
© 2013. Neethu C V & Rejimol Robinson R R. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 2 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Survey of Techniques for Answering Top-k Queries
 By Neethu C V & Rejimol Robinson R R

 CT College of Engineering Trivandrum, India

Abstract - Top-k queries are useful in retrieving top-k records from a given set of records depending
on the value of a function F on their attributes. Many techniques have been proposed in database
literature for answering top-k queries. These are mainly categorized into three: Sorted-list based,
layer based and View based. In first category, records are sorted along each dimension and then
assigned a rank to each of the records using parallel scanning method. Threshold Algorithm (TA) and
Fagin’s Algorithm (FA) are the examples of sorted-list based category. Second category is layer
based category, in which all the records are organized into layers such as in onion technique and
robust indexing technique. Third category includes methods such as PREFER and LPTA (Linear
Programming Adaptation of Threshold Algorithm) and processing is based on the materialized views.

Keywords : monotone functions, prefer, linearly optimally ordered set, convex hull.

GJCST-C Classification : H.2.3

A Survey of Techniques for Answering Top-k Queries

Strictly as per the compliance and regulations of:

A Survey of Techniques for Answering Top-k
Queries

Neethu C V α & Rejimol Robinson R R σ

Abstract - Top-k queries are useful in retrieving top-k records
from a given set of records depending on the value of a
function F on their attributes. Many techniques have been
proposed in database literature for answering top-k queries.
These are mainly categorized into three: Sorted-list based,
layer based and View based. In first category, records are
sorted along each dimension and then assigned a rank to
each of the records using parallel scanning method.
Threshold Algorithm (TA) and Fagin’s Algorithm (FA) are
the examples of sorted-list based category. Second category
is layer based category, in which all the records are organized
into layers such as in onion technique and robust indexing
technique. Third category includes methods such as PREFER
and LPTA (Linear Programming Adaptation of Threshold
Algorithm) and processing is based on the
materialized views.
Keywords : monotone functions, prefer, linearly
optimally ordered set, convex hull.

I. Introduction

op-k queries are intended for retrieving top-k
records from the database which are subjected
to minimization or maximization of the function

F on the attributes of the relation. This kind of
queries appears frequently in many applications such
as college ranking, job ranking etc. Due to the
popularity of top-k queries, many techniques have
been proposed which are mainly includes sorted-list
based, layer based and view based techniques.

a) Sorted-list based
Methods in this category sorts all records along

each dimension and then assigned an overall grade to
each of the records based on the sorted lists. For
example, consider the example of college ranking. A
student wants to join a college for doing graduation and
he has some preferences based on the attributes like
distance to the college, tuition fee and university under
which college is working, performance of the college for
previous four years etc. He then assigns grades to each
of the attributes and sorted lists are created based on
this assignment corresponding to each of the attributes.
Then a list of colleges has retrieved based on their
value for the query function. Here, the query function is
a linear function in terms of the attributes of the records.
FA and TA [1], [2], [3] are the two techniques included
in this category.

Author α : Dept. of Computer Science & Engineering SCT College of
Engineering Trivandrum, India.
E-mail : neethusureshbabu@gmail.com

b) Layer Based Category
The algorithms in this category organize all

records into consecutive layers, such as Onion [4] and
Robust Indexing Techniques [5]. The organization
strategy is based on the common property among the
records, such as the same convex hull layer in Onion
[4]. Any top-k query can be answered by up to k layers
of records. The Onion indexing is based on a geometric
property of convex hull, which guarantees that the
optimal value can always be found at one or more of its
vertices.

The Onion indexing makes use of this property
to construct convex hulls in layers with outer layers
enclosing inner layers geometrically. A data record is
indexed by its layer number or equivalently its depth in
the layered convex hull. Queries with linear weightings
issued at run time are evaluated from the outmost layer
inwards. Onion indexing achieves orders of magnitude
speedup against sequential linear scan when N is small
compared to the cardinality of the set. The Onion
technique also enables progressive retrieval, which
processes and returns ranked results in a progressive
manner. Furthermore, the proposed indexing can be
extended into a hierarchical organization of data to
accommodate both global and local queries.

