
Overlapped Text Partition Algorithm for Pattern Matching on1

Hypercube Networked Model2

Assoc. Prof. Ksmvkumar13

1 Jawaharlal Nehru Technological University4

Received: 8 December 2012 Accepted: 5 January 2013 Published: 15 January 20135

6

Abstract7

The web has been continuously growing and getting hourglass shape. The indexed web is8

measured to contain at least 30 billion pages. It is no surprise that searching data poses9

serious challenges in terms of quality and speed. Another important subtask of the pattern10

discovery process is sting matching, where in which the pattern occurrence is already known11

and we need determine how often and where it is occurs in given text. The target of current12

research challenges and identified the new trends i.e distributed environment where in which13

the given text file is divided into subparts and distributed to N no. of processors organized in14

hypercube networked fashion .To improve the search speed and reduce the time complexity we15

need to run the string matching algorithms in parallel distributed environment called as16

hypercube networked model using RMI method. we considered both KV-KMP and17

KV-boyer-moore string matching algorithms for pattern matching in large text data bases18

using three data sets and graph’s drawn for different patterns.19

20

Index terms— indexed web, pattern, text, distributed, hypercube network, RMI method, and string21
matching.22

1 Introduction23

tring matching diversely used in many areas of computer sciences. It has been one of the prominent issues of24
information retrieval system. Some standard algorithms have been used for processing text files against patterns,25
for example in manipulation of text, text compression, network analysis and also in data retrieval systems. The26
algorithms studied in the present character forms the basic components in its software implementation and also27
serve as a model in fields of computer science like system design purposes, web search engines, computer virus28
signature matching and networking [1]. Rapid growth of abundant information makes necessary to have efficient29
methods for information retrieval.30

Coping with the growth of the web and query traffic requires scalable information retrieval systems. Today31
commercial search engines are fully automatic and their web index on a few data centers [2]. It is tedious task to32
come up with scalable indexing and query processing techniques for next generation IRS in the coming future.33

The web comprises wide variety of content in the form of structured Meta data, databases, maps, images,34
videos and textual documents etc. [1]. The main challenge of present IRS may be scalability. A recent trends35
envisions that the number of servers required by a search engines to keep up with the load in 2010 may be in36
the order of millions as such the text size is increasing to tens of billions of pages [1,2]. Hence it is very urgent37
to design a truly distributed large scale systems that enables fast and accurate search over very large amount of38
content [15]. In this paper we mainly focus on pattern matching on distributed environment called as hypercube39
network model using RMI method ??14]. Given a pattern may be more common or more specific, we wish to40
count how many times it occurs in the text and to point out its occurrence positions. For pattern matching we41
used Kumar Viswanadha-KMP and Kumar Viswanadha-Boyer Moore string matching algorithms for different42
text files against different pattern files [2, ??]. Basically Boyer -Moore algorithm is works based on two heuristics:43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

4 SOFTWARE BASED STRING MATCHING ALGORITHMS

bad character heuristics and good suffix heuristics. The text files is partitioned and processed in two ways, one44
is non-overlapping and second is overlapping text partitioned processing [2]. In both the cases KV-KMP and45
KV-BM are applied for string matching (pattern matching) and the remote server will be invoked using JAVA46
RMI method on hypercube networked model to reduce the search time.47

The paper is organized as follows section II deals with literature survey of string matching in parallel48
environment, section III deals with text processing techniques called as overlapping and non-overlapping text49
partitioned in divide and conquer paradigm. Section IV explains about the hypercube model networked systems.50
Section V presents experimental setup. Result analysis and discussions were discussed in section VI and VII is51
conclusion. Section VIII gives the references.52

