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6

Abstract7

The current study aims to focus on mathematical tasks for students? mathematical literacy8

and problem solving literacy. Excerpts are presented from dynamic hypothetical learning9

paths [DHLP]s and students? learning progression. The excerpts center around activities10

aimed to develop the students? geometrical thinking through the development of their ability11

to solve real-world problems. The students cooperated in class or worked individually to12

represent the images using their static or dynamic means and tools (e.g. compass and ruler, a13

computing environment, interactive boards, dynamic geometry software). My further aim was14

the students to utilize transformation processes for representations by instrumentally decoding15

their ideas on static and dynamic objects. An important role for the students? cognitive16

development was the design of propositions and theorems (e.g the Pythagorean Theorem),17

through Linking Visual Active Representations (LVAR). Especially for the latter option an18

essential role has played the dynamic geometry software, Geometer?s Sketchpad. Furthermore,19

the paper provides examples that contain rich mathematical material; therefore, student?s20

mathematical modeling through instrumental decoding of mathematical ideas is the means of21

reinforcing students? conceptual knowledge.22

23

Index terms— linking visual active representations, learning progression, ?dynamic? hypothetical learning24
path, teaching cycle25

1 Introduction26

he current study aims to focus on mathematical tasks for students’ development of geometrical thinking ”in the27
process of developing and refining a learning progression to build a coherent ??geometry] curriculum [connected28
with the other areas of mathematics] and the associated instructional materials” (Krajcik, Shin, ??tevens & Short,29
2009, p.27). For this, the paper describes excerpts from predicted [hypothetical] learning paths (/trajectories)30
”through which the learning might proceed. [The learning trajectories are hypothetical as it was not] knowable in31
advance” ??Simon, 1995, p.135). Furthermore these learning paths are dynamic, as instructional DG (Dynamic32
Geometry) –as The Geometer’s Sketchpad (Jackiw, 1991) –activities are incorporated. Therefore, they could be33
defined as Dynamic Hypothetical Learning Paths (DHLPs). I have initially been designed and modified the paths34
as a result of interactions with the students that participated, adding the destinations that were not known in35
advance to me ??Simon, 1995, p.137).36

The learning paths ”are subsets of [a] learning progression ???] as it requires developing and testing an entire37
series of learning [paths] that describe specifically how to move students toward conceptual understanding of the38
big idea ??s] in [mathematics and particularly in geometry]” (Krajcik, Shin, ??tevens & Short, 2009, p.27).39

Furthermore, Simon (ibid.) developed the idea of a teaching cycle and created a diagram in order to represent40
the way that a learning trajectory is an ongoing modification of three components: ”(a) the learning goal that41
defines the direction, (b) the learning activities and (c) the hypothetical learning process” ??Simon, 1995, p.42
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3 THEORETICAL UNDERPINNING A) STUDENT’S COGNITIVE
DEVELOPMENT

136). Mathematics tasks are related to the teacher’s mathematical and pedagogical knowledge. According to43
Simon (1995) ”the ingredient Furthermore, teacher’s knowledge about effective mathematical pedagogy influences44
their instructional practices (e.g., Simon & Shifter, 1991;Carpenter, Fennema, Peterson, Chiang, & Loef, 1989).45

The DHLPs incorporated real-world problems or simulations of problems in the DGS environment that had46
been analyzed and designed in terms of (a) the students’ van Hiele (vH) levels of thinking, starting from the lower47
vH levels to elicit higher vH levels, (b) their sequential conceptual content, and (c) the student’s comprehension48
of the links between representations and mathematical meanings conceptually and procedurally.49

Points of departure for the anticipation of the DHLPs were the questions:50
? Do students understand the mathematical components of modeling when they see real-world environments’51

images [-representations]? The paper provides a link between ”learning with actions” and the implementation of52
mathematics in educational and pedagogical contexts, answering the question of if we could incorporate real world53
mathematics into everyday school practices. Mathematics is part of every day children’s lives. The mathematics54
is obvious to them or not, sometimes is not perceived as they are implicit. On the other hand ”School courses55
and books have presented ’mathematics’ as a series of apparently meaningless technical procedures. ???]. Just56
as a phrase loses meaning or acquires an unintended meaning when removed from its context, so mathematics57
detached from its rich intellectual setting in the culture of our civilization and reduced to a series of techniques58
has been grossly distorted” ??Kline, 1990, p.15-16).59

Moreover, the fractal approach that is presented here reflects Kaput’s (1992) writing on the importance60
of technology in mathematics education, concerning the feasibility of innovative practices emanating from61
technological advents, which were otherwise impracticable. Ferrara, Pratt, & Robutti (2006) also, suggest that62
”what promotes change is the curricular project in which technology is inserted, and in particular, the didactic63
sequences planned by the teachers in order to introduce ???] concepts, which use technology as a support.” (p.64
258).65

The article does not intend to present the extended results of the research process but rather the theoretical66
perspective that underpins the teaching cycle (Simon, 1995) and the role of dynamic LVAR in students’ cognitive67
development.68

In the next sections, the article will begin with an articulation of the constructivist perspective that underpins69
the student learning process and my decision for the selection of activities. A review will be provided of70
mathematical competencies and the role of modeling processes in the DGS environment with the utilization71
of LVARs.72

2 II.73

3 Theoretical Underpinning a) Student’s cognitive development74

During the past several decades, researchers were concerned about the difficulties their students have faced when75
attempting geometry problems (e.g., Hoffer, 1981; ??siskin, 1982). This consistent result comes about through76
students’ difficulty releasing their thoughts from a concrete frame (White & Mitchelmore, 2010, p. 206), and77
failure to develop the deductive reasoning (Peirce, 1998 ??Peirce, /1903) required. This prevents them from78
engaging in the abstract process (e.g., Skemp, 1986; White & Mitchelmore, 2010) that is required for the study79
of the conceptual structure of geometry.80

According to ??iaget (1937 ??iaget ( /1971)), students’ cognitive development depends on their biological81
maturity. That students’ cognitive development depends on the teaching process was argued by Dina van Hiele-82
Geldof and Pierre van Hiele in their dissertations in 1957 (Fuys, Geddes & Tischler, 1988). Dina van Hiele-Geldof83
(Fuys, Geddes & Tischler, 1984) in her dissertation had the objective to investigate the improvement of learning84
performance by a change in the learning method. Central to this model, is the description of the five levels of85
thought development which are: Level 1 (recognition or visualization), Level 2 (analysis), Level 3 (ordering),86
Level 4 (deduction) and Level 5 (rigor).87

Battista uses ”constructivist constructs such as levels of abstraction to describe students’ progression through88
the van Hiele levels” ??Battista, 2011, p.515). He ”has elaborated the original van Hiele levels to carefully trace89
students’ progress in moving from informal intuitive conceptualizations of 2D geometric shapes to the formal90
property-based conceptual system used by mathematicians” ??Battista, 2007, p.851).91

He separated each phase in subphases (Battista, 2007). I briefly report Battista’s first three levels elaboration,92
which are the most pertinent to secondary students, below: Level 1 (Visual-Holistic Reasoning) is separated into93
sublevel 1.1. (prerecognition) and sublevel 1.2 (recognition). (p.851).94

Level 2 (Analytic-Componential Reasoning) is separated into sublevel 2.1 (Visual-informal componential95
reasoning), sublevel 2.2 (Informal and insufficient-formal componential reasoning) sublevel 2.3 (Sufficient formal96
property-based reasoning). According to Battista (2007) ”Students [acquire through instruction] a) an increasing97
ability and inclination to account for the spatial structure of shapes by analyzing their parts and how their98
parts are related and b) an increasing ability to understand and apply formal geometric concepts in analyzing99
relationships between parts of shapes”. (pp.851-852).100

Level 3 (Relational -Inferential Property-Based Reasoning) into sublevel 3.1 (Empirical relations), sublevel101
3.2 (Componential analysis), sublevel 3.3 (Logical inference) and sublevel 3.4 (Hierarchical shape, classification102
based on logical inference). According to Battista (2007) ”Students explicitly interrelate and make inferences103
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about geometric properties of shapes. ???] The verbally-stated properties themselves are interiorized so that104
they can be meaningfully decomposed, analyzed, and applied to various shapes”. (pp. 852-853).105

Researchers have shown that students ”often fail in the construction of a geometric configuration which106
is essential for the solution of the underlying geometric problem” ??Schumann & Green, 1994, p.204). This107
happens because students at the lower levels ”identify, describe, and reason about shapes and other geometric108
configurations according to their appearance as visual wholes” ??Battista, 2007, p.851). According to van Hiele109
(1986) ”when after some time, the concepts are sufficiently clear, pupils can begin to describe them. With this110
the properties possessed by the geometric figures that have been dealt with are successively mentioned and so111
become explicit. The figure becomes the representative of all these properties: It gets what we call the ”symbol112
character”. In this stage the comprehension of the figure means the knowledge of all these properties as a unity.113
???].When the symbol character of many geometric figures have become sufficiently clear to the pupils, the114
possibility is born that they also get a signal character”. This means that the symbols can be anticipated. ???].115
When this orientation has been sufficiently developed, when the figures sufficiently act as signals, then, for the116
fisrt time geometry can be practiced as a logical topic” (p. 168).117

Many researchers (e.g., Guitierrez & Jaime, 1998; Govender & De Villiers, 2002Patsiomitou, 2008Patsiomitou,118
, 2012a ??atsiomitou, , b, 2013; Patsiomitou & Emvalotis, 2010 a, b) describe student’s processes of constructing119
definitions and justification at every van Hiele level as they develop geometrical thought. This evolution of120
students’ formulation of definitions, justification, and reasoning was adopted by this study as the characteristic121
that would indicate their movement through several van Hiele levels. For definitions, I adopted Govender122
and De Villiers’ (2004) clarification (see Patsiomitou, 2013). In addition, dynamic perceptual definition (e.g.123
??atsiomitou, 2013, p.806) is the term for the process by which the student informally ’defines’ a geometrical124
object by using the tools of the software.125

4 b) The development of student’s mathematical competencies126

Another point of view suggests that the development of student’s geometrical thinking results from the127
development of their competencies in mathematical thinking and reasoning, argumentation, modeling etc.128
Therefore, if the teaching process of students is aimed to develop their competencies, then it leads to the129
development of their geometrical thinking.130