Robust indexing [5] method is a kind layered
technique for answering ranked queries. The layered
indexing methods are less sensitive to the query
weights. A key observation is that it may be beneficial
to push a tuple as deeply as possible so that it has less
chance to be touched in query execution. Motivated by
this, a new criterion for sequentially layered indexing
had been proposed: for any k, the number of tuples in
top k layers is minimal in comparison with all the other
layered alternatives. Since any top-k query can be
answered by at most k layers, this proposal aims at
minimizing the worst case performance on any top-k
queries. Hence the proposed index is robust. While
Onion and other layered techniques are sensitive to the
query weights, this method, even though not optimal in
some cases, has the best expected performance.
Another appealing advantage of our proposal is that the
top-k query processing can be seamlessly integrated
into current commercial databases. Both Onion and
other layered methods require the advanced query
execution algorithms, which are not supported by many
database query engines so far.

T

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

5

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 1 : Classification of Top-k query evaluation
techniques

c) View based category
In view based techniques, the materialized

views created from the relation can be used to answer
top-k queries. PREFER [6] answers preference queries
efficiently by using materialized views that have
been preprocessed and stored. Queries with different
weights will be first mapped to the pre-computed order
and then answered by determining the lower bound
value on that order. When the query weights are close
to the pre-computed weights, the query can be
answered extremely fast. Unfortunately, this method is
very sensitive to weighting parameters. A reasonable
derivation of the query weights (from the pre-computed
weights) may severely deteriorate the query
performance. PREFER is a layer on top of commercial
relational databases and allows the efficient evaluation
of multi parametric ranked queries. LPTA [7] is a linear
programming adaptation of the classical TA algorithm
to solve top-k query problem.

Figure 2 : Example of top-k query processing

II. Taxonomy of Processing Top-K
Queries

Due to the high popularity of the top-k queries,
various techniques have been proposed for

solving such situations. Supporting efficient top-k
query processing in database system is relatively recent
and active line of research. In the following subsection,
all the important techniques included in above
explained categoris have been explored in detail.

a) Naïve Algorithm
To determine the top k objects, that is, k

objects with the highest overall grades, the naive
algorithm must access every object in the database, to
find its grade under each attribute.

Step of the Naïve algorithm [1] are given below.
• If (x1, x2,…,xm) are the grades of object R under

the m attributes, then compute T(x1,x2,…,xm)
overall grade of object R.

• Sort the list of computed values.
• Return top k rows corresponding to the sorted list.
 The main disadvantage of the Naïve algorithm
is the large processing time when dealing with large
databases.

b) Fagin’s Algorithm
Fagin introduced an algorithm (‘‘Fagin’s

Algorithm [1]’’, or FA), which often does much better
than the naive algorithm. In the case where the
orderings in the sorted lists are probabilistically
independent, FA finds the top k answers, over a
database with N objects with arbitrarily high probability.
This algorithm is implemented in Garlic, an experimental
IBM middleware system.

• Do sorted access in parallel to each of the m sorted
lists Li: Wait until there are at least k ‘‘matches’’,
that is, wait until there is a set of at least k objects
such that each of these objects has been seen in
each of the m lists.

• For each object R that has been seen, do random
access as needed to each of the lists Li to find the
ith field xi of R:

• Compute the grade t(R)= t(x1,x2,….xm) for each
object R that has been seen. Let Y be a set
containing the k objects that have been seen with
the highest grades (ties are broken arbitrarily). The
output is then the graded set {(R, t(R)) | R€Y}.