2 II.53

3 LITERAURE SURVEY54

Large amounts of data and textual information has been continuously increasing in many fields of information55
systems. Rapid growth of abundant information makes necessary to have efficient methods for information56
retrieval [1]. This chapter will give an idea how far the algorithms have helped in achieving the desired information57
along with its time complexities. String matching scan be accomplished by designing algorithms in two categories58
namely, exact string Year matching algorithms that locates exact match of the pattern in the text string or59
source string and approximate string matching algorithms that finds closest possible match of pattern in the60
text with some mismatches. Exact string matching problem can be addressed in two ways software based61
approach or hardware based approach. Software based algorithms are slow on comparison with hardware based62
[22]. Hardware based solutions to string matching provides efficient data storage and fast matching [12]. String63
matching application in network intrusion detection systems require that the matching shall be accomplished64
at wire speed , software based solutions could not afford this, due to which hardware based algorithms are65
chosen mostly over software grounded algorithms. The algorithms discussed below addresses mostly exact string66
matching. Text represents an important form of data involving a lot of operations [6]. Pattern matching is one67
of the problems encountered in text manipulation. It is about searching and locating substring within a sequence68
of characters in a raw text.69

4 Software Based String Matching Algorithms70

In 1972, Cook exhibited string matching using two way push down auto meta and solved pattern matching in71
O(m+n) time in worst case where m and n are the lengths of text and pattern respectively [19]. However in 197772
Rivest determined that every string matching algorithm must go through at least n-m+1 comparison at worst.73
This shows there is no solution of obtaining a sub linear n worst time in solving the issue. It means the time74
needed to run an algorithm must be a function of its input size. The next algorithm discussed makes an attempt75
to achieve a sub-linear matching time.76

Donald Knuth-Voughan Pratt-James H. Morrris (1977) basing on modifications of Cook’s theorem came up77
with a new string matching algorithm popularly known as KMP Algorithm, briefly discussed below ??3]. It is78
the first linear pattern matching algorithm discovered with a run time of O(m+n).79

i. Knuth-Morris-Pratt Algorithm Knuth Morris Pratt’s string matching algorithm employs exact string80
matching technique with linear time complexity ??3]. It involves pattern preprocessing .It scans the text81
string from left to right for pattern matching, while scanning the text it stores the information about the82
matched characters and whenever a mismatch occurs it uses this information to avoid unnecessary comparisons83
by sometimes shifting more than one position. It thus avoids backtracking and reduces the number of comparisons84
unlike naïve approach which wastes the scan information. The present algorithm uses a sliding window which85
slides over text string and makes shifts as per mismatches. It smartly shifts the pattern over text than the86
brute-force approach. Window shift uses a KMP formulated prefix function obtained by preprocessing pattern87
to reduce unnecessary comparisons. The algorithm uses this function to decide about the number of characters88
to be skipped while shifting the window whenever a mismatch takes place.89

ii. Aho-Corasick Algorithm Unix fgrep command implementation is based on Aho-Corasick algorithm which90
locates finite and fixed set of strings in a file and outputs the lines containing at least one of the strings [8].91
Consider a dictionary (X) containing a fixed set of strings and a text denoted by Y. Let k be the number of92
strings present in X. Suppose if we wish to find all the occurrences of all the strings of a dictionary. The simple93
solution would be to repeatedly implement few string matching algorithms on each string .The time complexity94
of this operation will be O(m+n*k), where m is the sum of the lengths of the k strings of dictionary X and95
n is the length of the text Y. This indicates the inefficiency of this approach as the text has to be read for k96
times. This problem is addressed by Aho-Corasick algorithm discussed below, it undergoes sequential read of the97
text and run time would be O(m+n).The present algorithm extends the weaker versions of Knuth-Morris-Pratt98
algorithm and also fastly matches a number of patterns at one time against a single text [3].99

This algorithm locates all the occurrences of finite number of keywords in a string of text. It involves100
construction of a finite state pattern matching machine, an automaton and then uses the machine for text101
processing in a single. A keyword is a finite set of strings denoted by K= y 1 , y 2 ,?y n and let X be an arbitrary102

