

GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY SOFTWARE & DATA ENGINEERING Volume 13 Issue 3 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Modified MEWMA Control Scheme for an Analytical Process Data

By Alpaben K. Patel & Jyoti Divecha

Sardar Patel University, Vallabh Vidayanagar

Abstract - This article introduces Multivariate Modified Exponentially Weighted Moving Average (MMOEWMA) control chart, a chart for detecting shifts of all kinds in case of highly first order vector autoregressive VAR (1) process. This chart is based on modified MEWMA control chart statistic which is a correction of MEWMA chart statistic. The performance of MMOEWMA chart is illustrated along with MEWMA chart for a chemical process data. The average run length (ARL) properties of MMOEWMA scheme are derived using Markov Chain approach. Algorithm for the ARL computation and R-program of monitoring MMOEWMA control chart are provided.

Keywords : abrupt change; average run length; MEWMA; multivariate modified EWMA; vector autoregressive.

GJCST-C Classification : E.m

Strictly as per the compliance and regulations of:

© 2013. Alpaben K. Patel & Jyoti Divecha. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Modified MEWMA Control Scheme for an Analytical Process Data

Alpaben K. Patel^a & Jyoti Divecha^o

Abstract - This article introduces Multivariate Modified Exponentially Weighted Moving Average (MMOEWMA) control chart, a chart for detecting shifts of all kinds in case of highly first order vector autoregressive VAR (1) process . This chart is based on modified MEWMA control chart statistic which is a correction of MEWMA chart statistic. The performance of MMOEWMA chart is illustrated along with MEWMA chart for a chemical process data. The average run length (ARL) properties of MMOEWMA scheme are derived using Markov Chain approach. Algorithm for the ARL computation and Rprogram of monitoring MMOEWMA control chart are provided. : abrupt change; average run length; Keywords MEWMA: multivariate modified EWMA: vector autoregressive.

I. INTRODUCTION

ultivariate statistical process control is often used in chemical and process industries where autocorrelation is most prevalent. Traditional multivariate statistical process control techniques are based on the assumption that the successive observation vectors are independent. In recent years, due to automation of measurement and data collection systems, a process can be sampled at higher rates, which ultimately leads to autocorrelation. Consequently, when the autocorrelation is present in the data, it can have a serious impact on the performance of classical control charts. This point has been made by numerous authors, including Berthouex, Hunter, and Pallensen (1978), Harris and Ross (1991), Montgomery and Mastrangelo (1991). Runger (1996) has presented a realistic model that generates autocorrelation and cross correlation and provides a useful approach to characterizing process data. The interpretation of these charts: charts based on modeling residuals is not as simple as the authors suggest, and the alternative engineering feedback control methods are often more appropriate with such highly auto correlated data.

This article considers the problem of monitoring the mean vector of a process in which observations can be a highly first order vector autoregressive VAR (1) and propose a control chart called Multivariate Modified EWMA chart. Multivariate Modified EWMA chart as a modification in MEWMA (Lowery et. al, 1992) chart statistic. Multivariate Modified EWMA chart that combines the features of multivariate Shewhart chart (Hotelling, 1947) and MEWMA chart in a simple way and has ability to detect small as well as large shift as soon as possible as required by some industrial processes with high level of first order vector autoregressive data.

MMOEWMA control statistic gives weight to the past observation vectors in slightly different way than MEWMA and each current change is considered with full weight. This corrects MEWMA statistic for suffering from inertia problem. This article discusses the procedures to construct the Multivariate Modified EWMA chart. Simulate the average run length to assess the performance of the chart. The MMOEWMA vector auto correlated control chart is defined in second section and the derivation of upper control limits is kept with Appendix 1. Further, performance of MMOEWMA monitoring scheme is illustrated along with MEWMA scheme for real multivariate chemical process data in third section. ARL properties of MMOEWMA are derived and compared with MEWMA in fourth section. The comparisons reveals that MMOEWMA scheme outperform MEWMA scheme. Computation of ARL values were carried out using Markov chain approach described in Appendix 2.

II. Multivariate Control Charts for Monitoring the Process Mean

Suppose that the **p** x **1** random vectors Y_1 , Y_2 , Y_3 , ... each representing the p quality characteristics to be monitored, are observed over time. These vectors may represent individual observations or sample mean vectors. To study the performance of the various multivariate control charts, it will be assumed that Y_n , n = 1, 2, ..., are independent multivariate normal random vectors with mean vectors $\boldsymbol{\mu}_n$, n = 1, 2,... For simplicity, it is assumed that each of the random vectors has the known co-variance matrix $\boldsymbol{\Sigma}$.

a) The Multivariate Shewhart Control Chart

Hotelling's (1947) introduced a multivariate control-chart procedure based on his Hotelling's chisquare statistics defined as $\chi_n^2 = Y_n \Sigma^{-1} Y_n$. At any nth stage in process,

$$\chi_n^2 = Y_n \Sigma^{-1} Y_n > h, \tag{1}$$

signals that a statistically significant shift in the mean has occurred; that is process out-of-control, where h >

Author a. : Directorate of Economics and Statistics, Sector-18, Gandhinagar-382009. E-mail : alpakip@yahoo.co.in

Author σ : Department of Statistics, Sardar Patel University, Vallabh Vidayanagar-388120.