Fagin shows that his algorithm is optimal with
high probability in the worst case if the aggregation
function is strict (so that, intuitively, we are dealing with
a notion of conjunction), and if the orderings in the
sorted lists are probabilistically independent. In fact, the
access pattern of FA is oblivious to the choice of
aggregation function, and so for each fixed database,
the middleware cost of FA is exactly the same no matter
what the aggregation function is. This is true even for a
constant aggregation function; in this case, of
course, there is a trivial algorithm that gives us the top k
answers (any k objects will do) with O(1) middleware
cost. So FA is not optimal in any sense for some

A Survey of Techniques for Answering Top-k Queries

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

6

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
C

monotone aggregation functions t: As a more
interesting example, when the aggregation function is
max (which is not strict), it is shown in that there is a
simple algorithm that makes at most m*k sorted
accesses and no random accesses that finds the top k
answers. By contrast, the algorithm TA is instance
optimal for every monotone aggregation function, under
very weak assumptions.

III. Threshold Algorithm

Even in the cases where FA is optimal, this
optimality holds only in the worst case, with high
probability. This leaves open the possibility that there
are some algorithms that have much better middleware
cost than FA over certain databases. The algorithm TA,
which we now discuss, is such an algorithm.
• Do sorted access in parallel to each of the m sorted

lists Li: As an object R is seen under sorted access
in some list, do random accesses to the other lists
to find the grade xi of object R in every list Li.

• Then compute the grade t(R) =t(x1,x2,…xm) of
object R: If this grade is one of the k highest we
have seen, then remember object R and its grade
t(R).

• For each list Li, let xi be the grade of the last object
seen under sorted access. Define the threshold
value ψ to be t(x1, x2,….,xm). As soon as at least k
objects have been seen whose grade is at least
equal to ψ then halt.

• Let Y be a set containing the k objects that have
been seen with the highest grades. The output is
then the graded set {(R, t(R)) | R€Y}.

The algorithm scans multiple lists,
representing different rankings of the same set of
objects. An upper bound T is maintained for the overall
score of unseen objects. The upper bound is computed
by applying the scoring function to the partial scores of
the last seen objects in different lists. Notice that the
last seen objects in different lists could be different. The
upper bound is updated every time a new object
appears in one of the lists. The overall score of some
seen object is computed by applying the scoring
function to object’s partial scores, obtained from
different lists. To obtain such partial scores, each newly
seen object in one of the lists is looked up in all other
lists, and its scores are aggregated using the scoring
function to obtain the overall score. All objects with
total scores that are greater than or equal to T can be
reported. The algorithm terminates after returning the
kth output. Example 1 given below illustrates the
processing of TA.

Example 1 (10): Consider two data sources
containing same set of objects. Let A1 and A2 are the
attributes in two data sources respectively. The Query
function, F is defined as F=A1+10*A2. The working of
TA is depicted in the following figure.

In the first step, retrieving the top object from
each list, and probing the value of its other attribute
value in the other list, results in revealing the exact
scores for the top objects. The seen objects are
buffered in the order of their scores. A threshold value,
T, for the scores of unseen objects is computed by
applying F to the last seen scores in both lists,
which results in 70+6*10=130. Since both seen
objects have scores less than T, no results can be
reported. In the second step, T drops to 90, and objects
4 and 2 can be safely reported since its score is above
T. The algorithm continues until k objects are reported,
or sources are exhausted.

IV. Onion Technique

This technique comes under the layer based
category and uses a special indexing structure for
answering top-k queries. The Onion indexing is based
on a geometric property of convex hull, which
guarantees that the optimal value can
always be found at one or more of its vertices. The
Onion indexing makes use of this property to construct
convex hulls in layers with outer layers enclosing
inner layers geometrically. A data record is indexed by
its layer number or equivalently its depth in the layered
convex hull. Queries with linear weightings issued at run
time are evaluated from the outmost layer inwards.

Basic idea of the onion technique is that
partition the collection of d-dimensional data points
into sets that are optimally linearly ordered. This
property is used to construct convex hulls in layers with
outer layers enclosing inner layers geometrically.

Definition 1: Optimally Linearly Ordered Set: A collection
of sets{s1,s2,…,sn}are optimally linearly ordered
sets if and only if a d-dimensional vector ā,

Ǝ ō ϵ si
 such that

for every ĉ

ϵ

si+j ,j>0, āt

ō> āt

ĉ

where āt

ō

represents

the inner product of two vectors.

Partitioning a set of data points into optimally
linearly ordered sets is based on the following theorem.

