
© 2013. Deepti Aggarwal & Aarti Singh. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 3 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Software Agent Reusability Mechanism at Application Level

 By Deepti Aggarwal

& Aarti Singh

 Chandigarh University, Gharuan

Abstract - The usage of already available software agents plays a vital role in the process of
development of application specific software. This reuse also leads to software development cost
benefits as well as may ensure the timely delivery. This paper lay down an idea that for reusing
reactive multi-agents systems two factors are to be considered i.e. (i) abstract description of agent in
application independent way and (ii) reuse of such systems through adoption in specific domain[25].
For such a development main requirement is the effective reusable software abstractions. In present
study the role of abstraction level and dependence level is analyzed for intelligent agents.

Keywords : software reuse, software agents, software abstraction.

GJCST-C Classification : D.2.13

Software Agent Reusability Mechanism at Application Level

 Strictly as per the compliance and regulations of:

Software Agent Reusability Mechanism at
Application Level

Deepti Aggarwal α & Aarti Singh σ

Abstract - The usage of already available software agents
plays a vital role in the process of development of application
specific software. This reuse also leads to software
development cost benefits as well as may ensure the timely
delivery. This paper lay down an idea that for reusing reactive
multi-agents systems two factors are to be considered i.e. (i)
abstract description of agent in application independent way
and (ii) reuse of such systems through adoption in specific
domain[23]. For such a development main requirement is the
effective reusable software abstractions. In present study the
role of abstraction level and dependence level is analyzed for
intelligent agents.
Keywords : software reuse, software agents, software
abstraction.

I. Introduction

he reuse of software components refers to the
process of using software artifacts for the
development of new software. Since the evolution

of computational systems, the reuse of software is in
practice. Reuse of the already existing code to develop
new software or developing the software that can be
reused is one of the prominent areas of research. The
present study mainly focuses on the intricacies involved
in reuse of multi agent software systems.

A software agent is a computer program that
symbolizes a user. It implies that an agent has the
capacity to make the appropriate decisions.

Using software agents for Domain-oriented
component design method is a newly proposed reuse
approach in software engineering and it starts from the
process of acquiring business knowledge within a
common application domain. After having the
knowledge of the application domain, a collection of
business logic is mapped into components which can
be reused in the future deign. This method increases the
functional completeness of the software component and
makes it reusable to a lower extent. Since the business
requirements of different organizations are diverse and
are changing, so a reusable knowledge base that can
be adaptive and flexible are yet to be provided by
current domain component design methods. In the
following section the major design issues of the
reusable software components are addressed.

Author

α

:

Assistant Professor, University Institute of Computing,
Chandigarh University, Gharuan, India.

Author

σ

: Associate Professor, M.M. Institute of Computer Technology

& Business Management, M.M. University, Mullana, India.

II. Design Issues

•

Scheduling of tasks and their synchronization

•

Prioritization of tasks by the agent

•

Assignment of tasks by the agents

•

Representation of agents in different
environments, and storage of their internal
state

•

For heterogeneous platform what are the
Behavioral changes of the agents

•

How message passing can be facilitated and
communication can be established

•

Usage of hierarchies of agents

 Apart from the above stated issues following
issues are critical issues in reusability of the software
agents:-
• Usage of software agents on diverse platforms

• Sharing or reconstructing ontology for software
agents being reused

III. Software A bstractions

The abstraction of software artifacts has to be
used in every method of software reuse. A software
abstraction is high-level, in the sense that attributes
corresponding to one or more realizations of facts in
more detailed level are represented. Some attributes
describe what and how abstraction is done [19]. For the
clear understanding, comparison and selection of
appropriate software artifacts, the small abstractions are
needed and these abstractions can be used in reuse
process. The clear understanding of user interface has
to be there so that a set of software artifacts can be
composed and this should be depicted in the
abstraction specification. Every artifact plays an
important role in application development and it may not
be concluded that the final deliverable i.e. the software
product satisfies the user requirements or not.

An abstraction is composed of a fixed, a
variable and a hidden part. Only the fixed and variable
part is visible in the abstraction specification. The fixed
part represents the invariant features and the variable
part symbolizes the variable features of the abstraction.
The hidden part consists of the realization details.

The cognitive distance is the measure of the
effectiveness of the reuse technique. It is the effort

T

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
III

V
er
sio

n
I

9

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

The major issues to be considered in the
development of agent-based software systems include
[3], [11], [12].

required to transfer software system from one phase to
another in terms of intellect. The goal of the reuse
technique should be to minimize the cognitive distance
between the abstraction and the final software product.
To minimize this distance the abstraction specification
should more specifically represent the abstractions
which are used for application domain. Finally the
mapping of the specifications should be made partially
or fully automated [10].