0 is a specified control limit. Because this procedure is based on only the most recent observation, it is insensitive to small and moderate shifts in the mean vector.

b) The Multivariate EWMA (MEWMA) control chart

Lowery et al. (1992) proposed the MEWMA chart as natural extension of EWMA chart. It is a popular chart used to monitor a process with p quality characteristics for detecting small to moderate shifts. The in-control process mean is assumed without loss of generality to be a vector of zeros, and covariance matrix Σ . The MEWMA control statistic is defined as vectors,

$$\mathbf{X}_{n} = \Lambda \mathbf{Y}_{n} + (\mathbf{I} - \Lambda) \mathbf{X}_{n-1} \quad n = 1, 2, \dots,$$
(2)

where $X_0 = 0$, 1 x p vector and $\Lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_p)$, $0 < \lambda j \le 1, j = 1, 2, ..., p$.

The MEWMA chart gives an out-of-control signal as soon as

$$T_{n1}^{2} = \mathbf{X}_{n} \mathbf{\Sigma}_{n-1} \mathbf{X}_{n} > h_{7}, \qquad (3)$$

where h_{τ} (>0) is chosen to achieve a specified in control ARL and Σ_{xn} is the covariance matrix of X_n given by $\Sigma_{xn} = {\lambda/(2-\lambda)}\Sigma$, under equality of weights of past observations for all p characteristics; $\lambda_1 = \lambda_2 = ... = \lambda_p = \lambda$.

The UCL = $\left(\frac{\lambda}{2-\lambda}\right)^{1/2} (h_1)^{1/2}$. If one or more points fall

beyond h_{τ} , the process is assumed to be out-of-control. The magnitude of the shift is reflected in the noncentrality parameter $\mu_1 \Sigma^{-1} \mu_1$. They conclude that an assignable causes result in a shift in the process mean from μ_0 to μ_1 .

c) MMOEWMA control chart for monitoring the first order vector autoregressive VAR (1) process mean

The MMOEWMA chart as natural extension of Patel and Divecha (2011) proposed Modified EWMA chart. The desirable properties of a multivariate auto

Table 1 : Temperatures Data

ILLUSTRATION

III.

NO	0	Observation	S	Deviated Observations			
	Y ₁	Y ₂	Y ₃	Υ ₁ -μ ₀₁	$Y_2 - \mu_{02}$	$Y_{3}-\mu_{03}$	
0	92.24	95.56	100.27	0.00	0.00	0.00	
1	92.83	95.16	100.77	0.59	-0.40	0.50	
12	92.84	95.16	100.76	0.60	-0.40	0.49	
13	92.84	95.16	100.76	0.60	-0.40	0.49	
14	92.84	95.16	100.76	0.60	-0.40	0.49	
15	92.84	95.16	100.76	0.60	-0.40	0.49	

correlated control chart are that it is easy to implement and is effective for detecting shifts of all sizes as per technical specifications. The Multivariate Modified EWMA chart that introduce considers past observations similar to MEWMA scheme and additionally considers past as well as latest change in the process. Let Y_n , $n=1,2,\ldots$, are sequence of first order auto correlated normal random vectors with mean vector μ_n , and common covariance matrix Σ . Further it is assumed without loss of generality that the in control process mean vector is $\mu_0 = (0,0,\ldots,0)' = 0$.

The MMOEWMA chart statistic is a modification in MEWMA chart statistic. To define MMOEWMA control statistic as vector \mathbf{X}_n given by,

$$X_{n} = \Lambda Y_{n} + (I - \Lambda) X_{n-1} + (Y_{n} - Y_{n-1}), n \ge 1, \qquad (4)$$

where X_0 is the p-dimensional zero vector and $\Lambda = diag(\lambda_1, \lambda_2, ..., \lambda_p), 0 < \lambda j \le 1, j = 1, 2, ..., p$. The MMOEWMA chart gives an out-of-control signal as soon as

$$T_{n2}^{2} = \mathbf{X}_{n} \, \boldsymbol{\Sigma}_{xn}^{-1} \, \mathbf{X}_{n} > h_{2}, \tag{5}$$

where h_2 (>0) is chosen to achieve a specified in control ARL. If one or more points fall beyond h_2 , the process is assumed to be out-of-control. Σ_{xn} is the covariance

matrix of
$$X_n$$
 given by $\Sigma_{xn} = \left(\frac{\lambda}{2-\lambda} + \frac{2\lambda(1-\lambda)}{2-\lambda}\right)\Sigma$

under equality of weights of past observations for all p characteristics; $\lambda_1 = \lambda_2 = ... = \lambda_p = \lambda$, and past and current changes. The upper control limit of MMOEWMA chart is,

UCL =
$$\left(\frac{\lambda}{2-\lambda} + \frac{2\lambda(1-\lambda)}{2-\lambda}\right)^{1/2} (h_2)^{1/2}$$
 (discussed in Appendix 1)

Appendix 1).

279	92.59	95.10	100.47	0.35	-0.46	0.20
280	92.59	95.10	100.46	0.35	-0.46	0.19
281	92.58	95.10	100.46	0.34	-0.46	0.19
282	92.58	95.10	100.46	0.34	-0.46	0.19
588	91.37	95.27	99.73	-0.87	-0.27	-0.54
589	91.37	95.27	99.72	-0.88	-0.29	-0.55
590	91.36	95.27	99.72	-0.88	-0.29	-0.55
591	91.36	95.27	99.72	-0.88	-0.29	-0.55
592	91.35	95.28	99.72	-0.89	-0.28	-0.55
998	92.30	96.22	100.16	0.06	0.66	-0.11
999	92.30	96.21	100.16	0.06	0.65	-0.11
1200	92.67	95.84	100.72	0.43	0.28	0.45
1201	92.67	95.83	101.95	0.43	0.27	1.68
1202	92.67	95.83	100.73	0.43	0.27	0.46
1416	92.55	95.35	100.90	0.31	-0.21	0.63
1417	92.55	95.35	100.90	0.31	-0.21	0.63
1434	92.54	95.31	100.87	0.30	-0.26	0.60
1435	92.53	95.30	100.87	0.29	-0.26	0.60
1439	92.53	95.29	100.86	0.29	-0.27	0.59

a) MMOEWMA chart for monitoring Multivariate Chemical Process using table 1 and table 2

