of object R under   

the   m   attributes,   then   compute T(x1,x2,…,xm) 
overall grade of object R. 

• Sort the list of computed values. 
• Return top k rows corresponding to the sorted list. 
 The main disadvantage of the Naïve algorithm 
is the large processing time when dealing with large 
databases.  

b) Fagin’s Algorithm 
Fagin introduced an algorithm (‘‘Fagin’s 

Algorithm [1]’’, or FA), which often does much better 
than the naive algorithm. In  the  case  where  the  
orderings  in  the  sorted  lists  are probabilistically 
independent, FA finds the top k answers, over a 
database with N objects with arbitrarily high probability. 
This algorithm is implemented in Garlic, an experimental 
IBM middleware system. 

• Do sorted access in parallel to each of the m sorted 
lists Li: Wait until there are at least k ‘‘matches’’, 
that is, wait until there is a set of at least k objects 
such that each of these objects has been seen in 
each of the m lists. 

• For each object R that has  been  seen, do random 
access as needed to each of the lists Li to find the 
ith field xi of R: 

• Compute the grade t(R)= t(x1,x2,….xm) for each 
object R that has been seen. Let Y be a set 
containing the k objects that have been seen with 
the highest grades (ties are broken arbitrarily). The 
output is then the graded set {(R, t(R)) | R€Y}. 

Fagin shows that his algorithm is optimal with 
high probability in the worst case if the aggregation 
function is strict (so that, intuitively, we are dealing with 
a notion of conjunction), and if the orderings in the 
sorted lists are probabilistically independent. In fact, the 
access pattern of FA is oblivious to the choice of 
aggregation function, and so for each fixed database, 
the middleware cost of FA is exactly the same no matter 
what the aggregation function is. This is true even  for  a  
constant  aggregation  function;  in  this  case,  of 
course, there is a trivial algorithm that gives us the top k 
answers (any k objects will do) with O(1) middleware 
cost. So FA is not optimal in any sense for some 
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monotone aggregation functions  t:  As  a  more  
interesting  example,  when  the aggregation function is 
max (which is not strict), it is shown in that there is a 
simple algorithm that makes at most m*k sorted 
accesses and no random accesses that finds the top k 
answers. By contrast, the algorithm TA is instance 
optimal for every monotone aggregation function, under 
very weak assumptions. 

III. Threshold Algorithm 

Even in the cases where FA is optimal, this 
optimality holds only in the worst case, with high 
probability. This leaves open the possibility that there 
are some algorithms that have much better middleware 
cost than FA over certain databases. The algorithm TA, 
which we now discuss, is such an algorithm. 
• Do sorted access in parallel to each of the m sorted 

lists Li: As an object R is seen under sorted access 
in some list, do random accesses to the other lists 
to find the grade xi of object R in every list Li. 

• Then compute the grade t(R) =t(x1,x2,…xm) of 
object R: If this grade is one of the k highest we 
have seen, then remember object R and its grade 
t(R).  

• For each list Li, let xi be the grade of the last object 
seen under sorted access. Define the threshold 
value ψ to be t(x1, x2,….,xm). As soon as at least k 
objects have been seen whose grade is at least 
equal to ψ then halt. 

• Let Y be a set containing the k objects that have 
been seen with the highest grades. The output is 
then the graded set {(R, t(R)) | R€Y}. 

The   algorithm   scans   multiple   lists,   
representing different rankings of the same set of 
objects. An upper bound T is maintained for the overall 
score of unseen objects. The upper bound is computed 
by applying the scoring function to the partial scores of 
the last seen objects in different lists. Notice that the 
last seen objects in different lists could be different. The 
upper bound is updated every time a new object 
appears in one of the lists. The overall score of some 
seen object is computed by applying the scoring 
function to object’s partial scores, obtained from 
different lists. To obtain such partial scores, each newly 
seen object in one of the lists is looked up in all other 
lists, and its scores are aggregated using the scoring 
function to obtain the overall score.  All objects with 
total scores that are greater than or equal to T can be 
reported. The algorithm terminates after returning the 
kth output. Example 1 given below illustrates the 
processing of TA. 