2

text string. Pattern matching machine employs three functions namely, goto function g, failure function f, and103
output function output.104

iii. Boyer Moore Algorithm B ob Boyer and J. Strother Moore discovered this algorithm in the year 1977 which105
is known as one of the most efficient algorithms and also stands as a benchmark for string matching process [6].106
The algorithm compares pattern string within a sliding window over a text string, employing right to left scan107
of characters inside the window where as the window slides from left to right over the text. The aim of this108
algorithm is to avoid certain fragments of text that are not eligible for comparison. This decision is taken by109
placing the window in left alignment with text. The algorithm starts comparing the pattern characters with the110
text characters in the order of right to left. If ’m’ being the length of pattern (x), the algorithm compares x111
m =y m , where ’y’ symbolizes text. On true result of this comparison the procedure continues with x m-1 =y112
m-1 and on the occurrence of false, the algorithm makes two ways out. One is named as bad character shift or113
occurrence shift and the other is called as good suffix shift or better factor shift or sometimes matching shift. On114
grounds of these two measures the window makes shifts and locates the pattern. These measures are explained115
in the following paragraphs with an example demonstration.116

5 Global117

6 iv. Horspool Algorithm118

Boyer Moore algorithm uses two gauges to know shift distance. Good suffix shift is quite complicate to implement119
so there was a need of a simplified algorithm using bad character measure [7]. This algorithm is a simplification120
of Boyer -Moore algorithm based on bad character shift. It has been produced by Nigel Horspool in the year121
1980.The reason for this simplification is pattern is not always periodic. The concept used is when a bad character,122
reason for a mismatch is encountered; the shift decision is made by analyzing the characters towards the right of123
the text window.124

7 a. Working Principle125

The process starts by a window on text string of size equal to pattern. The scan of elements goes through right126
to left inside the window whereas the window slides from left to right over the text.127

When a mismatch is countered for some wt[i] != wp[j], 0 ? (i, j) < m, wt ? text window character and wp128
? pattern window character. Then the match of the right most character of the text window is looked in the129
pattern so that wt [m-1] = wt ??i], where 0? i < m -1, when both found the characters are therefore aligned130
causing a window shift.131

Case I: Suppose the bad character does not exist in the pattern then shift the whole window of size pattern.132
Case II: There exists two matches of the bad character in the pattern then the rightmost character is preferred.133

8 b) Hardware Based String Matching Algorithms i. Mishina134

Algorithm135

Mishina produced a string matching algorithm for vector processors in the year 1993.This algorithm is used by136
Hitachi’s pipelined vector processor and Integrated vector processor. A vector processor also known as an array137
processor is a CPU which executes instructions in a single dimensional array of data items [20]. Meaning it can138
perform parallel computations on the elements of array. The current algorithm works in two phases: cutout139
and check. In the first phase, that is in cutout segment the text string is divided into autonomous serviceable140
substrings so that each substring can be tested for equality with respective pattern strings in a pipeline using141
array processors. In the next phase, as the name indicates check phase, a string matching algorithm is employed142
to perform pattern matching. Here Aho-Corasick algorithm is applied to all substrings drawn from the cutout143
part. This way of applying string matching is ten times faster than the scalar string matching using Aho-Corasick144
algorithm.145

ii. Sidhu’s Algorithm for String Matching using Hardware Technology146
The algorithm is grounded on non-deterministic finite state machine (NFSM) for regular expression matching.147

In the field of computing, regular expression gives a concise meaning to ”match” ” ” ” ” [21]. The pattern148
can match one or more text strings. A non-deterministic finite state machine or automaton is a state machine149
resembles a directed graph that exhibits different states represented by nodes and edges designate character or150
empty string. The algorithm works by generating regular expressions for every string and NFSM examines the151
input at a speed of one byte at a time. This approach needs a time of O(m), m symbolize pattern length. NFSMs152
are tough to implement and requires rebuilding every time a string is added making it complicated.153

9 c) String Matching Based on FM-Index154

Despite of many algorithms presented on string matching, the present attempt to solve string matching problem155
uses FM-index technique that concatenates the attributes of suffix array and Burrows-Wheeler transformation156
[22]. To understand the working of this architecture the above concepts has to be acknowledged. The next157
segment of this section presents a detailed discussion of it.158