 Table 1 displays the part of measurements on three temperature column taken every minute from a chemical process that is working in control and out of
 control situations, abrupt changes and small shifts occur. Here number of variable p=3. Three variables are temperature columns Y_1 with mean μ_{01} =92.24, Y_2 with mean μ_{02} =95.56, Y_3 with mean μ_{03} = 100.27. To assume covariance matrix to be

/

$$\sum = \begin{pmatrix} V(Y_{11}) & C(Y_1, Y_2) & C(Y_1, Y_3) \\ C(Y_2, Y_1) & V(Y_{22}) & C(Y_2, Y_3) \\ C(Y_3, Y_1) & C(Y_3, Y_2) & V(Y_{33}) \end{pmatrix} = \begin{pmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{pmatrix}$$

Upper control limit of MEWMA $UCL = \left(\frac{\lambda}{2-\lambda}\right)^{1/2} (h_1)^{1/2} = 0.882, \text{ where } \lambda = 0.1,$ $h_1 = 14.7, \text{ and MMOEWMA} UCL$ $= \left(\frac{\lambda}{2-\lambda} + \frac{2\lambda(1-\lambda)}{2-\lambda}\right)^{1/2} (h_2)^{1/2} = 0.839, \text{ where}$

 λ =0.1, h_2 = 5.417. UCL is used in average run length to choose appropriate value of decision interval. The MMOEWMA chart gives an out-of-control signal as soon as

$$T_{n2}^2 = \mathbf{X}_n \mathbf{x}_{n-1} \mathbf{X}_n > h_2 = 5.417$$

and the MEWMA chart gives an out-of-control signal as soon as

$$T_{n1}^2 = \mathbf{X}_n \mathbf{X}_n \mathbf{X}_n \mathbf{X}_n > h_1, \ h_1 = 14.78$$

Table 2 shows that, MMOEWMA vector gives best forecasts for the process mean vector; undoubtedly better than the MEWMA prediction barring abrupt change situation (1201st observation). MMOEWMA also detects all the shifts more timely as compared to MEWMA for chemical process data.

No.	MEWMA h	MEWMA vector, $\lambda = 0.1$,MEWMAMMOEWMA $h_1 = 14.78$ statistics $\lambda = 0.1$, $h_2 = 0.1$			EWMA v 1, <i>h₂</i> = t	ector, 5.417	MMOEWMA statistics	
	X ₁	X ₂	X ₃	T _{n1} ²	Х ₁	\overline{X}_2	X ₃	T_{n2}^{2}
1	0.06	-0.04	0.05	0.24	0.56	0.46	0.55	2.91
12	0.43	-0.29	0.36	12.48	0.58	-0.14	0.51	5.19
13	0.44	-0.30	0.37	13.48	0.58	-0.16	0.50	5.47*
14	0.47	-0.31	0.38	14.43	0.58	-0.19	0.50	5.73*
15	0.47	-0.32	0.39	15.30*	0.58	-0.21	0.50	5.98*
279	0.39	-0.46	0.21	15.33*	0.36	-0.48	0.19	5.46*
280	0.38	-0.46	0.21	15.17*	0.36	-0.48	0.19	5.40
281	0.38	-0.46	0.21	15.02*	0.36	-0.48	0.19	5.35
282	0.37	-0.46	0.21	14.87*	0.35	-0.48	0.19	5.30
588	-0.84	-0.29	-0.52	14.26	-0.86	-0.32	-0.55	5.37
589	-0.84	-0.29	-0.52	14.41	-0.86	-0.32	-0.55	5.42*
590	-0.84	-0.29	-0.53	14.56	-0.87	-0.31	-0.55	5.47*
591	-0.85	-0.29	-0.53	14.72	-0.87	-0.31	-0.55	5.53*
592	-0.85	-0.29	-0.53	14.87*	-0.87	-0.31	-0.56	5.59*
998	0.02	0.67	-0.13	14.91*	0.05	0.70	-0.11	5.44*
999	0.03	0.67	-0.13	14.75	0.06	0.70	-0.10	5.38
1200	0.43	0.29	0.43	4.72	0.46	0.32	0.46	1.91
1201	0.43	0.29	0.55	6.49	1.68	1.54	1.81	29.10*
1202	0.43	0.29	0.54	6.33	0.34	0.19	0.45	1.54
1416	0.31	-0.18	0.64	14.73	0.31	-0.19	0.63	5.24
1417	0.31	-0.19	0.63	14.79*	0.30	-0.19	0.63	5.25
1434	0.30	-0.23	0.61	15.35*	0.28	-0.25	0.60	5.41
1435	0.30	-0.23	0.61	15.38*	0.28	-0.25	0.60	5.43*
1439	0.30	-0.24	0.61	15.48*	0.28	-0.26	0.59	5.46*

Table 2 : Monitoring performance of MEWMA and MMOEWMA for the Chemical Process three variate temperature Data

In Table 2 observe that, MEWMA control chart detects shifts on observation 15^{th} to 282^{nd} , 592^{nd} to 998^{th} , and 1417^{th} to 1439^{th} . The MMOEWMA control chart detects shifts on observation 13^{th} to 279^{th} , 589^{th} to 998^{th} , and 1435^{th} to 1439^{th} . MMOEWMA chart detect abrupt change at observation 1201^{st} , but MEWMA could not detect it.