Many researchers (e.g, Burkhardt, 1981;Pierce & Stacey, 2009) have highlighted the idea of solving problems131
in the real world as essential to understanding and learning mathematics, as well as ”a key ability for citizens132
[who are prepared to make] judgments and decisions” ??Stacey, 2012, p.3).133

According to De Corte, Verschaffel & Greer (2000), the implementation of the mathematics to solve real world134
problems can be useful ”as a complex process involving a number of phases: understanding the situation described;135
constructing a mathematical model that describes the essence of those elements and relations embedded in the136
situation that are relevant; working through the mathematical model to identify what follows from it; interpreting137
the outcome of the computational work to arrive at a solution to the practical situation that gave rise to the138
mathematical model; evaluating that interpreted outcome in relation to the original situation; and communicating139
the interpreted results”.(p.1).140

Through the solution of the real world problems, students will be assessed regarding their competency for141
horizontal and vertical mathematization (Jupri, Drijvers, & van den Heuvel-Panhuizen, 2012). ”The difficulty in142
horizontal mathematization concerns students’ difficulty in going from the world of real phenomena to the world143
of symbols and vice versa. The difficulty in vertical mathematization concerns students’ difficulty in dealing with144
the process of moving within the symbolic world ??Treffers, 1987; Van den Heuvel-Panhuizen, 2003)” (Reported145
in http://igitur-archive. library.uu.nl/math/2013-0304-200631/12102012.pdf).146

As I previously mentioned, my further aims, were the student’s mathematical literacy and problemsolving147
literacy. The latter PISA (Programme for International Student Assessment) definition of mathematical literacy148
is as follows (OECD, 2010): ”Mathematical literacy is an individual’s capacity to formulate, employ, and interpret149
mathematics in a variety of contexts. It includes reasoning mathematically and using mathematical concepts,150
procedures, facts, and tools to describe, explain, and predict phenomena. It assists individuals to recognise151
the role that mathematics plays in the world and to make the well-founded judgments and decisions needed by152
constructive, engaged and reflective citizens.” (p. 4) It is very important for the students to develop their modeling153
competency in order to transform realworld problems from the three-dimensional world to the two-dimensional154
world of the paper and pencil [or DG] environment. Additionally, it is important for them to be able to process155
in an abstract way.156

Epigrammatically, the students, through the problems that will be presented below, will be assessed with157
regard to the development of the following ?? 2006), that have been analyzed from Niss (1999) and his colleagues158
but similar formulations can be found in the work of many others (e.g., Neubrand et al. 2001):( D D D D D D159
D D ) Year C competencies (OECD160

Briefly, these competencies can be described as an individual student’s ability to (e.g., Niss, 1999Niss, ,161
2003;;Neubrand et al. 2001):162

Mathematical thinking and reasoning:? mastering mathematical modes of thought; posing questions163
characteristic of mathematics; knowing the kind of answers that mathematics offers, distinguishing among164
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6 SYMBOL

different kinds of statements; understanding and handling the extent and limits of mathematical concepts;165
generalizing results to larger classes of objects.166

5 Mathematical reasoning and argumentation:167

?knowing what proofs are; knowing how proofs differ from other forms of mathematical reasoning; following168
and assessing chains of arguments; having a feel for heuristics; creating and expressing mathematical arguments;169
devising formal and informal mathematical arguments, and transforming heuristic arguments to valid proofs, i.e.170
proving statements.171

Mathematical communication: ? being able to communicate, in, with, and about mathematics; expressing172
oneself in a variety of ways in oral, written, and other visual form; understanding someone else’s work.173

Modelling competency:? being able to analyse and build mathematical models concerning other subjects or174
practice areas; structuring the field to be modeled; translating reality into mathematical structures; interpreting175
mathematical models in terms of context or reality; working with models; validating models; reflecting, analyzing,176
and offering critiques of models or solutions; reflecting on the modeling process; communicating about the model177
and its results; monitoring and controlling the entire modeling process.178

Problem posing and handling competency:? problem identifying, posing, specifying; solving different kinds of179
mathematical problems.180

Representation competency:? being able to handle different representations of mathematical entities; decoding,181
encoding, translating, distinguishing between, and interpreting different forms of representations of mathematical182
objects and situations as well as understanding the relationship among different representations; choosing and183
switching between representations.184

6 Symbol185

and formalism competency:? decoding and interpreting symbolic and formal mathematical language, and186
understanding its relations to natural language; understanding the nature and rules of formal mathematical187
systems (both syntax and semantics); translating from natural language to formal/symbolic language; handling188
and manipulating statements and expressions containing symbols and formulae.189

Communicating in, with, and about mathematics competency: ?. understanding others’ written, visual or190
oral ’texts’, in a variety of linguistic registers, about matters having a mathematical content; expressing oneself,191
at different levels of theoretical and technical precision, in oral, visual or written form, about such matters.192

Aids and tools competency:?being able to make use of and relate to the aids and tools of mathematics, including193
technology when appropriate.194

The visualization competency and the competency of students to develop recursive processes conceptually and195
structurally is [also] very important for the solution of problems with fractal constructions.196

In a paper of PME conference (Patsiomitou, 2011) I had also distinguished the kinds of apprehension when197
selecting software objects. Competence in the DGS environment depends on the competence of the cognitive198
analysis which students bring to bear when decoding the utilization of software tools, based on Duval’s (1995)199
semiotic analysis of students’ apprehension of a geometric figure. During the development of a construction200
in a DGS environment, I believe that the student has to develop three kinds of apprehension when selecting201
software objects which accord with the types of cognitive apprehension outlined by ??uval (1995, pp.145-147)202
namely perceptual, sequential, discursive, and operative apprehension. In concrete terms, the competence of203
instrumental decoding in the software’s constructions depends on ??Patsiomitou, 2011, p.363): a) the sequential204
apprehension of the tools selection (i.e. s/he has to select point C and segment AB and then the command (fig.205
1) meaning that s/he has to follow a predetermined order); b) the verbal apprehension of the tools selection which206
means the student has to verbalize this process, (i.e. s/he says ”I am going to select point C and the segment207
AB”) and c) a place way type of elements operation on the figure (i.e. when s/he transforms the orientation of208
the elements to apply the command selecting point B and the opposite side AC, for example in fig. 4) due to209
his/her perceptual apprehension (fig. 2, 4). Then s/he has constructed the operative apprehension of the figure’s210
elements for the construction, meaning the competence to operate the construction. c) Is learning and knowledge211
development a cognitive process? The role of teacher in learning process212

Van Hiele theory has its roots in constructivist theories. Cognitive constructivism is connected with the work213
of ??iaget’s (1937 ??iaget’s ( /1971) and his views as ’constructivist’. Bruner’s (1961Bruner’s ( , 1966) ) proposal214
of discovery learning [as ’constructionist”] is based on prior knowledge and the understanding of a concept, which215
[through discovery] grows and deepens. According to Bruner (1986) ”learning is a social process( D D D D )216
Year C217

in which children grow into the intellectual life of those around them” (Clements & ??attista, 1990, p.6).218
The sociocultural approach has its roots in Vygotsky (1987) who focuses on the acquisition of mathematical219

understanding as a product of social interactions. Von Glasersfeld (1995) a radical constructivist is differentiated220
from the work of Piaget as he argues that ”knowledge [does not represent an independent world, instead] represents221
something that [?] we can do in our experiental world” (p.6).222

Building on the concepts mentioned above, the concept of social constructivism is a complex process, while223
being interactive, constructivist and sociocultural (e.g., Yackel, Jaworski, 2003). According to sociocultural224
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and interactive approaches, learning is a part of the culture (Steffe & Gale, 1995) in which the students225
construct knowledge through their participation in social practices (e.g social class environment) ??Cobb &226
Bauersfeld, 1995, p.4). ”A socialconstructivist perspective sees discussion, negotiation and argumentation in227
inquiry and investigation practices to underpin knowledge growth in mathematics, in teaching mathematics and228
in mathematics teacher education” (e.g., ??obb & Bowers, 1999; ??ampert, 1998; ??ood, 1999 ??n Jaworski,229
2003, p . 17).230

Besides, learning is an individual constructive process while knowledge is actively constructed by the student;231
it depends on the individual’s personal work and negotiation of mathematical ideas (e.g., Jaworski, 2003). From232
the perspective of constructivist theories the process of mathematical knowledge and understanding arises as233
students try to solve math problems during the classroom (Cobb, Yackel, & Wood, 1992;Simon & Shifter, 1991)234
and is instigated when students confront problematic situations. Knowing therefore is not taken passively by235
students but in an active way. Learning thus is characterized in Bauersfeld’s interactionism view ”by the subjective236
reconstruction of societal means and models through negotiation of meaning in social intervention” ??Bauersfeld,237
1992, p.39).238

Vygotsky (1987) argues that ”the child begins to perceive the world not only through his eyes [visually] but239
also through speech” (p. 32). According to Vygotsky (1987), learning is a complex interplay between scientific240
and spontaneous use of language.241

For this, learning is an internalization of social relations and understanding is a result of common negotiation of242
concepts created by students while interacting with other students in the class (or group) during the mathematical243
discussions developed (Bartolini Bussi, 1996).244

For the current study, I used the strategy of ”thinking aloud” (Hayes & Flower, 1980 Sfard also defines245
”learning as the process of changing one’s discursive ways in a certain well-defined manner” ??Sfard, 2001, p.3).246
According to Sfard (2001) ”thinking is a special case of the activity of communicating” [?]”A person who thinks247
can be seen as communicating with himself/herself, [?] whether the thinking is in words, in images or other form248
of symbols, [..] as our thinking is [an interactive] dialogical endeavour [through which] we argue?” (p.3); with249
his/her participation the student in a mathematical discussion s/he ”learns to think mathematically” ??Sfard,250
??bid., ??. 4). Under this approach, the development of thought occurs through dialogue that develops the251
subject within himself/herself internally (intrapersonally) or in a group in which s/he participates. Moreover,252
learning is expanding the capacity for dialectical skills and solving problems that could not previously be solved.253
Furthermore ”putting communication in the heart of mathematics education is likely to change not only the254
way we teach but also the way we think about learning and about what is being learned” ??Sfard, 2001, p.1).255
Consequently, learning is first and foremost the modification / transformation of the ways we think and how we256
exchange this thought. Moreover, learning is the capacity of dialectical skills and of problem-solving that could257
not be solved before.258

