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Abstract8

Cloud computing is a market-oriented computing paradigm with virtually unlimited scalable9

high performance computing resources. The High level middleware services for cloud10

computing and cloud workflow systems are research frontier for both cloud computing and11

workflow technologies. In this paper, the extension of Cloud management infrastructure with12

Service Level Agreement (SLA) aware application and motivating scenario for the13

development of the scheduling heuristic after which, the detail design and implementation of14

the heuristic are mentioned.15

16

Index terms— qos, SaaS, SLA, lom2his, cloudsim, vm, iaas, PaaS.17

1 Introduction18

Loud Computing is a computing paradigm [2,6] that refers to variety of services available on internet which19
delivers computing functionality on the service provider’s infrastructure. Cloud is a pool of virtualized computer20
resources and may be hosted on grid or utility computing environments [1,7]. Its potential feature which21
includes the ability to scale, to meet changing users demand, separation of infrastructure maintenance duties22
from users, location of infrastructure areas with electricity, sharing of peak load capacity and so on. In this23
modern technical ear, the recent popularity of cloud computing on the scenario of data and computation and24
investigation of intensive scientific workflow applications like, climate modeling, earthquake modeling, weather25
forecasting, disaster recovery simulation, Astrophysics and high energy physics [5,8,9]. These scientific processes26
can be modeled or redesigned as scientific cloud workflow specifications at build-time modeling stage [5]. These27
specifications contain number of data computation activities and their non-functional requirements such as Quos28
constraints on time and cost basis [10]. At runtime execution stage, with the support of cloud workflow execution29
functionalities such as workflow scheduling [11], load balancing [3] and temporal verification [4], cloud workflow30
instances are executed by employing the time and cost basis [10]. At runtime execution stage, with the support31
of cloud workflow execution functionalities such as workflow scheduling [11], load balancing [3] and temporal32
verification [4], cloud workflow instances are executed by employing the supercomputing and data sharing ability33
computing infrastructures with satisfactory Quos. Scientific applications are time constrained which required to34
be completed by satisfying a set of temporal constraints and global temporal constraints. The task execution time35
is the basic measurements for system performance, which need to be monitored and controlled by specific system36
management mechanisms. To ensure satisfactory temporal correctness and on time completion of workflow37
application is a critical issue for enhancing the overall performance. Cloud customers are interested in cost38
effective deployment of single applications in clouds, which is common in the Software as a Service (SaaS) delivery39
model. Commercial cloud providers such as sales force [24] are offering the provision for single applications based40
on agreed SLA terms. Commercial providers use custom techniques, which are not open to the general public.41
To foster competitive cloud market and reduce cost, the need for open solutions is must. their applications on the42
Cloud resources based on the pre agreed SLA objectives. The application of how to deploy the available virtual43
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3 ALGORITHM

machines in the Cloud to ensure their performance and enforce the agreed SLA objectives including the challenge44
to manage resources to achieve high utilizations and maximum deployments by grid scientific computing [17].45
A novel scheduling heuristic considering multiple SLA parameter objectives, such as amount of required CPU,46
network bandwidth, and storage in deploying applications on Clouds is mentioned. The heuristic includes a47
load-balancing mechanism for efficient distribution of the applications’ execution on the Cloud resources. We48
also present a flexible on-demand resource allocation strategy included in the heuristic for automatically starting49
new virtual machines (VM) when a non-appropriate VM is available for application deployment. The concept50
and detailed design of the heuristic including its implementation in the Clouds simulation tool [15,16]. The51
scheduling strategy proposed in this section is integrated into the LoM2HiS framework as shown in Figure -2.52

2 Resource Provisioning53

The idea of Cloud computing is to provide resources as a service in a flexible and scalable manner [14]. There54
are three well known types of resource provisioning [21,23] in Cloud:55

i. Infrastructure as a Service (IaaS) that offers bare hardwires such as the physical machines, storage devices,56
and network infrastructures as a service. Amazon EC2 [12] is an example of IaaS offering; ii. Platform as a Service57
(PaaS), which delivers platform for application development and deployment as a service [20]. It typically utilizes58
virtualized resources in form of virtual machines that are capable of provisioning resources to applications. A59
typical example of PaaS service is the Google App Engine [20];60

iii. Software as a Service (SaaS) offering resources for the provisioning of single Applications in a Cloud61
environment. Vendors of SaaS include salesforce.com [24].62