Example 1 (10): Consider two data sources 
containing same set of objects. Let A1 and A2 are the 
attributes in two data sources respectively. The Query 
function, F is defined as F=A1+10*A2. The working of 
TA is depicted in the following figure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the first step, retrieving the top object from 
each list, and probing the value of its other attribute 
value in the other list, results in revealing the exact 
scores for the top objects. The seen objects are 
buffered in the order of their scores. A threshold value, 
T, for the scores of unseen objects is computed by 
applying F to the last seen scores in both lists,  
which results in 70+6*10=130. Since both seen 
objects have scores less than T, no results can be 
reported. In the second step, T drops to 90, and objects 
4 and 2 can be safely reported since its score is above 
T. The algorithm continues until k objects are reported, 
or sources are exhausted. 

IV. Onion Technique 

This technique comes under the layer based 
category and uses a special indexing structure for 
answering top-k queries. The Onion indexing is based 
on a geometric property of convex hull, which 
guarantees that the optimal value can  
always be found at one or more of its vertices. The 
Onion indexing makes use of this property to construct 
convex hulls in   layers   with   outer   layers   enclosing   
inner   layers geometrically. A data record is indexed by 
its layer number or equivalently its depth in the layered 
convex hull. Queries with linear weightings issued at run 
time are evaluated from the outmost layer inwards. 

Basic  idea  of  the  onion  technique  is  that  
partition  the collection  of  d-dimensional  data  points  
into  sets  that  are optimally linearly ordered. This 
property is used to construct convex hulls in layers with 
outer layers enclosing inner layers geometrically. 

Definition 1: Optimally Linearly Ordered Set: A collection 
of  sets{s1,s2,…,sn}are  optimally  linearly  ordered  
sets  if and only if a d-dimensional vector ā,  

Ǝ ō ϵ si
 such that 

for every ĉ
 
ϵ
 
si+j ,j>0, āt

 
ō> āt

 
ĉ
 
where āt

 
ō

 
represents 

the inner product of two vectors.
 

Partitioning a set of data points into optimally 
linearly ordered sets is based on the following theorem. 
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 Theorem 1:  Given a set of records R mapped 
to a d-dimensional space, and a linear maximization 
criterion, the maximum objective value is achieved at 
one or more vertices of the convex hull of R.  

Definition 2 : A set S is convex if whenever two points P 
and Q are inside S, then the whole line segment PQ is 
also in S.  
 
 
 
 
 
 
 
 
 
 
 
Procedure for index creation: 
Step 1: Input a set of records R and iterate the following 
steps until size(R) become less than zero. 
Step 2: Construct convex hull of the data records R. 
Step 3: Store the records of hull vertices in set Vi. 
Step 4: Assign records in set V to layer k. 
Step 5: Set R=R-V and k=k+1. 
 
 
 
 
 
 
 
 
 
 
 
 

This indexing structure can be used for query 
evaluation. Onion indexing achieves orders of 
magnitude speed up against sequential linear scan 
when N is small compared to the cardinality of the set. 
The Onion technique also enables progressive retrieval, 
which processes and returns ranked results in a 
progressive manner.  Furthermore, the proposed 
indexing can be extended into a hierarchical 
organization of data to accommodate both global and 
local queries. 

V. Robust Indexing Structure 

This is an another layered indexing structure 
useful for the evaluation of top-k queries. The idea of 
multi-layer indexing has been also adopted by to 
provide robust indexing [5], [10] for top-k queries. 
Robustness is defined in terms of providing the best 
possible performance in worst case scenario, which is 
fully scanning the first k layers to find the top-k answers. 

The main idea is that if each object Oi is pushed to the 
deepest possible layer, its retrieval can be avoided if it 
is unnecessary. This is accomplished by searching for 
the minimum rank of each object oi in all linear scoring 
functions.  Such rank represents the layer number, 
denoted l*(Oi), where object Oi is pushed to.  For n 
objects having d scoring predicates, computing  the  
exact  layer  numbers  for  all  objects  has  a complexity 
of O(nd log n), which is an overkill when n or d are 
large. Approximation is used to reduce the computation 
cost.  An approximate layer number, denoted l (Oi), is 
computed such that l (Oi) • l*(Oi), which ensures that 
no false positives are produced in the top-k query 
answer. 