Goos and her colleagues carried out a series of studies –based on sociocultural perspective–to investigate the259
teacher’s role, the students’ discussion in small groups and the use of technology as a tool that mediates teaching260
and learning interactions (e.g. ??oos, 2004, Goos, Galbraith, Renshaw, & Geiger, 2003). If we take the role of261
teacher seriously as concerns the realisation and planning of activities then, every activity should be based on262
geometry exactly as Goldenberg (1999) purports it to be -a fundamental principle. The current study leads us,263
as Goldenberg (ibid.), writes ”to select idea-editors that have supported the connections. Tools like Geometer’s264
Sketchpad present geometric structures in an environment that emphasizes the continuous nature of Euclidean265
space, and thus serve as an excellent bridge between geometry and [the other field of mathematics, as well as]266
analysis.” This is very important for the teaching practice because the construction of the meaning can not only267
be depended or is located in the tool per se, nor uniquely pinpointed in the interaction of student and tool,268
but it lies in the schemes of use (e.g., Trouche, 2004) of the tool itself. Simon (1995) has developed a view of269
the teacher’s role that includes both the psychological and the social aspects. He supports that ”a teacher is270
directed by his conceptual goals for his students, goals that are constantly being modified” (p.135). I adopted271
Simon’s view for my role as teacher-researcher for the current study. In the next sections it will be articulated272
the ”rational for choosing the particular instructional design; thus I make my design decisions based on my guess273
of how learning might proceed” (Simon, 1995 Battista (2011) supports that a learning progression differs from a274
learning trajectory because it has not been designed ”to test a curriculum, based on a fixed sequence of learning275
tasks in that curriculum.276

[Instead] it is focusing on a formative assessment system that applies to many curricula [?] based on many277
assessment tasks, not those in a fixed sequence” (p. 513).278

In the current study, the vH [learning] progression describes the development of students’ thinking through a279
vH instructional path, which was kept for a year and then repeated the next year. It focuses on describing the280
evolution of the students’ mathematical learning, cognitive structures, and reasoning and has been ”developed281
from examining how students’ ideas develop by the analysis of various assessment tasks” 2, aiming to include282
the actual discussions with students that ”occurred within the ’interaction with students’, which influenced the283
”teacher’s knowledge”.284

What has not been examined is the use of technology in the teaching cycle which plays an important role in285
the development of discussions, as well as students’ vH level.286

e) The modeling process in a DGS environment -What are LVARs?287
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6 SYMBOL

From a representational view of learning mathematics the DHLP is supported theoretically by the concept288
of representation. According to Vergnaud (1987) ”representation is an important element in the theory of289
teaching and learning of mathematics [... especially since they] play an important role in understanding the290
real world. Representations are provided to the students in different forms (Gagatsis & Spirou, 2000) (e.g.,291
real-world situations, images or diagrams, oral or written symbols).292

Vergnaud (1998) claims that ”[n] either Piaget nor Vygotsky realized how much cognitive development depends293
on situations and on the specific conceptualizations that are required to deal with them” (p. 181). Piaget focused294
on the subjectivity of representation and Vygotsky on a social process of gaining control over external ”sign”295
forms. Children have difficulty to perceive the signs of the meanings in the images of the real world. They296
perceive them as a whole image especially at the lower van Hiele levels. When students move to upper van Hiele297
levels they increase their ability to transform the visual image or drawing ??Parsysz, 1988) they perceive, into a298
figure with concrete properties.299

For most researchers, representations can help students to reorganize and translate their ideas using symbols.300
They are also useful as communication tools (Kaput, 1991) and can function as tools for understanding of301
concepts, since they help with the communication of ideas and provide a social environment for the development of302
mathematical discussion. The knowledge of supporting instruments, which are external representational systems303
for planning activities, allows us to choose between technological tools. The [external] representations facilitate the304
provision of information about the problem, capture the structure of the problem, and support visual reasoning.305
On the other hand, the external representations (e.g., formulations or figures) that students construct serve as an306
indicator of their internal representations, constituting their level of understanding and the developmental level307
of their geometric thinking.308

The use of a computing environment as dynamic geometry facilitates the teaching and learning of Euclidean309
geometry and helps students overcome the difficulties in translation between representations through automatic310
translation or ”dynalinking” (Ainsworth, 1999, Linking Visual Active Representations are the successive building311
steps in a dynamic representation of a problem, the steps that are repeated in different problems or steps reversing312
a procedure in the same phase or between different phases of a hypothetical learning path. LVARs reveal an313
increasing structural complexity by conceptually and structurally linking the transformational steps taken by the314
user (teacher or student) as a result of the interaction techniques provided by the software to externalize the315
transformational steps s/he has visualized mentally (or exist in his/her mind) or organized as a result of his/her316
development of thinking and understanding of geometrical concepts.317

Real world images (or digital images) ”are potential representations ???and] offer the heuristic part of318
learning” as they ”denote something” ??Kadunz & Straesser, 2004, p.241, 242). What is important is how319
the students perceive these potential representations of the environment (natural images or digital), how they320
use and communicate with each other and how they manage their mental mathematical structures in order to321
represent the objects. Mogeta, Olivero & Jones (1999) in their report ”Providing the Motivation to Prove in322
a Dynamic Geometry Environment” argue that ”setting problem solving within these environments requires a323
careful design of activities, which need to take into account the interaction between three elements: the dynamic324
software, as an instance of the milieu, a problem, and a situation, through which the devolution of the problem325
takes place (Brousseau, 1986)”. Most importantly, the diagrams that the students are obliged to translate and326
the relations that link the objects in the diagram will provide researchers and teachers insights to see their327
abilities and their weaknesses with respect to the mathematical knowledge that they have structured as a result328
of the teaching process in class. For this, the verification of students’ mistakes and cognitive obstacles during329
the construction of diagrams will lead us to the reinforcement of the teaching of mathematics in the context of330
real-world problems.331

Vergnaud proposed an approach for investigation in mathematics education, which includes the steps presented332
in the Figure 3 According to ??ariotti (2000, p.36) ”the dragging test, externally oriented at first, is aimed at333
testing perceptually the correctness of the drawing; as soon as it becomes part of interpersonal activities [?] it334
changes its function and becomes a sign referring to a meaning, the meaning of the theoretical correctness of the335
figure.” Hollebrands (2007) also supported that the students in her study ”used reactive or proactive strategies336
when dragging, either in response to or in anticipation of the effects on dragging” (cited in Gonzalez and Herbst,337
2009, p.158-159). Building on Mariotti’s considerations and Hollebrands distinction about dragging strategies,338
in a previous study (Patsiomitou, 2011) I introduced the notions of theoretical dragging (i.e., the student aims339
to transform a drawing into a figure on screen, meaning s/he intentionally transforms a drawing to acquire340
additional properties) and experimental dragging (i.e., the student investigates whether the figure (or drawing)341
has certain properties or whether the modification of the drawing in the picture plane through dragging leads to342
the construction of another figure or drawing).343

Students execute on screen constructions using software’s tools and primitive geometrical objects in an effort344
to decode their mental representations into software actions. This sense of how the student’s competence345
at instrumental decoding affects the development of their ability in constructing meanings, may lead to an346
understanding of how the tools the students use, play a fundamental role as a non linguistic warrant. The347
construction of a figure on screen in a DGS environment is a result of a complex process on the student’s part.348
The student has first to transform the verbal or written formulation (”construct a parallelogram” for example) into349
a mental image, which is to say an internal representation recalling a prototype image (e.g., Hershkovitz, 1990)350
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that s/he has shaped from a textbook or other authority, before transforming it into an external representation,351
namely an on-screen construction. This process requires the student to decode their actions using software352
primitives, functions etc. In order to accomplish a construction in the software the student must acquire the353
competence for instrumental decoding meaning the competence to transform his/her mental images to actions354
in the software, using the software’s interaction techniques. Furthermore, dynamic reinvention of knowledge355
(Patsiomitou, 2012b, p. 57) is the kind of knowledge the students could reinvent by interacting with the artefacts356
made in a DGS environment, ”knowledge for which they themselves are responsible” ??Gravemeijer & Terwel,357
2000, p.786). In the next section a description will be presented of the DHLPs. As it has been told previously(358
D D D D D D D D ) Year C359

the DHLPs are empirically tested parts of the learning progression. The students applied their mathematical360
knowledge (pre-existing or not) to solve real-world problems. The modeled problems have been presented in a361
dynamic geometry environment or the students had to manipulate the images of the real world in their minds in362
order ”to bridge connections between the pure world of mathematics –with fixed solutions and ”perfect” forms–363
and the more messy, ambiguous, or subjective world of experience” (Sinclair & Jackiw, 2007). In every situation,364
the experience with a real or simulated object played a major role for the construction of students’ knowledge.365

7 III. A Van Hiele Learning Progression366

for Secondary Students using LVAR in Mathematics a) Methodology of the learning progression367
The current teaching experiments ??Cobb & Steffe, 1983) are evolving as students’ van Hiele learning368

progression analyzes non-routine, real-world problems in addition to student assignments from the problemsolving369
process. It is constituted from (a) a learning trajectory in quadrilaterals (b) a learning trajectory in fractals.370
The trajectory in quadrilaterals follows the structure of the DHLP created in my PhD thesis. The difference371
is in the objects, which in this case have been selected from the real world [e. g objects in museums, mainly372
archaeological, in Greece].373

The teaching experiment involved 81 students aged 13-14, equally separated into three classrooms. Every sub-374
class included the same number of boys and girls and the same number of high-or low-achievement students at375
the beginning of the year. The study investigated (a) ways to foster students learning by hypothesizing what the376
students might learn (e.g. develop real-world problem representations, reasoning and problem-solving, making377
decisions and receiving feedback about their ideas and strategies) working individually or collaboratively (b) ways378
in which students develop abstracting processes through building linking visual active representations and (c)379
ways to develop students’ van Hiele level.380

I was the teacher and the instructor of the activities. I developed the instructional activities based on an381
analysis of the results of my PhD thesis, with regard to students’ evolution of understanding on instrumental382
decoding when they construct quadrilaterals. We worked as a whole class, trying to develop a form of practice383
compatible with social constructivism (e.g., Wood & Yackel, 1990). I was actively involved with the children,384
encouraging small group cooperation both in and outside of class, without intently to show the process to complete385
the activity. I started the activity with a question; after the answers were given, I continued with sequential386
questions to clarify the explanations or to help students with the cognitive conflicts. Then, I asked the students387
to complete the task in the paper-pencil environment and collected their work to see the level of understanding388
from the correct answers. After the evaluation of the students’ work, I continued with follow-up activities in389
the DGS environment to help the children reconstruct the solution methods. After the intervention with GSP390
activities, the paper-pencil work was repeated to see the difference in the students’ learning and understanding391
of the concepts. Indicative of students’ wrong representations will be presented and a short report made of their392
mistakes and misconceptions.393