The Cloud provisioning and deployment model presented in Figure -3 shows a scenario combining the three63
different types of resource provisioning to host service requested from customers. The customers place their64
service deployment requests to the service portal, which passes the requests to the request processing component65
to validate the requests. If the request is validated, it is then forwarded to the scheduler. The scheduler selects66
the appropriate VMs through the provisioning engine in PaaS layer for deploying the requested service and the67
load balancer balances the service provisioning among the running VMs. The provision engine manages the VMs68
on the virtualization layer and the virtualization layer interacts with the physical resources via the provision69
engine in IaaS layer. The low-level resource metrics of the physical resources at the IaaS layer are monitored by70
the LoM2HiS framework [19]. The service status and the SLA information are communicated back to the service71
portal [22]. Although, the scenario described above is a possible way of combining the three types of resource72
provisioning, there exist other scenarios like provisioning of virtual machines alone and provisioning of physical73
resources alone, which are possibilities of provisioning at the single layers alone.74

However, our approach aims to provide an integrated resource provisioning strategy. The proposed scheduling75
heuristics considers the three layers. Efficient resource provisioning and application deployments at these layers76
are not trivial considering their different constraints and requirements. At the IaaS layer the physical resources77
must be managed to optimize utilizations. At the PaaS layer, the VMs have to be deployed and maintained on78
the physical host considering the agreed SLAs with the customer. The proposed scheduling heuristic [18] aims79
at deploying applications on virtual machines based on the agreed SLA objectives. Moreover, the integrated80
load-balancer in the heuristic ensures high and efficient resource utilization; consequently saving the provider the81
cost of maintaining unused resources. In this work, we assume that the SLA terms between the customer and the82
Cloud provider are already established. Thus, the processes of SLA specification, negotiation, and establishment83
are out of scope for this work, but there is ongoing research work where the Vie SLAF framework [13] is used to84
address the issues. By the pseudo code presented in Algorithm -1, the scheduler receives as input the customers’85
service requests (R) that are composed of the SLA objectives (S) and the application data (A) to be provisioned86
(line -1 in Algorithm -1). The request can be expressed as R = (S, A). Each SLA agreement has a unique87
identifier id and a collection of SLA Objectives (SLOs). The SLOs can be defined as predicates of the form:88

3 Algorithm89

( ) { } , , , , comp with , , = ? > ? < ? i i id comp x SLO ?90
Where x i ? {Bandwidth, Memory, Storage, Availability} represents sample SLA parameters, comp the91

appropriate comparison operator, and ? i the values of the objectives.92
The basis for finding the virtual machine with the appropriate resources for deploying the application, gathers93

the output of the scheduler and the confirmation about successful deployment or error message in case of failure.94
In first step, it extracts the SLA objectives information about the total available resources (AR) and the number95
of running virtual machines in the data center (line -2). The SLA objectives are used to find a list of appropriate96
virtual machines (AP) capable of provisioning the requested service (R). This operation can be expressed as:{ }97
R) (VM, capable AR, VM : ) , ( ? = VM AR R AP98

Where capable (VM, R) is a predicate that returns true if the virtual machine is capable of provisioning the99
particular request or false otherwise (lines 3-4). Once the list of VMs is found, the loadbalancer decides on which100
particular VM to deploy the application in order to balance the load in the data center (lines 5-8).101

In case no VM, the appropriate resources running in the data center, the scheduler checks if the global resources102
consisting of physical machines can host new VMs (lines 9-10). If that is the case, it automatically starts new103
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VMs with predefined resource capacities to provision service requests (lines [11][12][13][14]. When the global104
resources cannot host extra VMs, the scheduler queues the provisioning of service requests until a VM with105
appropriate resources is available (lines [15][16]. If after a certain period of time, the service requests cannot106
be scheduled and deployed, the scheduler returns a scheduling failure to the Cloud admin, otherwise it returns107
success (lines 17-27). The load-balancer shown in Algorithm -2 is not an extension of Next-Fit algorithm and108
has two core differences like: i. It does not fill a box to the full before starting to fill another one and ii. It goes109
back to the half filled boxes to add new items.110