VI. Prefer 

This is a view based evaluation of the top-k 
queries. Recent successful work in non-layered 
approaches includes the PREFER system [6],[10], 
where tuples are sorted by a pre-computed linear 
weighting configuration Users often need to optimize 
the selection of objects by appropriately weighting the 
importance of multiple object attributes. Such 
optimization problems appear often in operations 
research and applied mathematics as well as everyday 
life; e.g., a buyer may select a home as a weighted 
function of a number of attributes like its distance from 
office, its price, its area, etc. 

The queries here use a weight function over a 
relation’s attributes to derive a score for each tuple. 
Database systems cannot efficiently produce the top 
results of a preference query because they need to 
evaluate the weight function over all tuples of the 
relation. PREFER [6] answers preference queries 
efficiently by using materialized views that have been 
preprocessed and stored. Queries with different weights 
will be first mapped to the pre-computed order and then 
answered by determining the lower bound value on that 
order. When the query weights are close to the pre-
computed weights,   the   query   can   be   answered   
extremely   fast. Unfortunately, this method is very 
sensitive to weighting parameters. A reasonable 
derivation of the query weights (from the pre-computed 
weights) may severely deteriorate the query 
performance. PREFER is a layer on top of commercial 
relational databases and allows the efficient evaluation    
of multi  parametric  ranked  queries  For  example  
consider  a database containing houses available for 
sale. The properties have attributes such as price, 
number of bedrooms, age, square feet, etc. For a user, 
the price of a property and the square feet area may be 
the most important issues, equally weighted in the final 
choice of a property, and the property’s age may also 
be an important issue, but of lesser weight. The vast 
majority of e-commerce systems available for such 
applications do not help users in answering such 
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queries, as they commonly order according to a single 
attribute. In these cases, preference queries have 
significant role and for PRFER system also. 

VII. LPTA 

Algorithm (LPTA)[7],[10] is another technique 
included in the view based category.It performs much 
better than  
PREFER. 

Problem 1: (Top-K Query Answer Using Views). 
Given a set U of views, and a query Q, obtain an 
answer to Q combining all the information conveyed by 
the views in U. 

Consider a single relation R with m numeric 
attributes X1, X2,….Xm, and n tuples t1, . . . , tn. Let 
Domi = [lbi, ubi] be the domain of the ith attribute. 
Refer to table R as a base table. Each tuple t may be 
viewed as a numeric vector t = (t[1], t[2], . . . , t[m]). 
Each tuple is associated with a tuple-id (tid).Here 
consider top-k ranking queries, which can be expressed 
in SQL-like syntax: SELECT TOP [k] FROM R WHERE 
RangeQ ORDER BY Score Q. More abstractly, a 
ranking query may be expressed as a triple Q = 
(ScoreQ, k, Range Q), where Score Q(t) is a function 
that assigns a numeric score to any tuple t (the function 
does not necessarily involve all attributes of the table), 
and Range Q(t) is a Boolean function that defines a 
selection condition for the tuples of R in the form of a 
conjunction of range restrictions on Domi, i 2 {1, . . . 
,m}. Each range restriction is of the form li ≤ Xi ≤ ui, I ϵ 
{1, . . . ,m} and the interval [li, ui] Domi. The semantics 
requires that  the  system  retrieve  the  k  tuples  with  
the  top  scores satisfying the selection condition.  

LPTA [7]   is a linear programming adaptation 
of the classical TA algorithm to solve Problem 1.1 for 
the special case when views and queries are of the 
form V 0 = (Score V 0, n, *) and Q = (Score Q, k, *) 
respectively. Consider a relation with attributes X1, X2 
and X3 as shown in Figure 1.3.2.1. Let views V1 and V2 
have scoring functions f1, f2 respectively as shown in 
Figure 1.3.2.1 and consider a query Q = (f3, k, *).  