”The situations that children find problematic take a variety of forms and can include resolving obstacles or394
contradictions that arise when they attempt to make sense of a situation in terms of their current concepts and395
procedures, accounting for a surprising outcome (particularly when two alternative procedures lead to the same396
result), verbalizing their mathematical thinking, explaining or justifying a solution, resolving conflicting points of397
view, developing a framework that accommodates alternative solution methods, and formulating an explanation398
to clarify another child’s solution attempt” (Cobb & Steffe, 1991, p.395)399

? ?.a detailed procedural analysis of the situations, the involved problems, in addition the problems’ conceptual400
analysis, instrumental decoding and learning targets (e.g., different solving strategies, formulas or figure’s401
decomposition). This includes the recognition and demonstration of transformations (e. g, recognition and402
drawing of symmetry lines or demonstration of reflections, translations and rotations) using multiple contexts403
(e.g., graphpapers, a computing environment). Furthermore, is described the recognition and utilization of404
properties that belong to a class of figures (or a subclass) and description of the characteristics of shapes and405
their relationships. ? ?.an example of a theorem’s LVAR modeling process (e.g an LVAR modeling for the406
Pythagorean theorem).407

Students’ uploading of assignments was facilitated through the free open-source Learning Management System408
Moodle (Modular Object-Oriented Dynamic Learning Environment) (Dougiamas, PhD thesis, described at409
http://www.moodle.org.nz/).410
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11 IV.

8 i. Presentation and analysis of problems411

For the design of activities I always had in mind: ”What would the individual have to know in order to be capable412
of doing this task without undertaking any learning, but given only some instructions?” (Battista, 2011, p. 515).413

9 Global Journal of Computer Science and Technology414

Volume XIV Issue I Version I Case A: The problem was presented modeled in the dynamic environment. In415
the modeled dynamic representation, emphasis was given to the features associated with mathematics (e.g., the416
modeling of a kite can be done by constructing a rhomboid that emphasizes the verticality of the diagonals, etc.),417
rather than to other characteristics (e.g., the material, color, etc.). The students were able to experiment with418
the software tools on the digital image and to visualize the properties of the shapes that they were not able to419
perceive in the static environment.420

Case B: The problem was not presented modeled in the dynamic environment, but the students were prompted421
to manage the image as if it was perceived in the natural environment. The students had to construct a simulation422
of the problem in a static, digital, or other physical means as a model of the natural environment. They also had423
to manage the (digital or not) image to gain intuition about the properties of the shape.424

According to Johnson-Laird (1983) the human beings understand the world through the representations of the425
world they create in their minds. Johnson-Laird (1983) argues ”to understand a physical system or a natural426
phenomenon one needs to have a mental model of this system that will allow [?] the person who will build it to427
explain it and to predict about it” (p. 430).428

In essence, the image conversion of the natural environment in the dynamic environment is a result of a complex429
process on the student’s part. The student has first to transform the verbal or written formulation (”construct a430
parallelogram” for example) into a mental image, which is to say an internal representation recalling a prototype431
image (e.g., Hershkovitz, 1990) that s/he has shaped from a textbook or other authority, before transforming it432
into an external representation, namely an on-screen construction. The student needs to explore the shape of433
the natural environment (e.g., properties of shapes such as its symmetry lines, etc.) and then construct the scale434
model. The digital image plays a supporting role in understanding the properties of shape but also can bring to435
the surface students’ cognitive obstacles and, consequently, lead to errors. These errors are mainly due to their436
vH level. As a result, students may not have the capacity to recognize the figure’s properties, and, generally,437
to develop the solution with deductive reasoning. Especially for the fractal activities, the experimental teaching438
was carried out on 18 students at different school levels, including activities (on different software pages with439
linking representations) with increasing degree of difficulty depending on the age-related level of students. No440
student that participated had previously processed the software, or any other related software. As it was verified441
henceforth at many points of process the students were led to conclusions and formulations of definitions that442
had not been made known during their course of mathematics.443

10 ii. S tudent’s mathematical knowledge444

In secondary high school, the students are taught the kinds of quadrilaterals, which they are asked to memorize.445
Most of students are able to recall only the basic relations regarding perpendicularity and parallelism of the sides446
of quadrilaterals. Furthermore, students construct parallelograms in static means using their traditional tools447
(compass or ruler), which only fulfill the visual criteria. In Greece, dynamic geometry is rarely used in high448
schools to facilitate the teaching and learning of geometry. As it is concluded the teaching of reflective symmetry449
(or symmetry by axis) and symmetry by centre in a DGS environment is not correlated with the notion of450
symmetry and particularly the students do not examine the notion of symmetry in relation to quadrilaterals.451
Furthermore, the students’ difficulties in constructing a figure are due to their ignorance of the different thought452
processes involved in dynamic rather than static means. The knowledge of a figure’s symmetry is essential for453
students. I distinguished a few types of obstacles due to student lack of competence in instrumental decoding454
(:i.e. this is to say an instrumental obstacle). In the current study, I have devoted enough time for the students455
to understand the meanings (for example, the notion of symmetry by axis and symmetry by center) through456
the dynamic geometry software. The kinds of transformations on which the activities are focused are reflection–457
which corresponds to symmetry by axis in static means, rotation–which corresponds to symmetry by center, and458
translation. The dynamic geometry system helped students to instrumentally decode the properties of figures,459
as we will see in the description of the activities.460

11 IV.461

Description of Activities a) Situation First (Visual-Holistic Reasoning –Visualinformal componential reasoning):462
Recognizing quadrilaterals and symmetry in real world.463

The aim of the activity was the recognition of quadrilaterals and the investigation of the symmetry lines of464
quadrilaterals in a real-world context. Our actions included three phases: a tour in the museum, the teaching in465
the class (including training in my eclass: the operation of the e-class to facilitate posting and downloading of466
material), and finally, the realization of the activity for the students within a predetermined time. Briefly, the467
students had to construct a shape using the figures’ properties, in terms of its sides and angles. The description468
of the activity consisted of the following parts:469
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1. Recognize the kinds of shapes that you observe in the decorative pattern of the image below (see Figure470
5). mountainous Epirus, Thessaly, and the Aegean). These acquired meaning through the detailed presentation471
of the guides, who aimed to underline the particular characteristics of the local folk-pieces. The students were472
impressed by the embroidered women’s costumes. Some had geometrical recurring motifs and expressed the inner473
desire of every woman [every bride] to have good fortune, happiness, and longevity.474

Then, the students subsequently had to capture a part of the entire plan on paper.475
”On the ground floor of the museum, visitors will see elegant examples of traditional embroidery from the476

whole of Greece. They include polychrome and white embroideries-laces and gold embroideries intended to meet477
the needs of dress, house and church. Particular interest attaches to pleated embroidered chemises of Crete, the478
relics of a female dress type with Renaissance roots that is found in other islands in the Archipelago during the479
period of Frankish rule (17th -18th c.).Their hems are embroidered with alternating representations of gorgons,480
double-headed eagles, flower-vases, fantastic birds, and etc.481

(Excerpt from the text written in the description of the Folk Art museum website available at482
http://www.melt.gr).483

I asked them questions such as: ”What shapes can you ’see’?” ”What kind of symmetry do you recognize in484
the decorative pattern?” The dominant feature of the costumes’ geometric motifs [converted into images for the485
students’ work] was the symmetry of its parts. As we know, the relations between depicted objects in a picture486
or additional information concerning the objects (e.g. colors or other symbols that convey a certain message)487
and their style allow us to place it in context. However, in a picture, the data could hinder students’ ability to488
’see’(/meaning perceive) the geometrical shapes/figures. For example in Figure 5, the symmetries in the pattern489
are apparent (central symmetry or axial symmetry). Additionally, it is also clear [to teachers] the symmetries of490
the shapes that form the overall motif. However, this is not true for students.491

From the work of students resulted in the following conclusions: Regarding the functionality of the e-class,492
there was no particular difficulty with the operation of asynchronous learning by students. As to the concepts493
found that: students were not aware of the concepts of central and axial symmetry, did not understand the494
differences between quadrilaterals and for this reason they didn’t ’see’ the usefulness of such an activity, as495
some even use rice paper to replicate the project. In other words, it was found that students were not ’seeing’496
mathematics to the real environment and faced more difficulty in manufacturing patterns [see Figure 6]. Thus,497
I utilized this alternative way of teaching when I understood that students faced problems in understanding the498
concepts. Firstly, the students recognized the parallel lines and parallelograms in the Figure 5. The students499
constructed the parallelograms using the ”copy-paste” tools of the software or joined four line segments so they500
produced rectangular figures. Students make mechanical use of the software, which makes it impossible for them501
to understand the logic underlying the command options. It was my intention to familiarize the students with502
the software, ”’step by step’, in parallel with the corresponding theory” ??Mariotti, 2000, p. 41).503

In order to construct a parallel line using the software, one has to select two objects: a straight object (for504
example a line) and the point from which the line parallel to the initial line will be drawn. Most students at505
van Hiele level 1 were unable to understand the sequential apprehension of the tools selection, because they were506
unable to understand the logic of the sequence of actions or unable to link this logic with the theory of geometry.507

Figure ?? : Snapshots of the copy-paste input process in the DGS environment For example a student (van508
Hiele level 1 at the pre-test) faced an instrumental obstacle which depended on the sequential apprehension of the509
objects to be used for the construction. The student tried to construct a parallel line by selecting the line alone510
and then the menu command, which is to say the student followed an irrational sequence of actions. At this point,511
s/he faced an instrumental obstacle and commended in an informal way on the non-activation of the software’s512
command. Subsequently, student’s interaction with the software, led to a cognitive conflict which helped him/her513
to apprehend the sequence of actions. Therefore, is the construction that leads students to ”shape” inadequate514
or alternative definitions regarding parallelograms. The definitions followed the introduction of the parallelism515
and dragging tools of the software.516