IV. Multi- gent A pplication
E ngineering

“Multi-Agent Application Engineering” is a
domain oriented research towards reducing software
complexity and increasing productivity. This can be
accomplished via techniques and tools that aid software
reuse in Multi-Agent Software Engineering.

In Application Engineering, the software
abstractions that can be reused are created. Application
Development is the process of developing domain
specific applications using software abstractions that
can be used again and again [12].

In the following section the model for developing
agent based application specific software is presented.
A set of activities and various tools and libraries that can
be used is also discussed for developing high level
software abstractions.

a) Developing Multi-Agent Specific Applications
A multi-agent specific application is made using

the constitution of a group/assortment of reusable agent
frameworks available in the library of the development
environment as shown in Figure 1. These frameworks
are realizations of high-level software abstractions in the
library.

 Realization of
 Composed of

Figure 1 : A model for Agent-based Application
Development [23]

Particular requirements of a multi-agent specific
application are used, to map the specification level of a
domain model into a realization satisfying such needs.
The realization should have associated a set of
frameworks, which are agent-based solutions to those
requirements. Requirement analysis in Agent-based
Application Development should also consider particular
preferences of users of the multi-agent specific
application. Therefore, these user profiles are used to
map the specification level of a user model into a
realization satisfying these preferences or user needs.
The realization should have associated a set of
frameworks, which are agent-based solutions to those
needs. The choice of mapping to select best
frameworks depends on the fact that which particular
style of agent architecture is to be used for the design.

b) Developing High – Level Software Abstractions
The reusable agent-based software

abstractions are illustrated and described considering
their level of abstraction and their dependence level
from the application or user domain: domain models,
user models, agent-oriented architectural styles, agent-
oriented design patterns, agent-oriented frameworks
and software agents.

Figure 2 : Agent Based Application Development
Process

c) Requirement Analysis
The next phase is to extract the requirement

specifications of the domain of the application. The
application domain, the user model and the interactions
of domain model and the user model result in a
reusable software product.

The domain model specifications are depicted
at a high level of abstraction. This model represents the

Domain

Model

User

Model

Architectural

Style

Agent

Frameworks

Agent

Specific

Application

Agent
Architectural

Style

User
Model

Domain
Model

Agent Patterns

Agent Frameworks

Software Agents

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
III

V
er
sio

n
I

10

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
C

Software Agent Reusability Mechanism at Application Level

A

conception of problem. The language represents the
definitions necessary for elements, processes and their
relationships in the system. The user model specifies the
needs and requirements of the end user.

d) Design of the Model
The outcome of the design phase is the

reusable design attributes of Agent – Based Application
Engineering. It consists of the agent based architectural
styles, software patterns and the frameworks.
Architectural style is the set of designing rules which will
specify the type of elements and coupling which can be
used to constitute the system and subsystems.

The software pattern identifies and specifies the
problems can commonly occur at conceptual and
architectural level. These problems generally originate
from architectural styles being used, domain model and
the user model. A software pattern has a set format so
that it can be easily propagated. This format asserts the
problems that have been depicted by the pattern and
forces the action to be taken to resolve the problems.
For making use of such pattern there should be a
framework that validates the pattern and provides a
probable solution to the problem. If it was previously
used in some application, that has to be mentioned in
the framework. Some agent based software patterns
have already been proposed that can be used at
architectural level or later stages in the agent design [2,
17]. The basic design guidelines are provided by the
architectural styles and the agent patterns so that agent
oriented frameworks can be developed [3, 5, 20]. The
participating agents are chosen from the bank of agents
which facilitates domain dependent or domain
independent functionality.

V. Conclusion

A new horizon of reuse based software
engineering using agent paradigm has been introduced.
With the introduction of one more layer of abstraction at
the software level, the present study may be used for the
development of reusable software components across
various platforms. Thus it proposed an effective model
for agent based reuse.

References Références Referencias

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
III

V
er
sio

n
I

11

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Software Agent Reusability Mechanism at Application Level

1. Alves da Silva Filho, J. H. and Girardi R. (advisor).
(2001). SIMCAP: A Multi-agent System for Filtering
Scientific Publications from the Web.

2. Aridor Y. (1998) Agent Design Patterns: Elements of
Agent Application Design. In: Proceedings of
Autonomous Agents 98.

