
Load Balancing and Job Migration Algorithms for Autonomic1

Grid Environment2

Paritosh Kumar1, Paritosh Kumar2 and Monika Singh33

1 Ramjas College, University of Delhi4

Received: 7 December 2013 Accepted: 4 January 2014 Published: 15 January 20145

6

Abstract7

Resource management and load balancing are the main areas of concern in a distributed,8

heterogeneous and dynamic environment like Grid. Load balancing may further cause Job9

migration or in some cases resubmission of Job. In this paper a number of job migration10

algorithms have been surveyed and studied which have resulted because of the Load balancing11

problem. A comparative analysis of these algorithms has also been presented which12

summarizes the utility and applicability of different algorithms in different environment and13

circumstances.14

15

Index terms—16

1 Introduction17

rid has a number of resources working independently with different processing capability and processes different18
workloads accordingly. Grid computing joins all the scattered resources into a large problem solving heterogeneous19
environment for different types of applications, which can run in parallel. Considering the whole distributed20
system as one unit, workload should be evenly distributed over all the resources as per the configuration of the21
system, to minimize the job execution time. Therefore, Load balancing and resource management are major22
areas of concern for a Grid environment.23

Main objective of load balancing is to optimize the response time of the application by which workload would be24
maintained according to resources. There are broadly three reasons which are the major causes of load balancing,25
resubmission of jobs and job migration; heterogeneity of resources, dynamic nature of resource’s performance and26
diversity of applications in case of Grids [3]. This is even more crucial in computational Grid where the main27
concern is to fairly assign jobs to resources and to minimize the difference between the heaviest and the lightest28
resource load [4].29

This paper presents a survey of job migration algorithms and techniques, which is done to balance the load in30
a Grid environment. It also compares and construes the applicability of each technique as per the requirement.31
The paper is organized as: Section 2 contains background of load balancing, and job migration. In Section 3,32
existing job migration algorithms are discussed. In the section 4, describe the proposed load balancing algorithm.33
Finally Section 5 concludes the paper and provides the future scope of work.34

2 II. Load Balancing and Job Migration35

Load balancing is main area of concern in distributed environment whereas job migration is one of the best36
solutions to handle load balancing problems.37

3 a) Load Balancing38

An important issue of distributed and heterogeneous environment is the efficient assignment of tasks and39
utilization of resources, commonly referred to as load balancing problem [13].40

Load balancing is required to disperse the resource’s load evenly so that maximum resource utilization and41
minimum task execution time could be possible. This is very crucial concern in distributed environment to42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

8 B) NODE RECONFIGURATION BY USER LEVEL THREAD MIGRATION

fairly assign jobs to resources. Generally, load balancing mechanisms can be broadly categorized as centralized43
or decentralized, dynamic or static, and periodic or non periodic [5]. All load balancing methods are designed44
such as, to spread the load on resources equally and maximize their utilization while minimizing the total task45
execution time. Selecting the optimal set of jobs for transferring has a significant role on the efficiency of the46
load balancing method as well as Grid resource utilization. This problem has been neglected by researchers in47
most of previous contributions on load balancing, either in distributed systems or in the Grid environment [7].48

Job migration is the only efficient way to guarantee that submitted jobs are completed reliably and efficiently49
in case of process failure, processer failure, node crash, network failure, system performance degradation,50
communication delay; addition of new machines dynamically even though a resource failure occurs which changes51
the distributed environment [12].52

Load balancing strategies aim to adapt the load optimally to the environment. However, they mainly consider53
the application running on a parallel, homogeneous system.54

4 b) Job Migration55

Grid is inherently a dynamic system where environmental conditions are subjected to unpredictable changes like56
system or network failures, system performance degradation, addition of new machines, variations in the cost of57
resources etc. Job migration is1 (D D D D D D D D)58

Year B the next step when there is no proper scheduling or resubmission of jobs. Whenever any resources59
encounter problem, then job migration to the next eligible system is suggested. Migration behavior of jobs lead60
to the assumption that small sites tend to migrate resourcedemanding jobs, while large sites confine to pass only61
small jobs to the central job pool. Job migration is the only efficient way to guarantee that the submitted jobs62
are completed and that the user restrictions are met [10].63