Then, the students participated in the process of introducing the concepts of symmetry through dynamic517
geometry software. In the lesson that followed, transformations were introduced to students using the GSP518
software tool. For example, we focused on the transformations we have to apply to a triangle to construct a519
parallelogram. In the images below, a mode-A LVAR construction in the software presented the translation of a520
triangle, the use of a coordinate plane, the rotation of the triangles (and the rotation angle that remained stable521
at every point in the triangles), the reflection of the triangles (including the visualization of the similarities and522
differences on the coordinates of the transformed images). Then the students’ task was to construct a rhombus523
based on the figure’s symmetry (Figure 9). They dynamically reinvented that a single diagonal can divide the524
rhombus into two congruent isosceles triangles. Therefore, two congruent isosceles triangles can be together to525
form the shape of a rhombus. In Figure 10, the importance of the software’s tools [e.g., the reflection tool] for526
the students’ modification, or change their way of thinking, is represented. The most important indicator was527
that students tried to construct the symmetry by center of an arbitrary point on screen by using the reflection528
tool.529

The utilization of the reflection tool during the previous phase led students, through instrumental genesis,530
to construct a utilization scheme for the tool. In this case, the students used the reflection tool by economy531
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12 PHASE TWO: [STUDENTS’] ’DYNAMIC’ ACTIONS

(Rabardel, 1995), despite having the option to use the rotation tool, in order to avoid the efforts required to use532
a less familiar one ??Docq & Daele, 2001, p.200).533

This action led to an instrumental obstacle as the result of the students’ cognitive conflict with regard to the534
meanings of symmetry by center / axial symmetry. The archaeologists also discovered amazing mosaics in an535
ancient room. The next activity included students’ construction of the mosaic, using their rulers and compasses,536
and the construction of the same motif using dynamic geometry software. In the representation of the mosaic537
the students tried to discover the angle of rotation of the parallelograms but they [still] confused the shape of538
parallelograms with the shape of rhombus because of their orientation. They tried to construct the successive539
parallelograms, but they failed to find the angle of rotation.540

Phase Second: The utilization of trace toolreflection tool541
The trace tool in correlation with the reflection tool proved essential for students’ understanding of concepts; it542

helped the students to develop argumentation with regard to the equal distances of the points (original-, reflected543
point-image), and the identification of the axis of symmetry as a perpendicular bisector. The construction of the544
figure was completed using the reflection tool of the software. Furthermore, the students discovered the axes of545
symmetry of the shape. They also considered what the center of symmetry is and in what angle the parallelogram546
can be reproduced. Moreover, students identified that a perpendicular constructed from the symmetry centre547
crosses the figure. Then they (1) recognized that the interior figure was a rhombus (2) if a line is perpendicular to548
one of the two parallel lines, it is perpendicular to the other (3) a perpendicular constructed from the symmetry549
centre of a rectangle to a side of the rectangle, crosses the midpoints of this side and its opposite side (4) the550
lines through the midpoints of two opposite sides of a rectangle dissects the rectangle into four rectangles that551
are congruent to each other. The conceptual frame mentioned was the areas of surfaces, the surface measurement552
units, conversion between different surface measurement units, and the areas of shapes. Students were required553
to consider the type of triangle formed by the diagonal of the square and then to justify the measurement of554
the formed angle. The measurement of the surface could occur in many ways (e.g., measuring the tiles forming555
the shape) in which the students had to observe the shape that each of them had and determine the area. The556
students used their geometric instruments (e.g., ruler, compass) to measure the dimensions of the tiles. The aim557
was to construct a representation of the pattern to scale.558

Skilful combination of visuospatial ability and representational capacity is required, as well as the capacity559
for mathematical thinking. The questions that I posed to students (e.g., ”Is the inner quadrilateral a square or560
a rhombus?”) focused on the recognition of the kind of quadrilaterals representing the exterior and the interior561
shapes on the floor and to calculate the area of the surface covered by the red and the white tiles.562

Students’ responses led to extensive dialogue/debate among them and gave me feedback. This example563
illustrates Cobb, Yackel & Wood (1992) claim that ”students will inevitably construct the correct internal564
representation from the materials presented implies that their learning is triggered by the mathematical565
relationships they are to construct before they have constructed them. ??Cobb, 1987; ??ravemeijer, 1991;566
??on Glasersfeld, 1978). How then, if students can only make sense of their worlds in terms of their internal567
representations, is it possible for them to recognize mathematical relationships that are developmentally more568
advanced than their internal representations? (p. 5).569

12 Phase Two: [Students’] ’dynamic’ actions570

The figure 16 represents a draft of the instructional design of the activity, using the software’s tools. In the lesson571
that followed the in-class simulation, transformations of a lattice/grid were introduced to students using the GSP572
tool. While investigating the problem, the students used the rotation tool to rotate a congruent to each other.573
These properties are elements of the object being built with the GSP tool.574

The manipulation of the dynamic objects in the software led the students to construct the properties of the575
square, while the transformations of the dynamic objects led to acquire the symbol character. The modeling of576
the problem in the DGS environment of the lattice structure is of form A, while in the real environment, the grid577
is of B form. This renders essential the investigation of students’ capabilities to imagine the right figure or to578
construct the analogous mental representation. If this obstacle is overcome, then the students are able to move579
on to the next process.580

To facilitate the students, I created a custom tool ’symmetry’ (see for example Patsiomitou, 2012b, p. 68).581
The custom tool ’symmetry’ could be used to construct the symmetry by center of an arbitrary point on screen.582
The grid’s construction in the DGS environment can be created by using the transformation of translation of583
congruent segments horizontally and vertically or with the use of the ”symmetry” custom tool (Patsiomitou,584
2012b, p. 68). My aim was for students to formulate the relations and the conditions under which a figure is585
shaped as a square, and establish whether these conditions are still valid generally. The students had to examine586
the different cases of shapes arising from the use of dragging. The experimental sequential dragging (and then587
the theoretical one) until the angles become 90 degrees leads to forming squares. Moreover, the diagonals’588
constructions shape isosceles and right triangles.589

The students then used the custom tool ’symmetry’ to reverse the process. It is important that the students590
were able to connect mentally the reversed representations and to follow their successive structure. In this591
way, the transformations evoked in the initial representation were reversed through mental operations following a592
concrete order. This is better explained in the next situation. The students used graph paper and static or digital593
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material of their choice (e.g., cardboard or dynamic geometry software) to represent the construction (Figure594
19). The application was of particular interest, and students were able to calculate the figure’s area in several595
ways: (1) using as a unit the area of a tile and then that of a square (whose side was made of four sides of a tile),596
(2) calculating the area of the shape of a tile and from this, the area of the whole shape, and (3) calculating the597
dimensions of the shapes (squares) and then using geometrical formulas for the total area of the figure. Phase598
Two: The visualization of parallelogram’s diagonals in real world images Simulations of a scissor lift or Centre599
Pompidou’s designs (Figure 21) in the GSP have been introduced to students, in order to focus on and interrelate600
the meaning of a parallelogram with the bisection of its diagonals. This means that the parallelogram’s symbol601
character was completed with its primary properties. In the activity aforementioned, the students recognized the602
parallelogram on the screen from the structure of its bisected diagonals. The instrumental decoding of the reverse603
process (i.e., the construction of a square) was more difficult for the students. The next step was the analysis604
of the relationships between parts of pottery’s figures in the DGS environment. For example, the quadrilateral605
constructed from the connection of the points that intersect the diameters on the circle is a square (Figure 22).606
The students were not able to justify why the shapes were squares. They also changed the orientation of the607
diagonals in the DGS environment, applying the experimental dragging tool. They had to reverse the process,608
meaning they had to replace the figure with its properties. In other words, they had to construct the square’s609
signal character. The sequence of questions led students to think of figure similarity. (For example, ”Are squares610
similar figures?”, ”Are rectangles similar figures? Explain your answer”). Moreover, the students had to connect611
the meaning of the symmetry by center with the meaning of the segment’s midpoint.612

The students constructed the figure by taking into account the structure of its diagonals. They constructed613
two perpendicular lines intersecting at O, constructed a circle with center O and connected the four points where614
the circle cut the lines. It is crucial for the students to recall the properties of the figure’s diagonals that were615
investigated in the previous phases of the research process by mentally linking the reverse representations in this616
procedure.617

The students also used the custom tool ’symmetry’ to reverse the process. The utilization of the custom tool618
’symmetry’ twice with the second application point at the symmetry center O, will lead to the construction of619
two segments that have the same midpoint. Consequently, the meaning of ”diagonals are dichotomized” can be620
constructed by the students through the use of the custom tool. Dragging the construction from a point-vertex,621
the properties remain stable, meaning point O remain the midpoint of both the segments. The students are622
able to recognize that: ”if the diagonals of a quadrilateral have the same midpoint then the quadrilateral is623
a parallelogram or if the diagonals of a quadrilateral bisect each other then quadrilateral is a parallelogram”.624
Subsequently, the students are able -by using the custom tool ”symmetry” to transform an iconic representation625
into a verbal one through mental transformations.626

”This is a very complex process since the students must have both conceptual and procedural competence,627
meaning the competence to instrumentally decode their mental representations of a set of properties with628
actions through the use of tools. This means, for example, to interpret the congruency with the circle tool and629
simultaneously bisect with the custom tool. Furthermore, for them to construct the hierarchical categorization630
and definition of figures through their symmetrical properties and in accordance to their understanding.”631
??Patsiomitou, 2012b, p. 71). The process is described in the pseudo-Toulmin’s model above (Figure 24).632
The diagram expresses the way in which students in cooperation constructed the square, using the Sketchpad633
tools. Through the construction, they extended the structure of the intersected diagonals, including the meaning634
of the perpendicularity and the congruency: ”[a square’s diagonals] are perpendicular and congruent segments635
intersected in a [common] midpoint.” initial triangle, etc. Most important is the development of students’636
correlation of the properties (for example, ”How is the meaning of a right and isosceles triangle linked with637
the meaning of a rectangle, and how is this consequently linked to the meaning of a square?”, ”What are638
the similarities and differences of the properties of a square and a rhombus, etc., as a result of the different639
structuring of its figure?”, ”How do the similarity of the building block’s figures affect the similarity of the640
sequential figures?”).641

The students organized their thoughts for the sequential steps of the construction (for example, ”What should642
be the property that must have a right triangle to be the building unit for the construction of an equilateral643
triangle?” or ”What are the properties the sequential figures have?” The study of the building block’s properties644
helped the students to organize the properties of the figure evoked from the initial figure. This process is in645
accordance with what ??reudenthal (1973Freudenthal ( , 1983) ) has told that the teaching and didactic process646
must focus at the understanding of the structuring process and not the learning of ready-made structures.647
Moreover he argued that students could discover mathematics when they work with contexts and confront648
interactive and reflective activities.649