A Survey of Techniques for Answering Top-k Queries

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

7

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

 Theorem 1: Given a set of records R mapped
to a d-dimensional space, and a linear maximization
criterion, the maximum objective value is achieved at
one or more vertices of the convex hull of R.

Definition 2 : A set S is convex if whenever two points P
and Q are inside S, then the whole line segment PQ is
also in S.

Procedure for index creation:
Step 1: Input a set of records R and iterate the following
steps until size(R) become less than zero.
Step 2: Construct convex hull of the data records R.
Step 3: Store the records of hull vertices in set Vi.
Step 4: Assign records in set V to layer k.
Step 5: Set R=R-V and k=k+1.

This indexing structure can be used for query
evaluation. Onion indexing achieves orders of
magnitude speed up against sequential linear scan
when N is small compared to the cardinality of the set.
The Onion technique also enables progressive retrieval,
which processes and returns ranked results in a
progressive manner. Furthermore, the proposed
indexing can be extended into a hierarchical
organization of data to accommodate both global and
local queries.

V. Robust Indexing Structure

This is an another layered indexing structure
useful for the evaluation of top-k queries. The idea of
multi-layer indexing has been also adopted by to
provide robust indexing [5], [10] for top-k queries.
Robustness is defined in terms of providing the best
possible performance in worst case scenario, which is
fully scanning the first k layers to find the top-k answers.

The main idea is that if each object Oi is pushed to the
deepest possible layer, its retrieval can be avoided if it
is unnecessary. This is accomplished by searching for
the minimum rank of each object oi in all linear scoring
functions. Such rank represents the layer number,
denoted l*(Oi), where object Oi is pushed to. For n
objects having d scoring predicates, computing the
exact layer numbers for all objects has a complexity
of O(nd log n), which is an overkill when n or d are
large. Approximation is used to reduce the computation
cost. An approximate layer number, denoted l (Oi), is
computed such that l (Oi) • l*(Oi), which ensures that
no false positives are produced in the top-k query
answer.

VI. Prefer

This is a view based evaluation of the top-k
queries. Recent successful work in non-layered
approaches includes the PREFER system [6],[10],
where tuples are sorted by a pre-computed linear
weighting configuration Users often need to optimize
the selection of objects by appropriately weighting the
importance of multiple object attributes. Such
optimization problems appear often in operations
research and applied mathematics as well as everyday
life; e.g., a buyer may select a home as a weighted
function of a number of attributes like its distance from
office, its price, its area, etc.

The queries here use a weight function over a
relation’s attributes to derive a score for each tuple.
Database systems cannot efficiently produce the top
results of a preference query because they need to
evaluate the weight function over all tuples of the
relation. PREFER [6] answers preference queries
efficiently by using materialized views that have been
preprocessed and stored. Queries with different weights
will be first mapped to the pre-computed order and then
answered by determining the lower bound value on that
order. When the query weights are close to the pre-
computed weights, the query can be answered
extremely fast. Unfortunately, this method is very
sensitive to weighting parameters. A reasonable
derivation of the query weights (from the pre-computed
weights) may severely deteriorate the query
performance. PREFER is a layer on top of commercial
relational databases and allows the efficient evaluation
of multi parametric ranked queries For example
consider a database containing houses available for
sale. The properties have attributes such as price,
number of bedrooms, age, square feet, etc. For a user,
the price of a property and the square feet area may be
the most important issues, equally weighted in the final
choice of a property, and the property’s age may also
be an important issue, but of lesser weight. The vast
majority of e-commerce systems available for such
applications do not help users in answering such

A Survey of Techniques for Answering Top-k Queries

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

8

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
C

queries, as they commonly order according to a single
attribute. In these cases, preference queries have
significant role and for PRFER system also.

VII. LPTA

Algorithm (LPTA)[7],[10] is another technique
included in the view based category.It performs much
better than
PREFER.

Problem 1: (Top-K Query Answer Using Views).
Given a set U of views, and a query Q, obtain an
answer to Q combining all the information conveyed by
the views in U.