Figure 1 : MEWWA Control Chart (p=3)

Observe the shoot up bar showing abrupt shift in figure 2 which is completely missing in figure 1.

Note that 1201st run has abrupt shift in variable Y₃.

b) Properties of MMOEWMA scheme and comparison with MEWMA scheme

All the ARL computations were carried out using Markov chain approach described in Appendix 2. MMOEWMA is the chart for multivariate processes having autocorrelated observations. However, assuming that MEWMA chart can be applied at least to the residual vectors, to compare the ARL values of MMOEWMA with that of MEWMA having common parameters.

Year 2013

27

	ARL Values for MEWMA Charts ($p=2$, $p=3$ and $p=4$) from Lowery et. al. (1992)								
$h_1 =$	10.75	12.34	13.10	14.78	15.16	16.94			
Shift $P = 2$ and $\lambda = 0.10$			p =3 and	$\lambda = 0.1$	$p = 4$ and $\lambda = 0.1$				
0.0	501	999	502	1007	497	995			
0.5	39.5	51.1	45.6	61.2	52.3	68			
1.0	12.1	13.7	13.5	15.3	14.5	16.5			
1.5	7.03	7.69	7.66	8.40	8.20	8.99			
2.0	4.97	5.39	5.43	5.83	5.79	6.23			
2.5	3.90	4.23	4.26	4.54	4.51	4.81			
3.0	3.27	3.49	3.52	3.75	3.74	3.97			

Table 3 : Average Run Lengths of MEWMA Charts

Shiir	I = 2 and A = 0.10		p=3 and	$\Lambda = 0.1$	$p = 4 and \Lambda = 0.1$					
0.0	501	999	502	1007	497	995				
0.5	39.5	51.1	45.6	61.2	52.3	68				
1.0	12.1	13.7	13.5	15.3	14.5	16.5				
1.5	7.03	7.69	7.66	8.40	8.20	8.99				
2.0	4.97	5.39	5.43	5.83	5.79	6.23				
2.5	3.90	4.23	4.26	4.54	4.51	4.81				
3.0	3.27	3.49	3.52	3.75	3.74	3.97				

Table 4 : Average Run Lengths of MMOEWMA Charts

ARL Values for Multivariate Modified EWMA (MMOEWMA) Charts ($p=2$, $p=3$ and $p=4$)								
h ₂ =	3.93	4.525	4.78	5.417	5.546	6.221		
Shift	Shift $p = 2$ and $\lambda = 0.1$			d λ = 0.1	$p = 4$ and $\lambda = 0.1$			
0.0	500	1000	500	1000	500	1000		
0.5	30.5	40.09	31.52	41.57	32.3	42.77		
1.0	10.06	11.63	10.54	12.15	10.89	12.55		
1.5	5.69	6.38	6.04	6.73	6.30	7.0		
2.0	3.87	4.29	4.16	4.58	4.38	4.80		
2.5	2.87	3.17	3.12	3.42	3.31	3.61		
3.0	2.02	2.24	2.25	2.46	2.62	2.63		

Table 3 to table 6 showed that the control limits for MMOEWMA are quite small than those of MEWMA as well as χ^2 chart for the same in control ARL. For two, three, four variable cases, the smaller out of control ARL imply that MMOEWMA chart performs excellent in detection of shifts, be it small, moderate or large for every of in control ARLs. MMOEWMA chart with $\lambda_{\scriptscriptstyle 1}$ $=\lambda_2=...=\lambda_p$ $=\lambda$ =1 is multivariate Shewhart chart version for multivariate autocorrelated process.

	χ^2 chart	MEWMA Chart					
λ =		0.1	0.2	0.4	0.6	0.8	
	h			h_1			
	10.6	8.66	9.65	10.29	10.53	10.58	
Shift		ARL va	lues for p=2	2 from Lowery	et. al. (1992)		
0	200.	200	201	199	200	200	
0.5	116.	28.1	35.10	51.9	73.6	95.5	
1.0	42.	10.2	10.10	13.2	19.3	28.1	
1.5	15.8	6.12	5.50	5.74	7.24	10.3	
2.0	6.9	4.41	3.80	3.54	3.86	4.75	
2.5	3.5	3.51	2.91	2.55	2.53	2.75	
3.0	2.2	2.92	2.42	2.04	1.88	1.91	

Table 5 : Average Run Lengths of Multivariate Charts

Table 6: Average Run Lengths of MMOEWMA Charts

	MMOEWMA Chart							
$\lambda =$	0.1	0.2	0.3	0.4	0.6	0.8		
$h_2 =$	3.135	3.742	4.223	4.705	5.85	7.561		
Shift		ARL values for p=2						
0	200	200	200	200	200	200		
0.5	21.1	24.76	29.9	29.9	51.6	74.98		
1.0	8.12	7.88	8.65	8.65	14.93	23.99		
1.5	4.78	4.11	4.06	4.06	5.75	8.92		
2.0	3.29	2.64	2.44	2.44	2.92	4.12		
2.5	2.45	1.87	1.69	1.69	1.86	2.36		
3.0	1.90	1.43	1.32	1.32	1.41	1.63		

IV. Conclusion

A simple multivariate control chart for monitoring small as well as large shifts in highly first order vector autoregressive VAR (1) process such as multivariate chemical process is given. It is good method to monitor first order vector autoregressive process in chemical/other industries.