13 Phase Two: The Pythagorean Theorem through LVAR650

representations651

In their calculations, the students had to use the Pythagorean Theorem. For this, the next activity was aimed652
to increase understanding of the application of the theorem in the class. The teaching process consisted of three653
items:654
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13 PHASE TWO: THE PYTHAGOREAN THEOREM THROUGH LVAR
REPRESENTATIONS

? First, the visual proof of the Pythagorean Theorem with the utilization of linking visual active representations655
that I created using the Geometer’s Sketchpad. ? Second, the meaning of the Pythagorean Theorem, and656
generalizations of the concept. ? Third, the extension of the Pythagorean Theorem to fractal structures (e.g.,657
the construction of Pythagorean trees), such as successive calculations, the areas of squares, etc. The instrumental658
orchestration process (e.g., Trouche, 2004) included a laptop computer and an interactive board. Initially, the659
students were guided to explore the Pythagorean Theorem visually. Then, I asked the students to construct the660
shape using their paper and pencil environment as an assignment in class to determine how they perceived the661
objects. In the images of figure 29, we can see the linking representations of the Euclidean proof of the Pythagorean662
Theorem. The successive phases of the constructional steps have been achieved using transformational processes663
like the use of the translation command (Figures 29). By dragging a point of the original configuration or the664
translated images, the students can observe the processes that emerged previously being modified simultaneously.665
Students are able to directly assume or infer the properties and the interrelationships between figures from666
properties indicated on the diagram by conventional marks (for example the equality of angles, or the angles667
measurements). In the first row, four linking [translated] representations led the students to understand that the668
half square is transformed to the half rectangle. The same is visually demonstrated in the second row for the669
other square. The important point from the LVAR constructions is that the students can transform the shapes670
simultaneously and see the same theorem from a different orientation. Additionally, an important point, segment,671
or shape is highlighted as the students develop their explanation orally.672

I explained to the students that this method provides a visual confirmation of the Pythagorean Theorem and673
pointed out the need for proofs. The challenge is the interaction of students with LVARs to help them develop their674
level of geometric thinking. A pupil can develop his/her level of knowledge by proceeding through increasingly675
complex, sophisticated and integrated figures and visualizations to a more complex linked representation of676
problem, and thereby moving instantaneously between two successive Linking Visual Active Representations only677
by means of mental consideration, without returning to previous representations to reorganize his/her thoughts678
(e.g., ??atsiomitou, 2008aPatsiomitou, , 2010a;;Patsiomitou & Koleza, 2008). A student voluntarily presented679
the other students with the dynamic objects and the transformation of the shapes, which was a part of the680
process. If someone failed to provide the correct answer, the other students tried to help, expressing their point681
of view. The question was the following: ”What kind of quadrilateral is shaped by joining the midpoints of the682
external quadrilateral?” For any quadrilateral, we can prove that the internal quadrilateral constructed by the683
midpoints of the sides of the external quadrilateral is a parallelogram. The students learn to prove this through684
a procedure of the application of the midpoint-connector theorem. In the image above, the interior figure is a685
square, as is the exterior figure.686

If the exterior quadrilateral becomes a rectangle, then the interior–constructed by joining the midpoints of the687
initial–will become a rhombus, the next interior constructed will become a rectangle, etc.688

The students can visualize a secondary property of the rectangle (for example that the axes of symmetry of the689
rectangle can be interpreted as diagonals of the rhombus, in other words can be interpreted differently and acquire690
a second role. Then the symbol of rectangle is transformed to the signal of rhombus. It is what many researchers691
have discussed (e.g., van Hiele, 1986; Patsiomitou & Emvalotis, 2010a, b). The Toulmin’s model diagram below692
is a representation of the way students expressed their thoughts. They told that ”If the figure is a rectangle, then693
its diagonals are congruent, so these segments –that join the midpoints of the opposite sides–are parallel and half694
the length of the diagonals”. The 6th situation led students to think about self similarity, which is not included695
in high school curriculum. The objective of the situation seventh was to awaken students in mathematics that696
are not included in their class curriculum. Moreover, because of the scheduled curriculum is difficult for them697
to explore. ??artinez (2003) writes that ”Mandelbrot coined the word ”fractal” (from the Latin word ”fractus”,698
meaning fractured, broken) to label objects, shapes or behaviors that have similar properties (self-similarity) at699
all levels of magnification or across all times, and which dimension, being greater than one but smaller than two,700
cannot be expressed as an integer” (reported in http://www.fractovia.org/art/people/mandelbrot.html701

). The plan was to incorporate and illustrate fractal geometry –or facilitate the understanding of topics702
from geometry–in already existing curriculum (e.g., fractions, proportion and ratio, calculations of area and703
volume, logarithms and exponentials, sequences and series, convergence of geometric series, geometry of plane704
transformations etc.) Furthermore, the enrichment with fractals into existing curriculum helps students to705
develop their imagination and apply mathematics outside the classroom, in real-world activities in cases that706
other students couldn’t see the relevance. For example, among students’ kites a highlighted one existed,707
constructed with Baravelle spirals (e.g., Chopin, 1994; Patsiomitou, 2005) fractals, of a student 12 yearsold708
who participated in Fractal group. Mathematical concepts related to the construction and investigations of a709
fractal are divided into geometric and algebraic segments, which cover almost all concepts included in the high710
school curriculum. For the fractal constructions the Geometer’s Sketchpad dynamic geometry software has been711
used which is the best dynamic geometry program for facilitating fractal constructions because of the in-depth712
iteration process that helps students gain strong intuition for the meanings (Patsiomitou, 2005(Patsiomitou, ,713
2007)). The students watched videos exploring the fascinating world of fractals. The videos were posted, in the714
Moodle environment. The language of the videos was English, which did not cause dissatisfaction or difficulty715
for the students. Moreover, it is well-known that the language of mathematics is common internationally, and716
in the videos, common notations for mathematical concepts were presented. The students could also cooperate717
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to collaboratively answer questions and complete a text for the golden rectangle, gathering information from718
websites or creating their own constructions. Mandelbrot or Julia fractals fascinated the students because of the719
beauty of the objects they observed. Some of the students processed natural fractals (e.g., broccoli, cauliflower)720
to understand that a fractal structure does not change. The shape and the size of the object do not affect the721
structure and the selfsimilarity of the objects.722

14 Phase Two: Modeling fractal objects723

The design of the activities and the experimental process that is reported here is an excerpt of my Master’s724
thesis (Patsiomitou, 2005). This process has been repeated in the students’ fractal group in the previous school725
year. For example: the construction of a ”Pythagorean Theorem” custom tool, as well as the application of a726
”Pythagorean Theorem” custom tool recursively, led them to create Pythagorean fractal trees. Via the proposed727
activities we are able to investigate whether the construction of the fractals implementation or via the custom tools728
or of the process iteration can assist in investigating open-ended problems whose objective is the standardisation729
of intuitive ideas and the development of abstract processes. Moreover, we are able to investigate whether the730
students can be imported into the basic notions of infinitesimals and their use in calculus.731

I conceived of LVAR representations when creating linked pages in Sketchpad files to construct fractals for732
my Masters thesis. Here is explained the rationale I followed in the design process. The most important parts733
of the design and research process are going to be mentioned here, enriched, to explain the importance of734
linking visual active representations, instrumental decoding, and RVR–as LVARs have been illustrated later (e.g.,735
??atsiomitou, 2012a, b). The modeling and construction of an in-depth fractal structure is difficult or impossible736
with familiar geometry instruments (ruler and compass). Although the students’ construction started in the737
paper-pencil environment, they felt it necessary to continue their construction in dynamic geometry software.738
The construction of the Sierpinski triangle fractal was one of the favorite subjects for the students. Moreover,739
the discussion expanded on the concept of a golden rectangle and golden spiral, and other spirals, such as the740
Fibonacci sequence, concepts that enriched the mathematical world of the students. Below I describe the way in741
which the students constructed a Sierpinski triangle in the DGS environment through two different ways: that of742
a custom tool (script) and thereafter application of the tool in (n) steps or the application of functional process743
of iteration (Steketee, 2002, Jackiw & Sinclair, 2004) to the initial construction (or even the composition of the744
two modes). For the construction of the Sierpinski triangle, the students started with an isosceles triangle (or an745
equilateral) and the midpoint of its sides (Patsiomitou, 2005(Patsiomitou, , 2007)). Then they guided to build746
a custom tool in order to continue the process. The students had to grasp the process in order to construct a747
Sierpinski triangle in-depth.748

ii. From an instrumental genesis perspective, the students can construct an instrumented action scheme749
by using the custom tool, and then a higher order instrumented action scheme. Therefore, the custom tool750
’equilateral’ acts as a building unit in the genesis of the higher-order scheme, exactly as Drijvers & Trouche751
(2008) argue:752

”The difference between elementary usage schemes and higher-order instrumented action schemes is not always753
obvious. Sometimes, it is merely a matter of the level of the user and the level of observation: what at first may754
seem an instrumented action scheme for a particular user, may later act as a building block in the genesis of a755
higher-order scheme.756

[?] a utilization scheme involves an interplay between acting and thinking, and that it integrates machine757
techniques and mental concepts [?] the conceptual part of utilization schemes, includes both mathematical758
objects and insight into the ’mathematics of the machine”(p. 372).759

The sequential creation of custom tools led the students to grasp meanings; however, most of the students had760
difficulties in understanding the structure of the triangle as the process evolved.761

Phase Two -Part 2: The iteration process In order to approach the task we constructed an equilateral triangle762
and from the midpoints of its sides the next equilateral and so on. The problem that we discussed concerned763
the calculation of the sum of the areas of the successive equilateral triangles in the interior of the shape. The764
whole iteration process can be demonstrated using Geometer’s Sketchpad software to make it understandable for765
children aged 13-16. If we build a custom tool (”Area’s sum,” for example) that finds the sum of the successive766
triangles, divide the sum with the area of the initial triangle, and repeat continually, we will get a result (e.g.767
1,25). The structural repetition of the triangles in-depth, as well as of the calculations, will not change the results.768
The next figures (Figure 37) demonstrate the linking of the visual active representations of the calculations, which769
generalizes the process. The final result is equal to 1, 3333?, meaning that the limit of the sequence of the infinite770
sum of the areas approaches the 1, 3333?number as is strictly proven. The resulting sequence is formed by the 8771
tria ngles) ma de in ea ch sum of the areas of triangles (> iteration. This means that we finally have a sequence772
of terms equal to 1.33333. In this way, the students understand that the size of the triangles does not affect the773
ratio of the sum of the area, which is approximately (~1.33) and remains stable, even if we continue the process.774

