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In this note, we show that the Traveling Salesman Problem cannot be solved in 
polynomial-time on

 

a classical computer.
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Abstract - In this note, we show that the Traveling Salesman 
Problem cannot be solved in polynomial-time on a classical 
computer.

Traveling Salesman Problem - A traveling 
salesman starts at city 1, travels to cities 2, . . . , n −1 in 
any order that the salesman chooses, and then ends his 
trip in city n. Let us denote (i, j) to be the distance from 
city to city j. The goal of the Traveling Salesman 
Problem is to find the minimum total distance possible 
for the traveling salesman to travel. There are no 
restrictions on the possible distances (i, j) between 
each of the cities other than the requirement that each 

(i, j) is a positive integer and (i, j) =   (j, i) [1, 3, 4].
We give a simple proof that no deterministic 

Problem in o(2n) time:
For any nonempty subset S    {2, . . . , n}and for 

any city i   S, let us define (S, i) to be the length of the
shortest path that starts at city 1, visits all cities in the set 

Salesman Problem is equivalent to the problem of
computing ({2, . . . , n}, n). Clearly, ({i}, i) =   (1, i) and

when  

This recursive formula cannot be simplified, so 
the fastest way to compute ({2, . . . , n}, n) is to apply 
this recursive formula to ({2, . . . , n}, n). Since this 

subsets S {2, . . . , n} and each i   S, we obtain a lower 

Traveling Salesman Problem.
This lower bound is confirmed by the fact that 

the fastest known deterministic and exact algorithm 
which solves the Traveling Salesman Problem was first 

time of (2  ) [2, 
4].
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i

and exact algorithm can solve the Traveling Salesman 

S − {i}, and finally stops at city i. Then the Traveling 

involves computing (S, i) for all (2 ) nonempty Θ

bound of for the worst-case running-time of any 
deterministic and exact algorithm that solves the 

published in 1962 and has a running-
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