By repeated substitution in equation $X_n = \Lambda Y_n + (I - \Lambda)X_{n-1} + (Y_n - Y_{n-1})$, $n \ge 1$, it can be shown that

$$\mathsf{E}(\mathsf{X}_{n}) = \lambda \sum_{j=0}^{n-1} (1-\lambda)^{j} \, \mathsf{E}(\mathsf{Y}_{n-j}) + (1-\lambda)^{n} \, \mathsf{E}(\mathsf{Y}_{0}) + \sum_{j=0}^{n-1} (1-\lambda)^{j} \, \mathsf{E}(\mathsf{Y}_{n-j}-\mathsf{Y}_{n-j-1})$$

But
$$\lambda \sum_{j=0}^{n} (1-\lambda)^{j} = \frac{\lambda [1-(1-\lambda)^{n}]}{[1-(1-\lambda)]} = [1-(1-\lambda)^{n}]$$

 $\therefore E(X_{n}) = [1-(1-\lambda)^{n}]\mu + (1-\lambda)^{n}\mu + 0$
 $= \mu$

$$\begin{split} & \textit{Lemma 2:} \text{If the starting value of process is,} \\ X_0 &= \mu_0 = Y_0 \text{ and } 0 < \lambda \leq 1 \text{ is a constant. The mean is,} \\ E(X_n) &= E((1-\lambda)X_{n-1} + \lambda Y_n + (Y_n - Y_{n-1})) = \mu_0. \end{split}$$

For
$$p = 2$$
 and $n = 1$, we have

$$\begin{aligned} \mathbf{X}_{1} &= \begin{bmatrix} \lambda_{1} & 0\\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} Y_{11}\\ Y_{21} \end{bmatrix} + \begin{bmatrix} 1 - \lambda_{1} & 0\\ 0 & 1 - \lambda_{2} \end{bmatrix} \begin{bmatrix} Y_{10}\\ Y_{20} \end{bmatrix} + \begin{bmatrix} Y_{11} - Y_{10}\\ Y_{21} - Y_{20} \end{bmatrix} \\ &= \begin{bmatrix} \lambda_{1}Y_{11} + (1 - \lambda_{1})Y_{10} + Y_{11} - Y_{10}\\ \lambda_{2}Y_{21} + (1 - \lambda_{2})Y_{20} + Y_{21} - Y_{20} \end{bmatrix} = \begin{bmatrix} X_{11}\\ X_{21} \end{bmatrix} \text{say,} \end{aligned}$$

So that,

$$Cov(X_{1}) = \sum_{X1} = \begin{bmatrix} V(X_{11}) & Cov(X_{11}, X_{21}) \\ & V(X_{21}) \end{bmatrix}$$
(ii)

Where $V(X_{11})$ and $V(X_{21})$ are the variance of univariate modified EWMA statistic, and $Cov(X_{11}, X_{21}) = \lambda_1 \lambda_2 \sigma_{12} + (1 - \lambda_1)(1 - \lambda_2) \sigma_{12} + cov(Y_{11} - Y_{10}, Y_{21} - Y_{20}).$

Then as per (ii)

$$\operatorname{Cov}(\mathbf{X}_{n}) = \sum_{\mathbf{X}_{n}} = \begin{bmatrix} V(X_{1n}) & \operatorname{Cov}(X_{1n}, X_{2n}) \\ & V(X_{2n}) \end{bmatrix}$$

٧

Now Y_n 's are autocorrelated normal with covariance matrix Σ , so that the $(Y_n - Y_{n-1})$'s $(r \ge 1$) have covariance matrix $2(I-Rho)\Sigma$ with $Rho = \text{diag}(\rho_{y1}, \rho_{y2}, ..., \rho_{yp})$. Then, taking $\lambda_1 = \lambda_2 = ... = \lambda_p = \lambda$ and $\rho_{y1}, \rho_{y2}, ..., \rho_{yp} \rightarrow 1$, as n tends to infinity.

Lemma 3: The variance of univariate Modified EWMA (MOEWMA) control statistic X_n is,

$$V(X_{n}) = V(\lambda \sum_{j=0}^{n-1} (1-\lambda)^{j} Y_{n-j}) + V((1-\lambda)^{n} Y_{0}) + V(\sum_{j=0}^{n-1} (1-\lambda)^{j} (Y_{n-j} - Y_{n-j-1}))$$

The expectation of X_{n} gives, $\mathsf{E}(X_{\text{n}})=\mu$, (mean of Y_{n}).

Lemma 1: If $\lambda_1 = \lambda_2 = ... = \lambda_p = \lambda$, then the expression for Multivariate Modified EWMA statistic

$$\mathbf{X}_{n} = \lambda \sum_{j=0}^{n-1} (1-\lambda)^{j} \mathbf{Y}_{n-j} + (1-\lambda)^{n} \mathbf{Y}_{0} + \sum_{j=0}^{n-1} (1-\lambda)^{j} (\mathbf{Y}_{n-j} - \mathbf{Y}_{n-j-1})$$