Job migration mechanisms, which take the nondedicated and dynamic natures of Grids into consideration,64
become important for optimizing the application performance [13]. Job monitoring, rescheduling and check65
pointing are some steps involved in job migration. Job monitoring contains all performance related data of all66
the resources so that it could initiate the migration. Further this information is reported to the rescheduler,67
which evaluates if it is worth Migrating the job, and in that case, decides a new allocation for the job. Check68
pointing is capturing a snapshot of the state of a running job, in such a way that the job can be restarted from69
that state in a later time in case of migration.70

5 III.71

6 Survey of Existing Job Migration Algorithms72

There are many mechanism but only five mechanism is surveyed here which is surveyed here. Which are Virtual73
machine migration, node reconfiguration method, check pointing, Robin-hood algorithms and load based graph74
method.75

7 a) Virtual Machine Migration (Live Migration)76

In Virtual machine migration snapshots of machine are sent to other machine that’s why it is called the virtual77
machine migration. There are two methods for virtual machine migration. First one is live migration and second78
one is regular migration [1]. In live migration, running domain between the different host machines is migrated79
without stopping the job. In between it stops job and gathers all required data then resumes. But this happens80
only in same layer -layer network and IP subnet. In regular migration generally stop the job then migrated.81

An important aspect of this mechanism is to make the run-time job migration with non-dedicated shared82
resources in dynamic Grid environment. Virtual machine migration provides high isolation, security and83
customization environment in which administrator privileges the user to execute the work. Ether IP and IP84
tunneling are required while migrating in this mechanism. This algorithm redistributes the load coming to any85
particular node, which may be the old connected node or newly added node for that load.86

8 b) Node reconfiguration by User Level Thread Migration87

This mechanism makes application workload migrate from source node to destination node, and then let88
source node depart from original computing environment .There are two mechanism for this, first one is node89
reconfiguration by user-level thread migration and another one is node reconfiguration by kernel level thread90
migration. Node reconfiguration by user level thread migration has been discussed in this survey.91

There is two-implementation fashion of node reconfiguration. One is synchronous method and the other is92
asynchronous method. In synchronous method, all nodes are paused during reconfiguration. On the other hand,93
in asynchronous method all nodes continue to work simultaneously with reconfiguration. Synchronous method94
may make performance down even though it is easier to design. Alternatively, better performance can be obtained95
by asynchronous method as long as more attention paid to correctly maintain the order of node reconfiguration96
messages [1].97

Information regarding redistribution of workload and how to add/delete nodes is present in the implementation98
of node reconfiguration mechanism. With the help of user level thread migration, which is already supported99

2

by the thread package workload, is redistributed here. Same as virtual machine migration, node reconfiguration100
mechanism also needs to transfer in memory states from source node to destination node.101

9 c) Check-Pointing Approach102

Checkpoint is defined as a designated place in a program at which normal processing is interrupted specifically103
to preserve the status information necessary to allow resumption of processing at a later time. By periodically104
invoking the check pointing process, one can save the status of a program at regular intervals. If there is a failure105
one may restart computation from the last check point thereby avoiding repeating the computation from the106
beginning. The process of resuming computation by rolling back to a saved state is called rollback recovery [2].107

There are three types of check pointing implementations: kernel-level, user-level and application level. These108
implementations differ in level of transparency, efficiency and mechanism used to initiate checkpoint and restart.109
In kernel level check pointing user does not have to change the application at all so least efficient, because110
system does not have the knowledge about the application. Developer achieves user level check pointing, and111
he puts or implements some set of procedures that handle check pointing and restart. Developer knows all112
about the application that’s why this approach is more efficient. The developer itself achieves application-level113
check pointing. This approach is the most efficient, because developer has detailed knowledge about application.114
This is very useful in case of preemption and migration and is used in making fault tolerant systems. Most115
common benefit of the check pointing technology is the high level of fault tolerance offered by the applications116
that can be check pointed. Besides it used to recover from failures, check pointing is also used in playback117
debugging distributed programs, migrating processes in a multiprocessor system, software rejuvenation and118
optimistic simulation.119