3

17 HYPERCUBE NETWORK TOPOLOGY

10 i. 2D-LARPBS159

It represents two-dimensional LARPBS. The model has the system’s buses arranged in a twodimensional set up160
that makes communication among buses more effective ??23]. It can be use for the design of both exact and161
approximate string matching. The construction of these algorithms is based on Hamming distance.162

11 ii. Hamming Distance163

Hamming distance measures the amount of inequality between two strings. It can be applied for error detection164
and correction. For any two strings it gives the number of the corresponding characters that are dissimilar. Using165
this measure the knowledge of closeness of two strings can be known and thus gives an idea about the operations166
to be done to obtain one string from another.167

12 a. Formal Definition of Hamming Distance168

For strings A and B with same length k, the Hamming distance H (A, B) is given by H (A, B) = no. of positions169
where A[i]!=B[i] and 0 <i< k.170

13 III.171

14 Text Processing Techniques172

Making text ready to be scanned for string search so that it helps yield reduced search time is text processing.173
In the previous chapter’s literature it was determined that to improve time complexities of string(D D D D D174
D D D)175

Year matching approaches parallelization has to be adopted. The root lead towards this starts with divide176
and conquers procedure and dynamic partition techniques intended for parallel processing, and are presented in177
the current chapter. a) Divide and Conquer Paradigm i. Introduction178

Decomposing a complex problem into two or more smaller sub-problems until a simple portion is obtained for179
easy solvability is dividing and conquer paradigm as the name suggests [2]. If the problem is easy it can be solved180
directly but if a complicated problem persists then breaking into its small instances and solving each instance181
independently resembles divide and conquer strategy. The solutions to the smaller versions of main problem are182
clubbed up to attain actual solution to the original instance. It adopts the recursive division while undergoing183
the breaking up of a problem. The goodness of using divide and conquer strategy lies in the point that it stands184
as a powerful tool in solving conceptually tough problems [12]. The algorithms implementing divide and conquer185
paradigm are often found to be efficient. It is also considered an apt algorithm to be executed in multiprocessing186
environment as distinct sub-parts of a problem can be executed in parallel on different machines. The general187
stages of this strategy would be divide, conquer (solve) and unite.188

15 b) Generic Divide and Conquer Algorithm189

Input: Problem P and n = Size (P) Output: S = Solution (P)190

16 Begin191

Step 1: If n is small Solve (P)192
Step 2: Else divide P into sub-problems p1 and p2 of lengths n1 and n2 respectively such that n1 ? n2 ? n/2193
Step 3: Conquer S1 ? solve (p1, n1) S2 ? solve (p2, n2)194
Step 4: Unite solutions to obtain actual solution S ? unite (s1, s2) End IV.195

17 Hypercube Network Topology196

A hypercube is a geometrical figure in four or more dimensions similar to a cube in three dimensions with197
all its edges having equidistant from their respective nodes. For an n-dimensional hypercube, there are 2 n198
vertices and n*2 n-1 number of edges. In a network, a node is a connection point or a redistribution point, more199
formally in a physical network it is an electronic device that can send, receive or forward information over the200
communication channel to other nodes in the network where as edges provides access to the network and also201
involves in transmitting information in a network over the nodes ??24]. A router is an example of an edge device202
in a network.203

In computer science, a hypercube network is a configuration of multiple parallel processors having distributed204
memory such that the locations of the processors are analogous to the vertices of a mathematical hypercube and205
the links correspond to the edges. For an n-dimensional hypercube, as mentioned above, it has 2 n processing206
nodes and n*2 n-1 edges coupled in an n-dimensional cube network. The 2 n nodes are designated by binary207
numbers from 0 to 2 n -1. The nodes are connected by links responsible for intercommunication. The two nodes208
are connected if the binary numbers assigned to it stand apart by exactly one bit position.209