Taking expectation on both side,

$$\bigvee (\mathsf{X}_{n}) = (1-\lambda)^{2n} \, \forall (\mathsf{Y}_{0}) + \sum_{j=0}^{n-1} \lambda^{2} \, (1-\lambda)^{2j} \, V(Y_{n-j}) + 2 \sum_{j=0}^{n-1} \lambda^{2} \, (1-\lambda)^{2j+1} Cov(Y_{n-j}, Y_{n-j-1}) + \sum_{j=0}^{n-1} (1-\lambda)^{2j} \, V(Y_{n-j} - Y_{n-j-1}) + 2 \sum_{j=0}^{n-1} (1-\lambda)^{2j+1} Cov[(Y_{n-j} - Y_{n-j-1}), (Y_{n-j-1} - Y_{n-j-2})] \\ + \sum_{j=0}^{n-1} \lambda (1-\lambda)^{2j} \, Cov\Big(Y_{n-j}, (Y_{n-j} - Y_{n-j-1})\Big) + \sum_{j=0}^{n-1} \lambda (1-\lambda)^{2j+1} Cov\Big(Y_{n-j-1}, (Y_{n-j} - Y_{n-j-1})\Big) + \sum_{j=0}^{n-1} \lambda (1-\lambda)^{2j+1} Cov(Y_{n-j-1}, (Y_{n-j} - Y_{n-j-1})) \Big)$$

Since Y_n 's are autocorrelated normal with variance σ^2 , the variance of (Y_n-Y_{n-1}) $(n \ge 1)$ is $\sigma_1^2 = 2\sigma^2 - 2\rho\sigma^2 = 2(1-\rho)\sigma^2$ (small when $\rho \rightarrow 1$). The weights $\lambda(1-\lambda)^{2j}$ decrease geometrically with the age of sample mean. Suppose Y_n 's are correlated to the forward fluctuation (Y_n-Y_{h-1}) $(n \ge 1)$ with common

correlation ρ_1 and correlated to the backward fluctuation $(Y_{n+1}-Y_n), \ (n\geq 0)$ with common correlation $\rho_2,$ and forward fluctuation (Y_n-Y_{n-1}) are correlated to the backward fluctuation $(Y_{n+1}-Y_n), \ (n\geq 1)$ with common correlation $\rho_3,$ then asymptotic variance for large n,

$$V(X_n) = \frac{\lambda}{(2-\lambda)}\sigma^2 + \frac{2\lambda(1-\lambda)}{(2-\lambda)}\rho\sigma^2 + \frac{2(1-\rho)\sigma^2}{\lambda(2-\lambda)} + \frac{4\rho_3(1-\rho)(1-\lambda)\sigma^2}{\lambda(2-\lambda)} + \frac{2\sqrt{2}\rho_1\sqrt{(1-\rho)}\sigma^2}{(2-\lambda)} + \frac{(1-\lambda)2\sqrt{2}\rho_2\sqrt{1-\rho}\sigma^2}{(2-\lambda)}$$
(iii)

٦

In normal autocorrelated process (a) with ρ_3 nearly negative half and ρ_1 , ρ_2 nearly equal and opposite in sign and being monitored for small shifts, (b) with autocorrelation ρ nearly one ($\rho \rightarrow 1$) the above expression (iii), reduces to

$$V(X_n) = \frac{\lambda}{(2-\lambda)}\sigma^2 + \frac{2\lambda(1-\lambda)}{(2-\lambda)}\rho\sigma^2 \qquad \text{(iv)}$$

Let $\frac{2\lambda(1-\lambda)}{(2-\lambda)}
ho\sigma^2$ is a small value for high

$$V(X_{1n}) = \begin{bmatrix} \lambda \\ (2-\lambda) + \frac{2\lambda(1-\lambda)}{(2-\lambda)} \end{bmatrix}$$

In general the best approximation of covariance matrix of the MMOEWMA p-variable vectors is given by,

$$\sum_{Xn} = \frac{\lambda}{(2-\lambda)} \Sigma + \frac{2\lambda(1-\lambda)}{(2-\lambda)} \rho \Sigma$$
 (vi)

The UCL of MMOEWMA control chart is

$$UCL = \left(\frac{\lambda}{(2-\lambda)} + \frac{2\lambda(1-\lambda)}{(2-\lambda)}\right)^{1/2} (h_2)^{1/2}$$
 (vii)

The MMOEWMA chart gives an out-of-control signal as soon as

$$T_{n2}^{2} = \mathbf{X}_{n} \mathbf{\Sigma}_{\mathbf{x}n}^{-1} \mathbf{X}_{n} > h_{2},$$
 (viii)

Where h_2 (>0) is chosen to achieve a specified in control ARL. If one or more points fall beyond h_2 , the value of ρ and small λ , sometimes even negligibly small such that modified EWMA limits equal EWMA limits.

Therefore,
$$V(X_n) = \begin{bmatrix} \lambda \\ (2-\lambda) + \frac{2\lambda(1-\lambda)}{(2-\lambda)} \end{bmatrix} \sigma^2$$
. (v)

Therefore, Multivariate MOEWMA covariance from equation (iv, v) becomes

$$\Sigma = V(X_{2n}) = Cov(X_{1n}, X_{2n}).$$

process is assumed to be out-of-control. The magnitude of the shift is reflected in the non-centrality parameter $\mu_1 \Sigma^{-1} \mu_1$. We conclude that an assignable causes result in a shift in the process mean from μ_0 to μ_1 .

Appendix 2 ARL Computation for MMOEWMA Scheme using Markov Chain Approach

Following Runger and Prabhu (1996) and Molnau et al. (2001) the Markov chain approach of ARL for MMOEWMA has been derived. Different choices of λ (weighting factor), h_2 (decision value), and p (number of variable) are considered.

In and out of-Control Case

For the in or out control case, the ARL analysis can be simplified as a one dimensional Markov chain.