Consider a single relation R with m numeric
attributes X1, X2,….Xm, and n tuples t1, . . . , tn. Let
Domi = [lbi, ubi] be the domain of the ith attribute.
Refer to table R as a base table. Each tuple t may be
viewed as a numeric vector t = (t[1], t[2], . . . , t[m]).
Each tuple is associated with a tuple-id (tid).Here
consider top-k ranking queries, which can be expressed
in SQL-like syntax: SELECT TOP [k] FROM R WHERE
RangeQ ORDER BY Score Q. More abstractly, a
ranking query may be expressed as a triple Q =
(ScoreQ, k, Range Q), where Score Q(t) is a function
that assigns a numeric score to any tuple t (the function
does not necessarily involve all attributes of the table),
and Range Q(t) is a Boolean function that defines a
selection condition for the tuples of R in the form of a
conjunction of range restrictions on Domi, i 2 {1, . . .
,m}. Each range restriction is of the form li ≤ Xi ≤ ui, I ϵ
{1, . . . ,m} and the interval [li, ui] Domi. The semantics
requires that the system retrieve the k tuples with
the top scores satisfying the selection condition.

LPTA [7] is a linear programming adaptation
of the classical TA algorithm to solve Problem 1.1 for
the special case when views and queries are of the
form V 0 = (Score V 0, n, *) and Q = (Score Q, k, *)
respectively. Consider a relation with attributes X1, X2
and X3 as shown in Figure 1.3.2.1. Let views V1 and V2
have scoring functions f1, f2 respectively as shown in
Figure 1.3.2.1 and consider a query Q = (f3, k, *).

The algorithm initializes the top-k buffer to
empty. It then starts retrieving the tids from the views
V1, V2 in a lock-step fashion, in the order of decreasing
score (w.r.t. the view’s scoring functions). For each tid
read, the algorithm retrieves the corresponding tuple by
random access on R, computes its score according to
the query’s scoring function f3, updates the top-k buffer
to contain the top-k largest scores (according to the
query’s scoring function), and checks for the stopping
condition as follows: After the dth iteration, let the last
tuple read from view V1 be (tidd1, sd1) and from view
V2 be (tidd2, sd2). Let the minimum score in the top-k
buffer be topkmin. At this stage, the unseen tuples in
the view have to satisfy the following inequalities (the
domain of each attribute of R of Figure is [1, 100]).

 Figure 3 :

Example of views

 The following system of inequalities defines a

Convex

region in three dimensional space.

This system of inequalities defines a convex

region in three dimensional space. Let unseenmax be
the solution to the linear program where we maximize
the function f3 = 3X1 + 10X2 + 5X3 subject to these
inequalities. It is easy to see that unseenmax represents
the maximum possible score (with respect to the
ranking query’s scoring function) of any tuple not yet
visited in the views. The algorithm terminates when the
top-k buffer is full and unseenmax ≤ topkmin.
Considering the example of given figure, the algorithm
will proceed as follows;

First retrieve tid and conduct a random access
to R to retrieve the full tuple and tid 6 from V2 accessing
R again. The top-2 buffer contains the following pairs
(tiddi, sdi) {(7, 1248), (6, 996)}. The solution to the
linear program with s1q= 527 and s2d = 219 yields an
unseenmax =1338 > topkmax = 1248 and the
algorithm conducts one more iteration.This time we
access tid 6 from V1 and tid 4 from V2. The top-2 buffer
remains unchanged and the linear program is solved
one more time using sd1 = 299 and sd 2 = 202. This
time, unseen max= 953.5 < topkmax = 1248 and the
algorithm terminates. Thus, in total LPTA conducts two
sequential and two random accesses per view. In
contrast, the TA algorithm executed on R of Figure 1 will
identify the correct top-2 results after 12 sorted and 12
random accesses in total. The performance advantage
of LPTA is evident.