4

18 a) Message Transmission in Hypercube Network210

Every node in the network has the ability to send, receive and transmit data to other nodes. The information211
that is passed is in the form of packets. Every node is represented by a unique id that is presented in the binary212
form. For n-dimensional hypercube, every node is represented in n-bits. b) Algorithm to find the shortest path213
for transmitting message from source node to target node Input: Source node S n-1 S n-2 S 3 S 2 S 1 S 0 ,214
Target Node T n-1 T n-2T 3 T 2 T 1 T 0 .215

Output: Path of transmission.216

19 Begin217

Step 1: Equate each bits of the source node with target node beginning with the right-most bit that is from the218
LSB of Source node. Formally, compare S 0 with T 0.219

Step 2: On encountering inequality, if S0!=T0 then complement the respective bit to get the next intermediate220
node for transmission. The next bit would be S n-1 S n-2 S 3 S 2 S 1 S 0 c . Step 3: Repeat steps 1 and 2221
for each of all the bits preceding LSB exclusively till the target node is obtained. End.222

20 Global Journal of Computer Science and Technology223

21 Experimental Setup224

Experimental setup required for the above implementation is more processors P(at least four) connected with225
hypercube model on INTERNET of either similar systems (homogeneous) or dissimilar systems (heterogeneous).226
P processors where 0<P<5 and time, by taking K patterns where 0<K<4 as key factor, before conducting test227
[2].228

22 a) Parallel kumar viswanadha and Boyer Moore String229

Matching Employing Overlapped Text Partitions230

The algorithm implements Boyer Moore string matching algorithm in a parallel environment. The input text231
string is sliced into ’i’ subtexts such that each text partition holds (n/P)+m-1 text string characters with m-1 text232
characters overlapping in each partition, here P refers to the number of processors in the topology, m and n being233
the lengths of text and pattern string respectively [12] .The number of sub texts obtained after partitioning the234
text string using the above formula equals the number of processors allotted in the architecture, i.e., i=P, thereby235
representing the static allocation of the processors. The complete idea behind the working of this procedure can236
be well understood by the algorithm given below.237

i. Parallel kumar viswandha Boyer Moore Algorithm238

23 Begin239

Step 1: Input on the user interface text file of size n, pattern file of size m and number of processors (P) available.240
Step 2: Undergo text file division into ’ i ’ number of subtexts, each i contains (n/P)+m-1 text characters241

using m-1 overlapping text characters. The divided sub text files are stored in a directory.242
Step 3: Broadcast these sub text files to each processor in the topology.243
Step 4: Each Processor searches the pattern string in the given Sub text file using the Boyer Moore Algorithm244

and sends back the result.245
Step 5: Boyer Moore Algorithm246

24 Begin247

Step 5.1: A window of size pattern slides over the text Scanning m elements of text string with the pattern string248
of length m from right to left.249

Step 5.2: On a mismatch use the longest shift distance of the bad character heuristic and Good suffix heuristic.250
Window shifts are carried till n-m+1 th position is attained on the text string.251

Step 5.2.1: The bad Character heuristic states that the mismatching text character termed as bad character252
of the corresponding pattern character is searched for the rightmost occurrence in the left portion of the pattern253
window, if found the bad character is aligned with it. If occurs nowhere in the pattern then m characters of the254
text can be skipped.255

Step 5.2.2: According to the good suffix heuristic, the suffix appending the bad character is searched in the256
left portion of the pattern and thus aligned if found else skip m characters of the text string.257

Step 5.3: On a successful match of all the pattern characters with the text characters in the window, locate258
the pattern string and continue matching for the next occurrence skipping m characters of the text.259