Check pointing balances the load of processors in a distributed system; processes are moved from heavily120
loaded processors to lightly loaded ones. Check pointing process periodically provides the information necessary121
to move it from one processor to another.122

10 d) Robin Hood: An Active Objects Load Balancing Mecha-123

nism for Intranet124

Robin Hood algorithms present a new totally non centralized solution, multicast channel to communicate, and125
synchronize the processors and proactive tools to migrate jobs between them. Proactive techniques are very useful126
and provide the mobility and security in uniform framework. This work focuses on dynamic load balancing. Main127
objective of this algorithm is to improve the decision time in non-centralized environment.128

In this mechanism two basic things have been considered, first one to know about the local load and second129
one transfer the load from high dense node to the less loaded node. This uses the non-centralized architecture and130
non-broadcasting of the balance of each node to reduce the overload in network. This is totally non-centralized131
load balancing mechanism, using the proactive library for the migration of jobs, and a multicast channel for node132
coordination.133

11 e) Load Graph Based Transfer Method134

Load based graph method is based on network graph where each node is represented with its load, whereas load135
can be the number of users, average queue length or the memory utilization. It uses analytic model and single136
load determination policy throughout the system and load is determined on the basis of memory utilization and137
average queue length. This algorithm is based on three layered structure. Top layer is load balancing layer which138
takes care of token generation, taking decision about task transfer; middle one is called monitoring layer and acts139
as an interface between top and middle and monitors load changes and third one called communication layer140
which take care of actual task transfer.141

Here token is generated on the basis of outgoing and incoming edges and initialized on the basis of some142
specific value HWM & LWM (Highest Water Mark, Lowest Water Mark). Specific values are decided on the143
basis of load value of neighbors. Nodes having load value greater than HWM and are local maxima or nodes144
having load value less than LWM and are the local minima, can initiate token [9].145

Maximum message transfer per node, if N is number of nodes and X is maximum message transfer per node146
Total message transfer =NX And transfer of task will occur only if there would be proper load difference between147
the nodes as 1. La -Lb > M where M is the required Load difference for the task transfer.148

Token will be generated if following conditions will be satisfied 1. For nth node (Load) n > L where L is149
maximum Load where load balancing is not required. 2. (Load) n > ? sum of load of all nodes If both conditions150
are satisfied then the token is generated in more than sixty percent of the cases where load imbalance exists token151
finds out the proper node for the task transfer which improves the system performance [9]. In this algorithm152
along with the task transfer among the neighboring nodes with the token transfer method care is taken to avoid153
the starvation of those nodes for which neighbors are not suitable for the task transfer.154

The major parameter, network-partitioning issues along with inter-cluster and intra-cluster transfers for155
decision making of load balancing for the transfer is considered here.156

3

15 CONCLUSION

12 IV. Proposed Load Balancing Algorithm157

Proposed load balancing algorithm is developed considering main characteristics like performance, throughput,158
and resource utilization.159

13 a) Architecture of Load Balancing System160

This section discusses about the architecture of load balancing algorithm-imposed system. Figure ??.2 presents161
a pictorial view of the system. Monitor server uses monitoring tool to gather information about all the connected162
nodes. This resource information is managed, processed and updated to a database. This information is accessed163
through web pages and is presented to the users. The web pages can be accessed from any nodes at the same164
network.165

14 c) Complexity of Proposed Load Balancing Algorithm166

Complexity is a measure of the performance of an algorithm in term of CPU time and memory usage. In this167
case computational complexity has been considered as this algorithm is for grid environment.168

15 Conclusion169

Load balancing is a key issue in grid resource management and results in job migration or resubmission of job.170
In this paper load balancing and job migration algorithms have been surveyed and studied which have been171
designed for different scenarios. Based on all these algorithms new algorithm have been introduced, considering172
main characteristics like performance, throughput, and resource utilization.173

Different algorithms do well in their respective contexts like multiple token policy results in optimal resource174
selection and minimum migration time where as Robin-hood provides better security and checkpointing provides175
good results for fault tolerant systems. 1 2

41

Figure 1: Figure 4 . 1 :
176

1© 2014 Global Journals Inc. (US)
2© 2014 Global Journals Inc. (US) Global Journal of Computer Science and Technology