A Survey of Techniques for Answering Top-k Queries

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

9

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

(1)
(2)
(3)

VIII. Comparison of Different
Techniques

This section includes comparison of
different techniques employed in the top-k query
evaluation. The comparison is performed based on the
three important criteria which are ranking function,
ranking model and data access operation involved in
the different techniques. The ranking function can be
generic or monotone. Most of the current top
processing techniques assume monotone ranking
functions since they fit in many practical scenarios, and
have appealing properties allowing for efficient top-k
processing. But Few recent techniques address top-k
queries in the context of constrained function
optimization. The ranking function in this case is
allowed to take a generic form.

 Another criteria is ranking model. It can be top-

k join or top-k selection. In top-k selection model, the

scores are assumed to be attached to base tuples. A
top-k selection query is required to report the k tuples
with the highest scores. Scores might not be readily
available since they could be the outcome of some
user-de Consider a set of relations R1 ,….,Rn. A
top-k join query joins R1,…,Rn, and returns the k join
results with the largest combined scores. The combined
score of each join result is computed according to
some function F(p1,…., pm), where p1,….,pm are
scoring predicates defined over the join results.
Fined scoring function that aggregates information
coming from different tuple attributes. Third criteria is
data access which can be sorted access or random
access. In sorted access, Object R has the lth highest
grade in the ith list, then l sorted accesses to the ith list
are required to see the grade under sorted access and
in random access, grade of object R in the ith list
obtains it in one random access.

IX. Conclusion

A surevey of top-k query processing techniques
based on the different criterias have done. For this
purpose, a detailed analysis of different techniques
included in three important categories like sorted-list
based category, layer based category and view based
category have explored.

References Références Referencias

1. R. Fagin, A. Lotem, and M. Naor, “Optimal
Aggregation Algorithms for Middleware,” Proc.
Symp. Principles of Database Systems (PODS),
2001.

2. S. Nepal and M.V. Ramakrishna, “Query
Processing Issues in Image (Multimedia)
Databases,” Proc. 15th Int’l Conf. Data Eng. (ICDE),
1999.

3. U. Guntzer, W.T. Balke, and W. Kiebling,
“Optimizing Multi-Feature Queries for Image
Databases,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), 2000.

4. Y.-C. Chang, L.D. Bergman, V. Castelli, C.S. Li, M.L.
Lo, and J.R. Smith, “The Onion Technique:
Indexing for Linear Optimization Queries,” Proc.
ACM SIGMOD, 2000.

5. D. Xin, C. Chen, and J. Han, “Towards Robust
Indexing for Ranked Queries,” Proc. Int’l Conf. Very
Large Data Bases (VLDB), 2006.

6. Hristidis, N. Koudas, and Y. Papakonstantinou,
“Prefer: A System for the Efficient Execution of Multi
-Parametric Ranked Queries,” Proc. ACM
SIGMOD, 2001.

7. G. Das, D. Gunopulos, N. Koudas, and D.
Tsirogiannis, “Answering Top-K Queries Using
Views,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), 2006.

8. S. Bo¨ rzso¨ nyi, D. Kossmann, and K. Stocker,

A Survey of Techniques for Answering Top-k Queries

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

10

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
C

Algorithm LPTA(U,Q)

U={V1,…,Vr}//set of views
Q=(ScoreQ ,k,*)//Query
Topk-Buffer={}
topkmin =0
for d=1 to n do

for all views Vi(1≤i≤r) in block-step do
Let(tidi

d, si
d) be the d-th item in Vi

//Update top-k buffer
 Let ti

d =RandomAccess(tidi
d)

 if ScoreQ(ti
d)>topkmin then

 if(|topk-Buffer|=k) then
Remove min score tuple from

topk-Buffer
end if

Add(tidi
d,ScoreQ(tidi

d)) to topk-buffer
 Topkmin=min score of topk-Buffer
end if

// Checking stopping conditions by solving LP
Let Unseenmax =convex region defined by

 lbj≤Xj≤ubj for every 1≤j≤m
 Scorevj ≤sj

d for every 1≤j≤r
Compute Unseenmax =maxtϵunseen{ScoreQ(t)}

If(|topk-Buffer|=k) and (Unseenmax≤topkmin)then
 Return topk-Buffer
end if

end for
end for

“The Skyline Operator,” Proc. 17th Int’l Conf. Data
Eng. (ICDE), 2001.