Step 5.4: Repeat steps 5.1 to 5.3 till n-m+1 position of the text string. End260
Step 6: Each processor stores the sub results and sends back to the main program to sum up the obtained261

results.262

5

26 GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

25 Result Analysis and Discussions263

We have considering three files for the implementation discussed in the previous chapter such as f 1 of size 1 Mb,264
f 2 of size 2 Mb, and f 3 of size 3 Mb from TREC-05psn datasets and TREC-09ps micro biology datasets. The265
pattern files are p 1 , p 2 , p 3 with respect to those three files [2,10,12]. Here bytes mean number of characters.266
Time is measured in milli seconds p i,j, represents pattern i in file j. Example : p 1, 1 gives pattern 1 in file 1267
(f 1), p 1, 2 gives pattern 1 in file 2 (f 2). File 1 The pattern files that are searched in the text file f 1 are p268
1, 1 of size 3 bytes, p 2, 1 of size 10 bytes, and p 3, 1 of size 15 bytes has to be found using KV-Boyer moore269
Exact string matching algorithlm and as well as KMP Algorithms. of the processors involved in milliseconds,270
along with the no. of times the pattern is occurred . Actual test is conducted separately for single processor,271
two processors, three processors and four processors. Every time, while the test is conducted the program gives272
elapse time for each processor separately. Therefore the average time is calculated from output result based on273
the maximum time taken by the individual processor among the processors involved for the particular test. The274
table shows that for each pattern, as the No. of processors increases the time reduces and accuracy Increases.275
The graph’s shows that the search time taken by single processor is more when compared with multiple processors276
. It is also observed that as the pattern size increases the search time decreases further. For bigger pattern sizes277
string matching is more easier for Boyer moore algorithm because of less number of mismatches. This graph is278
constructed online by feeding the results from the above table. It is evident that the pattern 1 is of size 3 bytes279
and text file of size 1MB takes the 4.8 ms time to search the pattern but as the No. of pattern 2 the size is280
7bytes and it is also behaves similar to pattern 1 in case of more No. of processors but, for pattern 3 of size281
10 bytes search time reduces drastically as the pattern size increases and as well as No. of processor increases282
.Hence our experimental results give excellent out puts and we also conducted more experiments but , results are283
not presented due space problem Theoretically discussed.284

26 Global Journal of Computer Science and Technology285

In this paper we have compared stringmatching on single processor with multi-processors in parallel environment286
on hypercube network. The total time taken by search pattern is going to reduces as the No. of processors287
increases in network. This application developed for text documents of size only MB. It may extend to any size288
i.e GB to TB also and any other format likes image and video files etc. There is lot of scope to develop new289
trends in this area by evolving modern methods and models for increasing search speed and accuracy. In near290
future we also produce new results by conducting more no. of experiments using the similar setups. 1 2 3 4 5

Figure 1: E

6

1

Figure 2: VolumeFigure 1 :

1© 2013 Global Journals Inc. (US) Year
2© 2013 Global Journals Inc. (US)
3EOverlapped Text Partition Algorithm for Pattern Matching on Hypercube Networked Model
4© 2013 Global Journals Inc. (US) Year
5© 2013 Global Journals Inc. (US) Year

7

26 GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

2

Figure 3: Figure 2 :

8

2

Figure 4: File 2

9

26 GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

Figure 5: VolumeE

10

[Kun et al. (2005)] , Bi Kun , Gu Nai-Jie , Tu Kun , Liu Xiao , - Hu , Liu Gang . A Practical Distributed String291
matching Algorithm Architecture and Implementation WASET oct. 2005. 19 p. .292

[Galil (1995)] ‘A Constant-Time Optimal Parallel String-Matching Algorithm’. Zvi Galil . Journal of the ACM293
July 1995. 42 p. .294

[Arimura et al.] A Fast Algorithm for Discovering optimal String Parrens in Large Text Databases, Hiroki295
Arimura , Atsushi Waraki , Ryoichi Fujino , Stno Arikawa .296

[Boyer and Moore ()] ‘A fast String Searching Algorithm’. R S Boyer , J S Moore . Communications of the ACM297
1977. 20 (10) p. .298

[Blanco et al. (2010)] Roi Blanco , B Barla , Cambazoglu . th LSDS-IR’10 -ACMSIGIR Form, Dec-2010. 8.299