The similarity lays in each iteration, does not put items in the last filled box unless there is no other appropriate111
box among all the boxes. In Algorithm -2, the load balancer receives as input the appropriate VM list (line -1 in112
Algorithm -2). It first gets the number of available running VMs in the data center in order to113

know how to balance the load among them (line -2).114
Then it gets a list of used VMs, i.e., VMs that are already provisioning applications (line -3). If this list115

is equal to the number of running VMs, it clears the list because all the VMs are currently provisioning some116
applications (lines 4-7). The first VM from the appropriate VM list can be selected for the deployment of the new117
application request. The selected VM is then added to the list of used VMs so that the load -balancer does not118
select it in the next iteration (lines 8-15). The load-balancer tries to place one application on each VM running119
in the data center in the first phase after which it goes back again to place new applications on the VMs. The120
idea is that VMs executing less number of applications perform better than ones executing many applications121
while the others are running empty. The load-balancer alone has a total worst-case complexity of 0(n 2 ) in load122
balancing and selecting the specific VM for application deployment. This worst-case complexity is attributed123
by two processes: i. By the processes of selecting the specific VM, which has a worst-case complexity of 0(n)124
because the load balancer in worst case has to go through the appropriate VM list of n size to select a specific125
VM ii. By the processes of balancing the load among the VMs, which has a worse-case complexity of 0(n).126

The Algorithm -2 shows lines 8-14, this process is a sub-process of selecting the specific VM. Thus, the total127
worst-case complexity is of 0(n 2 The scheduling heuristic without the loadbalancer has a worst-case complexity128
of 0(m + n). This complexity is defined by the processes of finding out the resource capacities of the m physical129
machines and n available virtual machines in the data center. Other operations of the heuristic have constant130
complexity (0(1)) except the process of checking the available resources on the physical machines in order to start131
new VMs, which has a worst-case complexity of 0(m).132

The total worst-case complexity of the proposed heuristic is a result of the sum of the scheduling heuristic133
complexity and the load-balancer complexity expressed at run time is:) ( 0 ) ( 0 ) ( 0 2 2 m n n n m + = + +134
IV.135

4 Implementation136

The proposed scheduling heuristic is implemented as a new scheduling policy in the Clouds simulation tool for137
the purpose of evaluation offering with unique features are:138

i. Support for modeling and simulation of large scale Cloud computing environments including data centers,139
on a single computing machine ii. A self-contained platform for modeling Clouds, service brokers, resource140
provisioning and application allocation policies iii. Capability of simulating network connections among simulated141
components iv. Support for simulation of federated Cloud environment able to network resources from both142
private and public providers. v. Availability of virtualization engine that aids in creation and management of143
multiple, independent, and co-hosted virtualized services on a data center’s physical machine vi. Ability to switch144
between spaces shared and timeshared allocation of CPU cores to virtualized resources.145

Clouds components shown in the custom extensions layer in Figure -4, has infrastructure level services as146
modeled by the core layer representing the original Clouds data center, with homogeneous or heterogeneous147
configuration of their hardware. Each data center instantiates a resource provisioning component that implements148
a set of policies that allocates resources to computing host and virtual machines. The two groups of Java classes149
in clouds are: i) The control policy classes ii) The simulation specific classes150

The control policy classes include the implementations of a new data center broker for interfacing with the data151
center and our proposed scheduling heuristic. The data center broker is responsible for mediating negotiations152
between customers and Cloud providers in respect of allocating appropriate resources to customer services to153
meet their application’s Quos needs and to manage the provider resources in the Clouds.154

The extended data center broker includes the capability of running dynamic simulations by removing the155
burden of statically configuring the whole simulation scenario before starting .With this feature one can156