9. D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An
Optimal and Progressive Algorithm for Skyline
Queries,” Proc. ACM SIGMOD, 2003.

10. Ihab F. Ilyas, George Beskales And Mohamed A.
Soliman, ”A survey of top-k query processing
technique in relational database systems”
University of Waterloo, Support was provided in
part by the Natural Sciences and Engineering
Research Council of Canada 2011.

11. D. Kossmann, F. Ramsak, and S. Rost, “Shooting
Stars in the Sky: An Online Algorithm for Skyline
Queries,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), 2002.

12. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C.
Stein, Introduction to Algorithms. MIT Press, 2001.

13. D. Campbell and R. Nagahisa, “A Foundation for
Pareto Aggregation,” J. Economical Theory, vol. 64,
pp. 277-285, 1994.

14. M. Voorneveld, “Characterization of Pareto
Dominance,” Operations Research Letters, vol. 32,
no. 3, pp. 7-11, 2003.

15. C. Li, B.C. Ooi, A.K.H. Tung, and S. Wang, “DADA:
A Data Cube for Dominant Relationship Analysis,”
Proc. ACM SIGMOD, 2006.

16. Y. Tao, V. Hristidis, D. Papadias, and Y.
Papakonstantinou, “Branch-and-Bound Processing
of Ranked Queries,” Information Systems, vol. 32,
no. 3, pp. 424-445, 2007.

17. R.J. Lipton, J.F. Naughton, and D.A. Schneider,
“Practical Selectivity Estimation through Adaptive
Sampling,” Proc. ACM SIGMOD, 1990.

18. R.J. Lipton and J.F. Naughton, “Query Size
Estimation by Adaptive Sampling,” Proc. Symp.
Principles of Database Systems (PODS), 1990.

19. S. Chaudhuri, N.N. Dalvi, and R. Kaushik, “Robust
Cardinality and Cost Estimation for Skyline
Operator,” Proc. 22nd Int’l Conf. Data Eng. (ICDE),
2006.

20. C.B. Barber, D.P. Dobkin, and H. Huhdanpaa, “The
QuickhullAlgorithm for Convex Hulls,” ACM Trans.
Math. Software, vol. 22, pp. 469-483, 1996.

21. D. Xin, J. Han, H. Cheng, and X. Li, “Answering
Top-k Queries with Multi-Dimensional Selections:
The Ranking Cube Approach,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), 2006.

22. S. Nepal and M. Ramakrishna, “Query
Processing Issues in Image (Multimedia)
Databases,” Proc. 15th Int’l Conf. Data Eng.
(ICDE), 1999.

23. M. Li and Y. Liu, “Iso-Map: Energy-Efficient
Contour Mapping in Wireless Sensor Networks,”
IEEE Trans. Knowledge and Data Eng., vol. 22, no.
5, pp. 699-710, May 2010.

24. H. Bast, D. Majumdar, R. Schenkel, M. Theobald,
and G. Weikum, “IO-Top-k: Index-Access

Optimized Top-k Query Processing,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), 2006.

25. N. Mamoulis, K.H. Cheng, M.L. Yiu, and D.W.
Cheung, “Efficient Aggregation of Ranked Inputs,”
Proc. 22nd Int’l Conf. Data Eng. (ICDE), 2006.

A Survey of Techniques for Answering Top-k Queries

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

11

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

This page is intentionally left blank

A Survey of Techniques for Answering Top-k Queries

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

12

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
C

	A Survey of Techniques for Answering Top-k Queries
	Authors

	Keywords
	I. Introduction
	a) Sorted-list based
	b) Layer Based Category
	c) View based category

	II. Taxonomy of Processing Top-KQueries
	a) Naïve Algorithm
	b) Fagin’s Algorithm

	III. Threshold Algorithm
	IV. Onion Technique
	V. Robust Indexing Structure
	VI. Prefer
	VII. LPTA
	VIII. Comparison of DifferentTechniques
	IX. Conclusion
	References Références Referencias