Figure 37 : Linking Visual Active Representations of Sierpinki’s iteration process How easy is it for a teacher775
or student working in the paper-pencil environment to create these representations with the software’s accuracy776
or to synthesize all these together with precision and speed? From a mathematical perspective, we could mention777
the following:778

If the area of the initial triangle is equal to E (the first term), every one of the triangles being built by joining779
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14 PHASE TWO: MODELING FRACTAL OBJECTS

its sides’ midpoints has an area equal to 4 E . This series is geometric, with the constant ratio = 1/ 4. The780
question is about the calculation of the addition of triangles’ areas in depth.781

Meaning, the sum of ?+?/4+?/16 + ? whose each successive term can be obtained by multiplying sum can782
be calculated by applying the formula The team was constituted from 6 students 15-16 years old. The students783
at the school had not been taught about the sum of infinite terms of a geometric progression, because it was784
not included in their curriculum. The students initially observed that the areas in the interior of the shape were785
decreased by the ratio r =1/4. This led them to the definition of the geometric progression for the areas of the786
shape and to the calculation of the sum of the infinite sequence ?+?/4 +?/16 + ?where E is the area of the initial787
triangle, E/4 the area of the next internal triangle and so on. The inquiry process investigated if the students788
could perceive the meaning of the limit of the sequence of the infinite sum of the areas (approximate result almost789
equal to 1, 33333?).790

The students through guided questions calculated the sums of the areas of the 2 first equilateral triangles791
and then divided it by the area of the initial triangle. Thereafter they calculated the sums of the areas of the792
three first triangles and divided this again by the area of the initial triangle. The process continued with the793
construction of the suitable custom tool that repeated this inductive process. When the process reached the 9794
first steps the sum of the 9 internal repetitions of the areas of the equilateral triangles within the shape and the795
calculation of the ratio was stabilised at 1,33333 even when the initial triangle’s shape was increased by dragging.796
Therefore, the generalisation of the process resulted from the process of iteration. With the assistance of the797
dilate tool and zooming into the depth of the construction thus dilating the structure the afforded impression798
was that of an infinitely continuous structure which had in actual fact remained unaltered and constant. The799
students confirmed the repetition of the number 1,33333 on the table for (n) first steps of iterative constructional800
steps. In the beginning they applied the process and a shape resulted at the centre of the initial shape. Dilate801
tool assisted them to see into the centre of the shape and extend their mental representations.802

[?] In the latter activity we were led towards the construction of a branch of the Pythagorean tree using803
the modes that were mentioned before. The students had not comprehended the graphic representation of804
the sequence when it had been discussed with static means in their class during their course of mathematics.805
Their initial reaction was to connect the isolated points that resulted from the plotting of the areas of the806
successive squares, in order to produce a continuous curve. This reaction of the students was a result of807
misconception of the definition of the domain of any sequence which is the natural numbers, but more so808
the result of the correlation of the graphic representation of the functions as it has been introduced by static809
means. The connection of the concept image with the concept definition of the meaning (Vinner, 1983) and810
finally the graphic representation was created through the environment of the software. At this point in811
the shape we have used as base for the development of the activity the file seqlimit.gsp. (Retrieved from812
http://www.teacherlink.org/content/math/activities/sketch padv4.html). As it is described by the authors:813
”[The file has been designed] to help students graphically visualize the concepts behind the formal definition814
of the limit of a sequence. Given a value for epsilon, students can manipulate N to find a value for N beyond815
which all further terms of the sequence lie within the distance epsilon from the limit”.816

In this sketch I had created an adaptation of the shape of fractal Pythagorean tree (Figure 39). The process of817
animation can produce the changes in the tabulated measurements (calculations) that allow the user to examine818
the dynamic process. These changes come as result of the fluctuations in the size of an artefact-fractal which have819
the possibility of increasing (decreasing) and altering orientation. The students consequently had an environment820
of multiple linking visual active representations in which the shape of the fractal had been linked with the table821
of the measurements via the functional process of iteration, which continuously could be linked with the graphic822
representation of the sequence. [?] (Patsiomitou, 2005(Patsiomitou, , 2007)).823

As a result of the construction and application of the custom tool as much as the process of iteration the824
direct perception of the user is attained in regard to the steps in the development of the construction pertaining825
to (Patsiomitou, 2005(Patsiomitou, , 2007):826

? The repetitions in the measurements or calculations of the areas of initial shapes ? The developmental way827
of the construction of the shape and828

? Its orientation towards the sequential steps of the construction on the screen’s diagram or in successive829
pages of the same file. Through the application of the custom tool the possibility is given to the user to acquire830
an inductive way of thinking for the finite steps of the construction but the generalisation with regard to the831
constructional result can be achieved from the process of iteration which inductively renders the construction832
theoretically to infinity (Patsiomitou, 2005(Patsiomitou, , 2007(Patsiomitou, , 2008d)). This function of the833
software also constitutes a certain crucial and essential particularity, while the construction with a compass and834
a ruler as formal tools of static geometry has a beginning and an end. Moreover, ”a teacher is able to distinguish835
different levels of acquisition and mathematical engagement with a fractal topic [as] scripts [ / iteration command]836
represent an abstraction of his/her own work or process, and thus using them as ”abstract” tools require one level837
more advanced or sophisticated a conceptualization than using ”literal” tools like the compass or straightedge. ”838
(Personal email communication with Nicholas Jackiw on September 29, 2005).839

In the software, via the process of iteration we have the potential of the constructions thus becoming more840
complex being in theory rendered inductively to infinity. The result of the process of iteration is the construction841
of the tables that repeat the process of initial measurements and calculations in dynamic connection with the842
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shape, thus increasing (or decreasing) the level of the process of iteration while the software adds (or removes)843
the next level of measurements (or even calculations), whereas in the first column of the table the sequence of844
the natural numbers is presented. In that way through this operation, the environment of the software promotes845
the exploration of the sequences and of the series. The iteration process by functioning thus has integrated846
or embodied the meaning of sequence while there is a direct connection between the user’s perception and the847
abstract mathematical meaning (Patsiomitou, 2005(Patsiomitou, , 2007)). Therefore, I think that The Geometer’s848
Sketchpad v4 ??-v5] is the best tool to introduce fractals in classroom not only for aesthetic purpose rather than849
for the pursuit of their very interesting mathematics. The structures of fractals, [by applying the meaning850
of dynamic LVAR representations], aims that students (a) review most of theorems, (b) identify the potential851
weaknesses and cognitive obstacles that students face in their effort to understand the process, (c) develop the852
links between the virtual representations and the formulations with which students justify their construction, as853
a result of understanding the figures’ transformations and symmetry, and (d) develop most of the competencies854
described in the beginning of the article and higher-order level skills (e.g., generalize patterns using recursion,855
use algebraic formulae and symbolic expressions to explain mathematical relationships, etc.) than those that856
they are able to develop through traditional mathematics. This is very important for their movement through857
vH levels.858

V.859

15 Discussion a) Developing a theory on dynamic transforma-860

tions861

The emphasis on construction using the Transform menu in GSP was shaped to facilitate the understanding of862
symmetries and strengthen the development of structures in the students’ minds. The thought that the shapes863
have symmetries can lead students to dynamically reinvent new ways of constructing them through the dynamic864
geometry software.865

The focus on transformations is in accordance to Coxford & Usiskin (1975), who report inter alia that, the use866
of different types of transformations in the curriculum simplifies the mathematical development (for example, the867
definitions of congruence and similarity cover all figures). Therefore, the proofs of many theorems are simpler and868
more accessible to all students. Furthermore, the authors argue that transformations facilitate the understanding869
of mathematical concepts for students from different mathematical competence and prepare the ground for future870
processing concepts of algebra and analysis. Therefore, are defined as the modifications of the diagram on screen871
that result in the modification in one or more included geometric objects. This could be an elicitation from the872
addition, cancelation of the diagram’s elements that cause the rearrangement of the diagram, its anasynthesis,873
or even the modification of any object’s size or orientation. Moreover, it could seen as we apply one or more874
interaction techniques, or their combination, on the diagram’s objects. Transformations on prototype elements875
(e.g., points, line segments) led the students to (1) visualize the objects that were constructed in the first phase876
of the process and (2) perceive a few properties of the figure’s symmetry initially at the visual level. It was877
observed that during the process the students connected, in their minds, representations that helped them to878
respond to the next level, according to the theory of van Hiele. The dynamic manipulation of objects in software879
led the students to construct the properties of the shapes. The use of software transformation tools influenced the880
direction of their thinking, since their use allowed the properties of shapes to be analyzed and then synthesized881
into shapes. As a result, the construction and transformation of semi-preconstructed LVAR led the students to882
a theoretical way of thinking, and cognitive transformations through related cognitive connections.883

”If we accept that mathematical growth coincides with constructing new mathematical reality, we may884
conceive mathematics education as supporting students in constructing new mathematical reality. This fits885
with Freudenthal’s (1973) notion of ”mathematics as a human activity”. In his view students should be given the886
opportunity to reinvent mathematics. The challenge then is: How to make students invent what you want them887
to invent?” (Gravemeijer, 2004, Many students do not have the ability to dynamically visualize and mentally888
manipulate geometric objects, which is important for solving problems in geometry. In that case they are not889
able to reflect on or to anticipate a possible solution to the problem. Therefore, geometric transformations in890
the software help the students to form an intermediate stage between the concrete and the abstract. They help891
them to instrumental decode the mathematical symbols and to connect their use with the pre-existing knowledge.892
Then the interaction with the software incorporates the steps and the mental or cognitive actions that facilitate893
the understanding of the solution.894

The use of the transformations in the DGS environment strongly influenced the formation of the ’dynamic’895
teaching cycle process which is described in the next section.896