To approximate $||X_n||$, we partition the control region

into m+1 transient states, each of width $g = \frac{2UCL}{(2m+1)}$

In this case the two dimensional range of X_n is represented by the X_1 and X_2 axes, and the states used

for the Markov chain are assumed as circular rings. Because \mathbf{Y}_{n} has a spherical distribution, the probability of transitioning from state i to state j, denoted as p(i, j), depends only on the radii of states i and j. For i = 0,1,2,...,m and j not equal to zero.

$$p(i,j) = P(d_n \text{ in state } j \mid d_{n-1} \text{ in state } i)$$

$$= \mathsf{P}\left[\text{ (j-0.5) } \mathsf{g} < \left\| \lambda Y_n + (1-\lambda) X_{n-1} + (Y_n - Y_{n-1}) \right\| \\ < (\mathsf{j} + \mathsf{0.5}) \; \mathsf{g} \ | \ \mathsf{d}_{\mathsf{n-1}} = \mathsf{ig} \right].$$

Given that $d_{n-1} = ig$, X_{n-1} is distributed as igU, and j =0,1,2,...,m

$$\mathsf{p}(\mathsf{i},\mathsf{j}) = \mathsf{P}\left[(\mathsf{j}\text{-}0.5) \; \mathsf{g} < \left\| \lambda Y_n + (1-\lambda)igU + (Y_n - Y_{n-1}) \right\| \\ < (\mathsf{j}\text{+}0.5) \; \mathsf{g} \mid \mathsf{d}_{\mathsf{n}\text{-}1} = \mathsf{i}\mathsf{g} \right].$$

Let e denote the p component unit vector e' $=(1,0,0,\ldots,0)$. According to Runger and Prabhu (1996) \mathbf{Y}_{n} and U are independent spherical random variables, without loss of generality it can assume that U is identity equal to e to obtain

$$p(i,j) = P\left[\left\{(j-0.5) \text{ g}\right\}/\lambda < \left\|Y_n + \left[(1-\lambda)ige + (Y_n - Y_{n-1})\right]/\lambda\right\| < \left\{(j+0.5) \text{ g}\right\}/\lambda\right].$$

Let $\chi^2(p,c)$ denote a non central chi square random variable with p degrees of freedom and non centrality parameter c. Then we have For j not equal to zero ($j \neq 0$),

$$p(i,j) = P\left[\frac{(j-0.5)^2 g^2}{\lambda^2} \prec \chi^2(p,c) \prec \frac{(j+0.5)^2 g^2}{\lambda^2}\right],$$

Where $c = [\{(1-\lambda) \mid g / \lambda\} + d]^2$, degree of freedom is p. d is the shift in mean vector.

For the case where j = 0, we have

$$p(i,0) = P [\chi^2(p,c) < \{(0.5)^2 g^2 / \lambda^2 \}].$$

For any control chart that is approximated by a Markov chain, the run length performance can be determined from the transition probability matrix. Assume that a Markov chain has s states (see Brook and Evans (1972)). The transition probability matrix contains the transition probabilities for moving from state to state. Let this s x s matrix of transition probabilities be presented as P, where the process mean vector is such that the non centrality parameter is δ . Let the s x 1 vector **q** designate the starting state of the Markov chain. The vector **q** will have a one in the component corresponding to the starting state and zeros in all of the other components. The zero state ARL of a scheme modeled as a Markov chain represented by $ARL = q'(I-P)^{-1} 1.$ (ix)

Steps of ARL Computation for MMOEWMA

Step-1 Choose the parameter λ (Weighting factor), h_2 (decision value), p (number of variable), and shift in mean vector d.

Step-2 The upper control limit of MMOEWMA chart is,

UCL =
$$\left(\frac{\lambda}{2-\lambda} + \frac{2\lambda(1-\lambda)}{2-\lambda}\right)^{1/2} (h_2)^{1/2}$$

Step-3 Choose the number of states m.

Step-4 Compute width
$$g = \frac{2UCL}{(2m+1)}$$

Step-10 Compute $u = [I - R]^{-1}$ **1** Step-11 Compute $q = R_a'^* I$

Step-5 $\chi^2(p,c)$ denotes a non central chi

square random variable with p degrees of freedom and non centrality parameter c.

Step-6 Non centrality parameter, $c = [\{(1-\lambda) \mid g\}\}$ $(\lambda + d)^2$, degree of freedom is p, d is the shift in mean vector.

Step-7 For j not equal to zero ($j \neq 0$),

$$p(i,j) = P\left[\frac{(j-0.5)^2 g^2}{\lambda^2} \prec \chi^2(p,c) \prec \frac{(j+0.5)^2 g^2}{\lambda^2}\right]$$

Step-8 For the case where j = 0, we have

$$D(i,0) = P [\chi^2(p,c) < \{(0.5)^2 g^2 / \lambda^2 \}].$$

Step-9 Adjust the t. p.m.(R_a) such that row sums are unity.