5 Evaluation157

The evaluation of the scheduling heuristic demonstrates the resource utilization by the scheduler. It further shows158
the higher application performance obtainable while compared to an arbitrary task scheduler. The evaluations159
presented here are realized using the Clouds simulation tool [16].160

Here, we begin with the experimental setup and configuration descriptions and basic experimental configu-161
rations. The experimental test bed is setup as described in Figure -5. It demonstrates the processes of placing162
service request by customers and how our proposed scheduler deploys the service on appropriate Cloud resources.163
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7 B) APPLICATION PERFORMANCE COMPARISON

The Cloud resources comprise physical and virtual machines. Table -1 shows the resource capacities of the164
physical machines and the configuration parameters of the virtual machines. Based on the capacities of the165
physical machine resources and the sizes of the virtual machines, we can start several virtual machines on one166
physical host in the Clouds simulation engine. To achieve a reasonable application deployment scenario, we use167
two types of applications each with its own SLA terms to realize heterogeneous workloads. The first workload is168
extracted from a Web Application (WA) for an online shop and the second workload is a trace of High Performance169
Computing (HPC) application represented by an image rendering applications such as POV-Ray. Guaranteeing170
these SLA terms ensures the good performance of the application executions. The evaluation of the efficiency171
of the proposed scheduler for deploying customer service requests and utilizing the available Cloud resources.172
The test essence of the on-demand resource provisioning feature, simulate a large data center made up of 60173
physical machines and 370 virtual machines. The capabilities of the scheduler are evaluated into two groups: i)174
Fixed resource ii) On-demand resource In the fixed resource group the on-demand resource provisioning feature175
is deactivated while in the on-demand resource group, it is activated. The essence of these two groups is to176
demonstrate the advantages of the on-demand resource provisioning feature. Each group runs three scenarios:177
i. The first scenario handles the deployment of only web applications’ service requests. ii. The second scenario178
deals only with HPC applications. iii. The third scenario deals with a mixture of web and HPC applications.179

The three scenarios are intended to cover real world deployment situations in the sense that they handle180
applications from different categories, which exhibit different behaviors in terms of resource consumption. In the181
scenarios, the service requests are randomly generated and sent to the scheduler for scheduling and deployment.182
Next, we describe the achieved results in two groups.183

6 i. Fixed resource group184

The scheduler schedules and deploys the applications on the available running VM in the data center without185
the flexibility of starting new VMs when required. The results achieved by the three scenarios of this group are186
presented in Figure -6. The second bar shows the total deployment efficiency achieved by the scheduler. The187
deployment efficiency is calculated by counting the total number of deployed service applications in relation to188
the total number of requested services. In this scenario a total of 1480 service applications are deployed whereas189
a total of 1500 service requests were made. This gives a deployment efficiency of 98. 67%. About 20 service190
requests could not be provisioned due to lack of resources on the available VMs.191

The results of the second evaluation scenario dealing with only HPC applications are presented as Scenario192
-2 in HPC applications cause some resource fragmentation leaving some resource fragments that are not usable193
by the scheduler. The second bar represents the deployment efficiency of this scenario, which is 61.73%. This is194
significantly better than the deployment efficiency achieved in the second scenario. This increase in deployment195
efficiency is attributed by the heterogeneous workload whereby the number of HPC applications’ requests is196
smaller than in the second scenario.197

ii. On-demand resource group In this group, it is possible for the scheduler to flexibly start new VMs when198
necessary as far as there are available resources on the physical machines. This feature allows for higher service199
request deployment and better usage of the resources at the data center. The results obtained by the three200
evaluation scenarios of this group are depicted in Figure -7. The first bar shows that the scheduler achieved 100%201
utilization in this case. The observation in this scenario as compared to the first scenario of the fixed group is202
the 100% deployment efficiency achieved, which is shown by the second bar. The scheduler made advantage of203
the flexible ondemand resource provisioning feature to start extra four virtual machines to fully deploy the whole204
service requests. Although the resources were fully utilized, the scheduler could only achieve 80% deployment205
efficiency. This is better result than 49.67% achieved by the equivalent scenario in the fixed group. The scheduler206
created extra 229 VMs for the applications deployments thereby reaching the limits of the physical machines and207
could not achieve 100% deployment efficiency due to ultimate lack of resources in the data center. This problem208
could be addressed with Cloud federation paradigm. Scenario 3 in Figure -7 depicts the results of the third209
evaluation scenario dealing with a mixture of web and HPC applications. The scheduler achieved 98% resource210
utilization due to resource fragmentations caused by the heterogeneous workload and resource over provisioning.211