16 b) A ’dynamic’ teaching cycle process through LVAR897

The data presented here focused on teaching situations, including instructional units, classroom activities, and898
simulated or modeled problems in the DGS environment. In this section, I shall analyze my role as teacher,899
researcher, and instructor of the activities as it emerged from the teaching situations, as well as the students’ role900
in the formation of a mathematical teaching cycle. The design or selection of teaching activities and problems that901
stimulate and excite mathematical reinvention ??Freudenthal, 1973) on the part of students is a ”challenge for the902
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16 B) A ’DYNAMIC’ TEACHING CYCLE PROCESS THROUGH LVAR

teacher, [who must] try to see the world through the eyes of the student.” ??Gravemeijer, 2004, p.8) If the teaching903
and learning of concepts through the use of real problems in a DGS environment is compared with the traditional904
approach, we conclude that, ”the modelling perspective [using a DGS environment] offers major advantages.905
The process of modelling constitutes the bridge between mathematics as a set of tools for describing aspects of906
the real world, on the one hand, and mathematics as the analysis of abstract structures, on the other” (Corte,907
Verschaffel & Greer, 2000, p.71). Moreover, the intrinsic design of dynamic representational systems has essential908
impacts on the mental representations of the student, that is, the ways in which students construct their personal909
representations of meaning during the activity, whether these representations are directed at an individual student910
or in the student’s collaborative environment with others. Accordingly, the conclusions can be used to analyze911
the potential of these tools for mathematics teaching and learning, to design new tools, and to better understand912
the ways in which these tools can be (instrumentally) decoded by teachers and students to be transformed into913
theoretical knowledge built through mediation. As teachers (or teacher-researchers) design teaching concepts and914
ways of interacting with their students, they increasingly feel the need to understand the minds of the students,915
looking for methods to lead their students to understand the concepts. Therefore, the determining factor is916
the teacher who decides on the objectives/aims of the teaching method and chooses the means for effective917
implementation of the objectives or of the educational process. The positive attitudes/behaviors of the teachers918
of mathematics with regard to mathematics, their positive position with regard to technology, and their interest919
in the students’ understanding of the concepts, are the most important factors for the development of innovative920
applications in schools.921

As a teacher-researcher, I know that the students encounter difficulties in order to understand the concepts922
in geometry. The connection between the represented and the representation can create conflicts to students923
because they are not able to control the information that comes from the outside world (Mesquita, 1998). The924
question is how we can overcome the cognitive obstacles they face and what are these teaching situations which925
can provide the scaffolding to the next van Hiele level.926

The instructional units aimed to challenge students and ”elicit, support and extend children’s mathematical927
thinking, facilitating mathematical discussions, using the representations of concepts and encourage use of928
alternative solution methods” ??Fuson et al., 2000, p. 277). Many times I tried to shift mentally from an929
observer’s point of view to an actor’s point of view (Cobb, Yackel & Wood, 1992in Gravemeijer, 2004), and930
consider now the design of the activity of this regard. My approach was as follows:931

Volume XIV Issue I Version I The motivation for this situation was that my students understand the932
parallelograms from their symmetry properties and, if they have a set of properties, to understand the kind933
of quadrilateral. This phase is very crucial for the students to acquire the ability to replace a figure with a set934
of properties that represent it and from these properties to construct the figure. In other words, the figure will935
acquire the signal character.936

The recognition of differences and similarities between figures’ symmetry properties demarcates the scope of937
this situation. The teaching and didactic process must focus at the understanding of the structuring process and938
not the learning of readymade structures.939

The development of structures in students’ minds has been achieved with the synthesis of a more complex940
construction. The situations aim to develop the abstraction. Pythagorean Theorem’s reconfigurations have been941
used as a tool for the development of students’ instrumental decoding of a complex figure’s anasynthesis. The942
6th situation led students to think about self similarity, which is not included in high school curriculum.943

Self -similarity, Pythagorean Theorem and the midpoint theorem are the mathematical backgrounds of this944
situation. Here is explained the rationale in the design process and the importance of linking visual active945
representations and instrumental decoding.946

The use of a computing environment such as dynamic geometry helps students to build ’a model of947
the meaning’ ??Thompson, 1987, p.85) and overcome the difficulties of translation between representations948
through the automatic translation or ”dyna-linking” (Ainsworth, 1999, world problems through LVAR in the949
dynamic geometry software, and the results obtained from the research data ??Patsiomitou, 2012 a, b), suggest950
that a student develops his/her abstractive competency when his/her cognitive structures are linked through951
representations that the student develops during the learning process.952

”Apart from the aspect of anticipating the mental activities of the students, a key element of the notion of a953
hypothetical learning trajectory is that the hypothetical character of the learning trajectory is taken seriously.954
The teacher has to investigate whether the thinking of the students actually evolves as conjectured, and he or she955
has to revise or adjust the learning trajectory on the basis of his or her findings. In relation to this, Simon (1995)956
speaks of a mathematical teaching cycle. In a similar manner, Freudenthal (1973) speaks of thought experiments957
that are followed by instructional experiments in a cyclic process of trial and adjustment. If we accept this image958
of the role of the teacher in instruction that aims at helping students to invent some (to them) new mathematics,959
we may ask ourselves, what type of support should be offered to teachers. Apparently, we will have to aim at960
developing means of support that teachers can use in construing and revising hypothetical learning trajectories”961
(Gravemejer, 2004, p.9).962

The whole action is an innovative production of a new approach to the educational process based on theoretical963
underpinning. This innovation is introduced for the first time in the school of established practice, and thus,964
proposes the redevelopment / redesign of the everyday teaching practice by using LVAR, with proper interventions965

16



in school curriculum. Specifically, linked representations that the student is able to construct ??Patsiomitou,966
2012a, b):967

When the student builds a representation (e.g., a rectangle) in order to create a robust construction968
externalizing his/her mental approach, using software interaction techniques by externalizing his/her mental969
approach or by transforming an external or internal representation to another representation in the same970
representational system or another one. When s/he gets feedback from the theoretical dragging to mentally971
link figures’ properties so that, because of the addition of properties, subsequent representations stem from972
earlier ones. When s/he transforms representations so that the subsequent representations stem from previous973
ones due to the addition of properties. ? When s/he links mentally the developmental procedural aspects in a974
process of a dynamic reinvention ? When s/he reverses the procedure in order to create the same figure in a phase975
of the DHLP or between phases of the same DHLP. ? Adding to the initial [procedural] structure so that the976
first component parts of a construction lead to a structure and to eventually becoming more and more complex,977
? Linking the conceptual steps of the construction (p. 76). Moreover, the procedures, due to their design,978
”prompted” the cooperation of students, contributed to the development of positive behavior, and strengthened979
the weak students to understand the concepts and procedures while interacting with their classmates. The process980
resulted in the cooperation of students with me which often ”forgot” my role and ”took” on the role of a student981
playing the ’game’ to ask questions that some of my students did not have the courage to ask.982

With regard to the problems, many teachers prefer algebra to geometry. The reasons are as follows: (a) the983
awareness of the risk of the student’s failure or (b) the teacher’s lack of confidence for their knowledge of the984
subject of geometry. How would the LVAR process (i.e. the utilization of LVAR concept for the construction985
of activities) change this weakness when students are able to process on official electronic platforms from the986
Ministry of Education? How will this affect the confidence of teachers who handle this platform for their students,987
giving feedback on their knowledge?988

These questions should be discussed, as well as discussing who will educate the designers of these activities989
so that the material is consistent with the idea. On the other hand, it is obvious that there is possible misuse990
of the LVAR concept for the construction of activities by the way that every teacher thinks, which could lead to991
opposing results. It is therefore necessary to train the agents who will spread the LVAR idea, with consistent992
processes of meaning. Still, the implementation of the idea can be generalized and repeated in any group of993
students, at different times and in any thematic framework (e.g., the objects of physics or chemistry).994

17 Global Journal of Computer Science and Technology995

Volume XIV Issue I Version I (Simon, 1995): ”the teacher’s knowledge of mathematics mathematics and his996
hypotheses about the students’ understandings, several areas of teacher knowledge come into play, including the997
teacher’s theories about mathematics teaching and learning; knowledge of learning with respect to the particular998
mathematical content; and knowledge of mathematical representations, materials, and activities” (p. 133).999

What has been examined is the use of technology in the teaching cycle which plays an important role in1000
the development of discussions, as well as students’ vH level. The diagram aims to include the incorporation1001
of technology practices in class. The teacher’s interaction with students and the mathematical communication1002
through dialogues is accomplished in sequential situations: the implementation of activities, effective teaching and1003
inquiry into students’ mathematics, the assignment of students’ knowledge, all of which leads to the teacher’s1004
feedback. These processes go on continually and can suggest adaptations in various domains of a teacher’s1005
knowledge, including in the following areas: mathematics, pedagogy, representations, technology, and modeling1006
through LVAR representations. The whole process leads to a modification of the hypothetical learning path that1007
includes a continuous interaction between the teacher’s knowledge of particular content, the teacher’s goal, and1008
assessment of the students’ vH levels.1009

18 VI.1010

19 Conclusions1011

The modeling of a problem in the dynamic environment can ’carry’ any [mathematical] object to the classroom1012
in two ways: through the use of digital images or through the use of their simulations. On the other hand,1013
a technological tool is important as the design of artifacts can be generalized and replicated in any group of1014
students, at different times and in any thematic framework (e.g., science, geography). Therefore, referring to1015
LVAR is concluded in the following (Patsiomitou, 2012a On the other hand, new cognitive tools are not included1016
[or included in a very slow way] for the teaching of concepts. It is particularly important for the ’movement’1017
of a process by applying innovative practices to change the negative views that a large portion of teachers have1018
regarding technology. This seems to focus on a lack of knowledge because of the phobias surrounding technological1019
tools in the mathematics classroom, leading to an adherence to traditional teaching methods.1020

In general, the whole issue has to do with the way we perceive the world, the natural objects (unconscious),1021
how we compare them mentally (consciously) with theoretical constructs of geometry in order to represent them1022
and how we instrumental decode them using technology. Finally, it is important to continue teaching and research1023
concepts in this vital field, through activities that involve children in the learning process, so using linked visual1024
representations they will learn how to develop, interpret, and make sense of geometric concepts. This argument1025
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19 CONCLUSIONS

recognizes and underlines the force of Kant’s argument (1929, ”Critique of Pure Reason”) that: There can be no1026
doubt that all our knowledge begins with experience. For how should our faculty of knowledge be awakened into1027
action did not objects understanding to compare these representations, and, by combining or separating them,1028
work up the raw material of the sensible impressions into that knowledge of objects which is entitled experience?1029

[Because] ”Understanding is the faculty of knowledge and [?] knowledge consists in the determinate relation1030
of given representations to an object”. 1 2

1

Figure 1: Figure 1 :
1031
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