4

42

Figure 2: Figure 4 . 2 b

Figure 3:

5

15 CONCLUSION

6

[Ferreira et al.] , Luis Ferreira , Viktors Berstis , Jonathan Armstrong , Mike Kendzierski , Andreas Neukoetter ,177
Richard Takagi , Adeeb Bing-Wo , Ryo Amir , Murakawa , Olegario , James Hernandez , Magowan . Norbert178
Bieberstein. (Red Books” ibm.com/Redbooks)179

[Lan and Yu ()] ‘A Dynamic Central Scheduler load-Balancing Mechanism’. Y Lan , T Yu . Proc. 14th IEEE180
Conf. on Computers and Communication, (14th IEEE Conf. on Computers and CommunicationTokyo, Japan)181
1995. p. .182

[Chen et al.] ‘A Performance Study of Virtual Machine Migration vs Thread Migration for Grid Systems’. Po-183
Cheng Chen , -I Cheng , Sheng-Wei Lin , Jyh-Biau Huang , Ce-Kuen Chang , Tyng-Yeu Shieh , Liang . 22nd184
International Conference on Advanced Information Networking and Applications -Workshops,185

[Kalaiselvi and Rajaraman (2000)] ‘A Survey of Check-Pointing Algorithms for Parallel and Distributed Com-186
puters” v ol’. S Kalaiselvi , Rajaraman . Part October 2000. 25 p. .187

[Mohsen Amini Salehi Hamid Tabatabaee Yazdi, Mohammad Reza Akbarzade Toutoonchi (ed.)] An Optimal188
Job Selection method in Load Balancing Algorithms of Economical Grids, Mohsen Amini Salehi Hamid189
Tabatabaee Yazdi, Mohammad Reza Akbarzade Toutoonchi (ed.)190

[Mohsen Amini Salehi and Deldari] Balancing Load in a Computational Grid Applying Adaptive, Intelligent191
Colonies of Ants, Hossein Mohsen Amini Salehi , Deldari .192

[Yagoubi and Slimani (2006)] ‘Dynamic Load Balancing Strategy for Grid Computing’. Belabbas Yagoubi ,193
Yahya Slimani . Proceedings of World Academy of Science, Engineering and Technology 1307-6884. May194
2006. 13.195

[Yagoubi] ‘Hadj Tayab Lillia and Halima Si Mo ussa’. Belabbas Yagoubi . Load Balancing in Grid Computing,196

[Jankowski and Januszewski (2008)] Improving the fault-tolerance level within the GRID computing environ-197
mentintegration with the low-level check pointing packages” Core Grid, Gracjan Jankowski , Radoslaw198
Januszewski . TR-0158. June 16. 2008. (Rafal Mikolajczak Poznan)199

[Moreno and Alonso-Conde ()] ‘Job Scheduling and Resource Management Techniques in Dynamic Grid Envi-200
ronments’. Rafael A Moreno , Ana B Alonso-Conde . LNCS 2004. 2970.201

[Rips ()] ‘Load Balancing Support for Grid-enabled Applications’. S Rips . NIC Series 2006. 33 p. .202

[Neeraj Nehra et al. ()] ‘Load Balancing with fault tolerance and Optimal Resource Utilization in grid Comput-203
ing’. R B Neeraj Nehra , V K Patel , Bhat . Information Technology Journal 2007. 6 p. .204

[Kulkarni and Sengupta] Load Balancing with Multiple Token policy, Parag Kulkarni , & Indranil Sengupta .205

7

	1 Introduction
	2 II. Load Balancing and Job Migration
	3 a) Load Balancing
	4 b) Job Migration
	5 III.
	6 Survey of Existing Job Migration Algorithms
	7 a) Virtual Machine Migration (Live Migration)
	8 b) Node reconfiguration by User Level Thread Migration
	9 c) Check-Pointing Approach
	10 d) Robin Hood: An Active Objects Load Balancing Mechanism for Intranet
	11 e) Load Graph Based Transfer Method
	12 IV. Proposed Load Balancing Algorithm
	13 a) Architecture of Load Balancing System
	14 c) Complexity of Proposed Load Balancing Algorithm
	15 Conclusion