The last two VMs started on-demand were under-utilized. 100% deployment efficiency was achieved in this212
scenario by starting 215 VMs ondemand. Comparing the results achieved by the former group scenarios (Figure213
-6) against those of the later group (Figure -7), it can be clearly seen that the later group obtained much better214
resource utilization rates and deployment efficiencies. This demonstrates the effectiveness and relevance of our215
proposed scheduling approach in a Cloud environment.216

7 b) Application Performance Comparison217

The performance of applications being provisioned in the Cloud simulation test bed but application performance218
is evaluated in two aspects using the scenarios of the previous section: i) Response time for the web applications219
ii) Completion time for the HPC applications220

The result achieved is compared by the proposed scheduler with that achieved by an arbitrary task scheduler.221
Table 3 presents the applications performance results. The results show the average response time and completion222
time of the applications while deployed by the two schedulers. It can be clearly seen that our proposed223
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scheduler is two times better than the task scheduler. The good performance of our scheduler is attributed224
to the fact that it considers multiple performance objectives before deciding on which resource to deploy an225
application thereby finding the optimal resource combination for the application best performance, whereas the226
task scheduler considers mainly single objectives in its deployment, which cannot provide the optimal resources227
for the application best performance. Note that in Table 3 the on-demand resource provisioning feature applies228
only to our proposed scheduler.229

8 Conclusion230

Scheduling and deployment strategies are means of achieving resource provisioning in Cloud environments. A231
further contribution of this thesis is the development of a novel scheduling heuristic considering multiple SLA232
objectives in deploying applications in Cloud environments. The heuristic includes loadbalancing mechanism for233
efficient distribution of the applications’ execution among the Cloud resources. A flexible on-demand resource234
usage feature included in the heuristic for automatically starting new VMs when non-appropriate VM is available235
for the application deployments is presented. The design of the heuristic and its implementations with proposed236
scheduling heuristic using the Clouds simulation tool is discussed.237

In order to manage the deployment of multiple applications on a single virtual machine, a proposed application238
monitoring architecture (CASViD), which monitors and detects SLA violations at the application layer in Cloud239
environments. The evaluated architecture on a real Cloud test bed using three types of image rendering240
application workloads with heterogeneous behaviors necessary to investigate different application provisioning241
scenarios and to automatically determine the optimal measurement intervals to monitor the application242
provisioning. By experiments, the proposed architecture is efficient in monitoring and detecting individual243
application SLA violation situations. Further one can automatically find the optimal measurement intervals by244
sampling different ones and checking their net utility values. With the realization of CASViD, the capabilities245
of monitoring and detecting SLA violations of single customer applications being provisioned in a shared host,246
in addition to the previous resource monitoring techniques, a holistic monitoring model capable of monitoring at247
different layers in Clouds is provided. 1 2 3 4
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Figure 8: Figure 6 :

1

Machine Type = Physical Machine
OS CPU Core CPU Speed Memory Storage Bandwidth
Linux 6 6000 MIPS 3.072 GB 30000

GB
3 Gbit/s

Machine Type = Virtual Machine
OS CPU Core CPU Speed Memory Storage Bandwidth
Linux 1 1000 MIPS 512 MB 5000

GB
500
Mbit/s

Figure 9: Table 1 :

2

Application Type CPU Power Memory Storage Bandwidth
Web 240 MIPS 130 MB 1000 GB 150 Mbit/s
HPC 500 MIPS 250 MB 2000 GB 240 Mbit/s
a) Deployment Efficiency and Resource Utilization

Figure 10: Table 2 :
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