3. Bradshaw J. M. (1997), Book on Software Agents.
Published by The AAAI Press, 1997.

4. Brugali D. (2000) Towards Agent-oriented
Application Frameworks. ACM Computing Surveys.
Vol. 32 no. 1.

5. Burmeister, B. (1996) Models and Methodology for
Agent-Oriented Analysis and Design. In:
Proceedings of KI’96 Workshop on Agent-Oriented
Programming and Distributed Systems.

6. Diniz, A. and Girardi R. (advisor) (2001) ABARFI: An
Agent-Based Software Architecture for Information
Access and Filtering.

7. Fleming M. (1999) User Modeling in the Design of
Interactive Interface Agents. Proceedings of Seventh
International Conference on User Modeling. Pages
67-76 Springer – Verlag New York Inc. Secaucus NJ
USA.

8. Girardi R. (1997) Software Architectures to Improve
the Effectiveness of Reuse Techniques. 8th
WORKSHOP ON SOFTWARE REUSE (WISR8).

9. Girardi R. (1996) Towards Effective Software
Abstractions for Application Engineering. Position
Paper, NASA Focus on Reuse Workshop, George
Mason University, Fairfax, Virginia, Sept. 24-27,
1996.

10. Girardi R. (1992) Application Engineering: Putting
Reuse to Work In: Object Frameworks. Dennis
Tsichritzis (ed.) University of Geneva.

11. Gopal Shankar, V.M. Thakare (2009), A Road Map
of Autonomous Software Agent Architectures.
Proceedings of 3rd National Conference INDIA Com-
2009, Computing for Nation Development Feb 26,
27 2009, BVICAM New Delhi

12. Hyacinth S. N. (1996) Software Agents: An
Overview. Knowledge Engineering Review, vol. 11,
no. 3, pp. 205-244.

13. Jennings N. R. (2000) On Agent-based software
engineering. Artificial Intelligence, 117, pp. 277-296.

14. Jennings N. R. (1998) A Roadmap of Agent
Research and Development. Autonomous Agents
and Multi-Agent Systems. Vol.1 No.1. Page No.7-38.

15. Kendall, E. A. (1998). Patterns of Intelligent and
Mobile Agents. In: Proceedings of Autonomous
Agents’ 98.

16. Krueger C. W. (1992) Software Reuse. ACM
Computing Surveys, Vol. 24, N. 2.

17. Lima Costa Ferreira, S. and Girardi R. (advisor)
(2002) Agent-based Software Architectures in
Information Access Systems. Final Degree
Dissertation, CGCC-UFMA. (In Portuguese)

18. Maamar Z. (2000). An Overview of Agent-based
Framework. ACM Computing Surveys, Vol.32, n. 1.

19. Ribeiro de Oliveira, I. and Girardi R. (advisor),
(2001). An Analysis of Software Patterns for Agent-
based Development. Final degree dissertation,
CGCC-UFMA. (In Portuguese)

20. Rosario Girardi, Reuse in Agent – Based Application
Development.

21. Shaw M. (1996) Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
III

V
er
sio

n
I

12

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
C

Software Agent Reusability Mechanism at Application Level

22. Sodre A. and Girardi R. (advisor). (2001) MADS: A
Multi-Agent Software Development Methodology.
Master dissertation CPGEE-UFMA. (In Portuguese).

23. Tahara Y. (1999). Agent system development
method based on agent patterns. In: Proceedings of
International conference on Software Engineering,
p. 356-367.

24. Valente, B. and Girardi R. (advisor). (2001). An
Experience with Agent-based Application
Development. Final degree dissertation. CGCC-
UFMA. (In Portuguese).

25. Wood, M. (2000) An Overview of the Multi-agent
Systems Engineering Methodology. In: Proceedings
of the First International Workshop on Agent-
Oriented Software Engineering (AOSE-2000).

26. Wooldridge, M. (2000). The Gaia Methodology for
Agent-Oriented Analysis and Design. Journal of
Autonomous Agents and Multi-Agent Systems, v. 3.

	Software Agent Reusability Mechanism at Application Level
	Author's
	Keywords
	I. Introduction
	II. Design Issues
	III. Software Abstractions
	IV. Multi-Agent Application Engineering
	a) Developing Multi-Agent Specific Applications
	b) Developing High – Level Software Abstractions
	c) Requirement Analysis
	d) Design of the Model

	V. Conclusion
	References Références Referencias