[Viswanadha Raju et al. ()] ‘Efficient Parallel String Matching Using Partition Method’. S Viswanadha Raju , S300
R Mantena , A Vinayababu , Raju . Proc PDCAT-2006, (PDCAT-2006) 2006. IEEE Computer Society. p. .301

[Aho and Corasick ()] ‘Efficient String Matching: An Aid to Bibliographic Search’. V Aho , M J Corasick .302
Communication of the ACM 1975. 18 (6) p. .303

[Sidhu’s and Prasarna (2001)] ‘Fast regular Expression Matching using FPGA’s’. R Sidhu’s , V Prasarna . IEEE304
symposium on FPCCM, (Rohnert park, CA USA) April 2001.305

[Awsan Abdulrahman Hasan and Rashid] Hash-Boyer Moore-Harspool string, Nurainiabdul Awsan Abdulrah-306
man Hasan , Rashid .307

[Herbert Scheldt’s (Osborne) Java 2-Complete Reference] Herbert Scheldt’s (Osborne) Java 2-Complete Refer-308
ence, 5. (th edition-2008)309

[Viswanadha Raju and Kumar (2011)] ‘Implementation of String matching on Multiprocessors using divide and310
Conquer Technique’. S Viswanadha Raju , K S M V Kumar . 2011 3 rd international Conference on Machine311
Learning and Computing (ICMLC) WWW, Dec 2011. Elsevier.com.312

[Mishina ()] ‘Kojima string-matching algorithms for vector processing and its implementation in proceedings of’.313
Y Mishina , K . IEEE international conference on computer design (ICCD’93), 1993. 1993.314

[Matching Algorithm for Intrusion Detection Systems INCNCS-2012, IPCSIT vol ()] ‘Matching Algorithm for315
Intrusion Detection Systems’. INCNCS-2012, IPCSIT vol, (Singpore) 2012. 35.316

[Matching in Strings SIAM J. of Comput ()] ‘Matching in Strings’. SIAM J. of Comput 1977. 6 p. .317

[Viswanadha Raju et al. ()] ‘Optimal Parallel Algorithm for String Matching on Mesh Network Structure’. S318
Viswanadha Raju , A Vinaya , Babu . Snort.www.snort.org International Journal Applied Mathematical319
Sciences 2006. 3 (2) p. .320

[Allen and Wilkinson ()] Parallel Programming: Techniques and Applications using Networked Workstations and321
Parallel Computers, B Allen , Wilkinson . 1999. Prentice Hall.322

[Park and George] Parallel String Matching Algorithms Basedon Dataflow, Jin Hwan Park , K M George .323
Stillwater, USA. Computer Science Department, Oklahoma State University324

[References Références Referencias processors increases it reduces to 0.5ms] References Références Referencias325
processors increases it reduces to 0.5ms, (In case of)326

[Frenandez et al. ()] Stringmatching in Hardware using the FM-Index, Edward Frenandez , W Najjar , S Lonardi327
. 1998.328

[Cooks ()] Two-way pushdown automata for string matching” journal of IEEE, Rivest Cooks . 1977.329

11

Snort.www.snort.org

	1 Introduction
	2 II.
	3 LITERAURE SURVEY
	4 Software Based String Matching Algorithms
	5 Global
	6 iv. Horspool Algorithm
	7 a. Working Principle
	8 b) Hardware Based String Matching Algorithms i. Mishina Algorithm
	9 c) String Matching Based on FM-Index
	10 i. 2D-LARPBS
	11 ii. Hamming Distance
	12 a. Formal Definition of Hamming Distance
	13 III.
	14 Text Processing Techniques
	15 b) Generic Divide and Conquer Algorithm
	16 Begin
	17 Hypercube Network Topology
	18 a) Message Transmission in Hypercube Network
	19 Begin
	20 Global Journal of Computer Science and Technology
	21 Experimental Setup
	22 a) Parallel kumar viswanadha and Boyer Moore String Matching Employing Overlapped Text Partitions
	23 Begin
	24 Begin
	25 Result Analysis and Discussions
	26 Global Journal of Computer Science and Technology