Pal to zero (j ≠ 0),

$${}^{2}(p,c) \prec \frac{(j+0.5)^{2} g^{2}}{\lambda^{2}}$$
].
Step-10 Compute u = [I - R]⁻¹ 1
Step-11 Compute q = R_a'* I
Step-12 ARL = q' * u, OR ARL = q'[I - R]⁻¹ 1

References Références Referencia

- 1. Berthouex, P.M., W.G. Hunter, and L. Pallesen (1978) Monitoring Sewage Treatment Plants: Some quality control aspects. Journal of Quality Technology, Vol. 10.
- 2. Brook, D., and Evans, D.A. (1972) An Approach to the Probability Distribution of CUSUM Run Lengths. Biometrika, Vol.59, pp. 539-549.
- 3. Harris, T.J., and W.H. Ross (1991) Statistical Process Control Procedures for Correlated Observations. Canadian Journal of Chemical Engineering, Vol. 69.
- 4. Hotelling, H. (1947) Multivariate Quality Control, Techniques of Statistical Analysis, edited by Eisenhart, Hastay, and Wallis, McGraw-Hill, New York.
- Lowry, C.A., Woodall, W.H., Champ, C.W. and Rigdon, S.E. (1992) A multivariate exponentially weighted moving average control chart. Technoetrics, Vol. 34(1), pp. 46-53.
- 6. Molnau, W.E., Runger, G.C., Montgomery, D.C., Skinner, K.R. and Loendo, E.N. (2001) A Program

for ARL Calculation for Multivariate EWMA Charts. Journal of Quality Technology, Vol. 33(4).

- 7. Montgomery, D.C., and C.M. Mastrangelo (1991) Some Statistical Process Control methods for Autocorrelated data (with discussion). Journal of Quality Technology. Vol.26.
- 8. Patel, A.K. and Divecha, J. (2011) Modified exponentially weighted moving average (EWMA) control chart for an analytical process data, Journal of Chemical Engineering and Material Science, Vol. 2(1), 12-20.
- Runger, G.C. and Prabhu, S.S. (1996) A Markov Chain Model for the Multivariate Exponentially Weighted Moving Averages Control Chart. Journal of American Statistical Association, Vol. 91(436), 1701-1706, Theory and Methods.
- Runger, G.C. (1996) Multivariate statistical process control for autocorrelated process. International Journal of production research, Vol. 34, pp. 1715-1724, 1996.
- R Language: Copyright 2004, The R Foundation for Statistical Computing Version 2.0.1 (2004-11-15), ISBN 3-900051-07-0.

R-Program for monitoring Modified Multivariate Exponentially Weighted Moving Average Control Chart

Multivariate MOEWMA (MMOEWMA) **##** Three Temperature Data p<-3 X<-read.table("Rprogram/Temp3.txt",header=TRUE) Х ##Temperature T3=X1,T11=X2,T21=X3 X1<-as.matrix(X[1:1439,1]) X1 x1 < -ts(X1)ar1<-arima(x1,order=c(1,0,1)) a1<-mean(X1) a1<-92.24 ##a1=92.24 X2<-as.matrix(X[1:1439,2]) X2 $x_2 < -t_s(X_2)$ ar2<-arima(x2,order=c(1,0,1)) a2<-mean(X2) a2<-95.56 ## a2= 95.56 X3<-as.matrix(X[1:1439,3]) X3 x3 < -ts(X3)ar3<-arima(x3,order=c(1,0,1)) a3<-mean(X3) a3<-100.27 ## a3=100.27 ## if we take unit variances and Correlation=0.5 cmat <- matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,0.5,1), nrow = 3, ncol=3, byrow=TRUE) cmat cmat1<-solve(cmat) cmat1 m<-1439 ## Exponential Weight r, 0<r<=1 r<-0.10

Year 2013

```
## Difference Variance
##k<-0.095
k<-(2*r*(1-r))/(2-r)
Xn<-matrix(0,m,3)
for(i in 1:m)
{ for(j in 1:3)
Xn[i,1]<-X[i,1]-a1
Xn[i,2]<-X[i,2]-a2
Xn[i,3]<-X[i,3]-a3
}}
round(Xn,2)
## MMOEWMA Vector Zi= rXi+(1-r)Zi-1+(Xi-Xi-1), Z0=M0=X0=0
##Asymptotic Sz={(r/(2-r))+k}s
Sz < {(r/(2-r))+k} * cmat
Si<-solve(Sz)
Si
Zi<-matrix(0,m,3)
Z1<-0
Z2<-0
Z3<-0
X0<-0
for(i in 1:m)
{ for(j in 1:3)
Zi[i,2]<-r%*%Xn[i,2]+(1-r)*Z2+(Xn[i,j]-X0)
Zi[i,3]<-r%*%Xn[i,3]+(1-r)*Z3+(Xn[i,j]-X0)
if(i>1)
Zi[i,1]<-r%*%Xn[i,1]+(1-r)%*%Zi[i-1,1]+(Xn[i,j]-Xn[i-1,j])
Zi[i,2]<-r%*%Xn[i,2]+(1-r)%*%Zi[i-1,2]+(Xn[i,j]-Xn[i-1,j])
Zi[i,3]<-r%*%Xn[i,3]+(1-r)%*%Zi[i-1,3]+(Xn[i,j]-Xn[i-1,j])
} }
      }
round(Zi,2)
Tn<-matrix(0,m,1)
t1 < -matrix(0,1,3)
s1<-matrix(0,3,3)
for(i in 1:m)
{ Tn[i,]<-t(Zi[i,])%*%Si[,]%*%Zi[i,] }
round(Tn,2)
h4<-matrix(5.417,m,1)
shift<-matrix(0,m,1)</pre>
for(i in 1:m)
{ if(Tn[i]>h4[i])
shift[i]<-1
else
shift[i]<-0
}
shift
n1<-matrix(0,m,1)
for(i in 1:m)
{ n1[i]<-i}
n1
plot(n1,Tn,type="1",xlab="Observations",ylab="Tn^2",main="MMOEWMA,p=3")
lines(h4)
##End of program
```

GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2013

WWW.GLOBALJOURNALS.ORG