The algorithm initializes the top-k buffer to 
empty. It then starts retrieving the tids from the views 
V1, V2 in a lock-step fashion, in the order of decreasing 
score (w.r.t. the view’s scoring functions). For each tid 
read, the algorithm retrieves the corresponding tuple by 
random access on R, computes its score according to 
the query’s scoring function f3, updates the top-k buffer 
to contain the top-k largest scores (according to the 
query’s  scoring function), and checks  for the stopping 
condition as follows: After the dth iteration, let the last 
tuple read from view V1 be (tidd1, sd1) and from view 
V2 be (tidd2, sd2). Let the minimum score in the top-k 
buffer be topkmin. At this stage, the unseen tuples in 
the view have to satisfy the following inequalities (the 
domain of each attribute of R of Figure is [1, 100]). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3 :

 

Example of views

 The following system of inequalities defines a

 
Convex

 

region in three dimensional space.

 
 

 
 
 

 
This system of inequalities defines a convex 

region in three dimensional space. Let unseenmax be 
the solution to the linear program where we maximize 
the function f3 = 3X1 + 10X2 + 5X3 subject to these 
inequalities. It is easy to see that unseenmax represents 
the maximum possible score (with respect to the 
ranking query’s scoring function) of any tuple not yet 
visited in the views. The algorithm terminates when the 
top-k buffer is full and unseenmax ≤ topkmin. 
Considering the example of given figure, the algorithm 
will proceed as follows; 

First retrieve tid and conduct a random access 
to R to retrieve the full tuple and tid 6 from V2 accessing 
R again. The top-2 buffer contains the following pairs 
(tiddi, sdi) {(7, 1248), (6, 996)}. The solution to the 
linear program with s1q= 527 and s2d = 219 yields an 
unseenmax =1338 > topkmax = 1248 and the 
algorithm conducts one more iteration.This time we 
access tid 6 from V1 and tid 4 from V2. The top-2 buffer 
remains unchanged and the linear program is solved 
one more time using sd1 = 299 and sd 2 = 202. This 
time, unseen max= 953.5 < topkmax = 1248 and the 
algorithm terminates. Thus, in total LPTA conducts two 
sequential and two random accesses per view. In 
contrast, the TA algorithm executed on R of Figure 1 will 
identify the correct top-2 results after 12 sorted and 12 
random accesses in total.  The performance advantage 
of LPTA is evident. 
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VIII. Comparison of Different 
Techniques 

This   section   includes   comparison   of   
different techniques employed in the top-k query 
evaluation.  The comparison is performed based on the 
three important criteria which are ranking function, 
ranking model and data access operation involved in 
the different techniques. The ranking function can be 
generic or monotone. Most of the current top 
processing  techniques  assume  monotone  ranking  
functions since they fit in many practical scenarios, and 
have appealing properties allowing for efficient top-k 
processing. But Few recent  techniques  address  top-k  
queries  in  the  context  of constrained function 
optimization. The ranking function in this case is 
allowed to take a generic form.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 Another criteria is ranking model. It can be top-

k join or top-k selection.  In top-k selection model, the 

scores are assumed to be attached to base tuples. A 
top-k selection query is required to report the k tuples 
with the highest scores. Scores might not be readily 
available since they could be the outcome  of  some  
user-de  Consider  a  set  of  relations  R1 ,….,Rn. A 
top-k join query joins R1,…,Rn, and returns the k join 
results with the largest combined scores. The combined  
score  of  each  join  result  is  computed  according  to  
some function F(p1,…., pm), where p1,….,pm are 
scoring predicates defined  over  the  join  results. 
Fined scoring function that aggregates information 
coming from different tuple attributes. Third criteria is 
data access which can be sorted access or random 
access. In sorted access, Object R has the lth highest 
grade in the ith list, then l sorted accesses to the ith list 
are required to see the grade under sorted access and 
in random access,  grade  of object  R  in  the ith  list  
obtains it in  one random access. 

IX. Conclusion 

A surevey of top-k query processing techniques 
based on the different criterias have done. For this 
purpose, a detailed analysis of different techniques 
included in three important categories like sorted-list 
based category, layer based category and view based 
category have explored. 
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Algorithm LPTA(U,Q)
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d, si
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     Let ti
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Remove min score tuple from     

topk-Buffer
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end if

// Checking stopping conditions by solving LP
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     Scorevj ≤sj
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end if
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