
© 2011I . Sumit Kumar, Ms. Ritu Devi. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial
use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 23 Version 1.0 December 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

An Analytical Review of Orientation Based Concurrency
Control Algorithm

By Sumit Kumar, Ms. Ritu Devi

M M University, India

Abstract - There is an ever-increasing demand for higher throughputs in transaction processing
systems leading to higher degrees of transaction concurrency.Concurrency control in Database
management systems ensures that database transactions are performed concurrently without
violating the data integrity of the database. Thus concurrency control is an essential element for
correctness in any system where two database transactions or more, executed with time overlap,
can access the same data. There are problems like Deadlock,Livelock and prevention of these
problems is vital in concurrency control of distributed database systems.Many techniques have
been proposed for managing concurrent execution of transactions in database systems.A new
method for concurrency control in distributed DBMS’s,is discussed which will improve system
performance by reducing the chances of deadlock and livelock and reducing restart ratio.

Keywords : concurrency,deadlock,timestamp,lock etc.

An Analytical Review of Orientation Based Concurrency Control Algorithm

 Strictly as per the compliance and regulations of:

GJCST Classification : D.4.1

An Analytical Review of Orientation Based
Concurrency Control Algorithm

Sumit Kumar α, Ms. Ritu Devi Ω

Abstract - There is an ever-increasing demand for higher
throughputs in transaction processing systems leading to
higher degrees of transaction concurrency.Concurrency
control in Database management systems ensures that
database transactions are performed concurrently without
violating the data integrity of the database. Thus concurrency
control is an essential element for correctness in any system
where two database transactions or more, executed with time
overlap, can access the same data. There are problems like
Deadlock,Livelock and prevention of these problems is vital in
concurrency control of distributed database systems.Many
techniques have been proposed for managing concurrent
execution of transactions in database systems.A new method
for concurrency control in distributed DBMS’s,is discussed
which will improve system performance by reducing the
chances of deadlock and livelock and reducing restart ratio.
Keywords : concurrency,deadlock,timestamp,lock etc.

I. INTRODUCTION

oncurrency control is the activity of coordinating
concurrent accesses to a database in a multiuser
database management system (DBMS).

Concurrency control permits users to access a
database in a multiprogrammed fashion while
preserving the illusion that each user is executing alone
ona dedicated system[2]. The main technical difficulty in
attaining this goal is to prevent database updates
performed by one user from interfering with database
retrievals and updates performed by another. The
concurrency control problem is exacerbated in a
distributed DBMS (DDBMS) because (1) users may
access data stored in many different computers in a
distributed system, and (2) a concurrency control
mechanism at one computer cannot instantaneously
know about interactions at other computers.

II. BACKGROUND OF CONCURRENCY

CONTROL METHODS

Many methods for concurrency control exist[1]
[4][5][6][8][9][10].The major methods, which have each
many variants,are:

Author α

: Computer Science & Engg. Department, M M University,
India. E-mail : sumit0709@gmail.com

Author Ω

: Computer Science & Engg. Department, M M University,
India. E-mail : ritudevi@rediffmail.com

1. Locking -

Locking is a mechanism commonly
used to solve the problem of synchronizing access to
shared data[6].Controlling access to data by locks
assigned to the data.Several types of locks are used in

concurrency control such as Binary(1 or 0)
locks,Shared/Exclusive locks. each data item has a lock
associated with it. Before a transaction T, may access a
data item, the scheduler first examines the associated
lock. If no transaction holds the lock, then the scheduler
obtains the lock on behalf of T,. If another transaction T,
does hold the lock, then T, has to wait until T2 gives up
the lock. That is, the scheduler will not give T, the lock
until T releases it. The scheduler thereby

ensures that
only one transaction can hold the lock at a time, so only
one transaction can access the data item at a
time.When a lock is set, other transactions that need to
set a conflicting lock are blocked until the lock is
released, usually when the transaction is completed.
The more transactions that are running concurrently, the
greater the probability that transactions will be blocked,
leading to reduced throughput and increased response
times.One variation of basic locking protocol that ensure
serializability is two phase locking protocol[10].This
protocol requires that each transaction issue lock and
unlock requests in two phases:

1.

Growing phase –

A transaction may obtain locks,but
may not release lock.

2.

Shrinking phase –

A transaction may release
locks,but may not obtain any new locks.

A method called optimistic method with dummy
locks is also there for concurrency control in distributed
databases. The advantage of using dummy locks is that
although they are long-term locks, they do not block the
execution of transactions in any way[]

2. Serialization graph checking (also called
Serializability, or Conflict, or Precedence graph
checking) –

Although two phase locking ensure
serializability,they may lead to a deadlock.Deadlock
occurs when each transaction T in a set of two or more
transaction is waiting for some item that is loked by
some other transaction T1

in the set. There are
otherways one could enforce serializability as
well.Deadlock can be precisely detected by constructing
a directed graph called wait-for-graph.The nodes of
WFG

are labelled with active transaction names.In a
WFG

there exist an edge from Ti

to Tj

iff transaction Ti is
waiting for transaction Tj

to release some lock.Is there

C

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

23

20
11

D
ec

em
be

r

exist a cycle in WFG,it means deadlock has occure and
broken by aborting a transaction.The transaction chosen
for abort is called the victim. While such a scheme is
possible, it is hardly practical.

3.

Timestamp ordering (TO)

–

In an alternative
approach to locking is use of timestamps[4][10].

Ordered timestamps are assigned to transactions, and
controlling or checking access to data by timestamp
order. The general idea is to give each transaction a
"timestamp" which indicates when the transaction began
(serial number or system time). To generate timestamp
values,transaction manager can use system clock value
i.e TS(T)

is equal to value of clock when T has entered
the system.Alternatively,the transaction manager can
use a counter that is incremented after a new timestamp
has been assigned.To implement this scheme,the
timestamp ordering algorithm associates with each data
item X two timestamp values:

A.

write_TS(X) –

the maximum timestamp value of
a transaction that successfully executed
write_item(X).

B.

read_TS(X) –

the maximum timestamp value of
a transaction that successfully executed
read_item(X).

1.

When T tries to write(X)

•

if Read_TS(X) > TS(T)

or Write_TS(S) > TS(T)

Intuition: X

has been read or written by a “later”
transaction

•

Abort T

else

•

Execute and set write-TS(X) = TS(T)

2.

When T tries to read(X)

•

if Write_TS(X) > TS(S)

X was written by a “later” transaction

•

Abort T

else

•

Execute and update read-TS(X)

III.

RULES FOR A DATABASE TRANSACTION

A database transaction is a unit of work,
typically encapsulating a number of operations over

a
database (e.g., reading a database object, writing,
acquiring lock, etc.).Every database transaction obeys
the following rules:

•

Atomicity

-

Either the effects of all or none of its
operations remain ("all or nothing") when a
transaction is completed (committed or aborted
respectively). In other words, to the outside world a
committed transaction appears (by its effects on the
database) to be indivisible, atomic, and an aborted
transaction does not leave effects on the database
at all, as if never existed.

•

Consistency

-

Every transaction must leave the
database in a consistent (correct) state.A
transaction must transform a database from one
consistent state to another consistent state. Thus
since a database can be normally changed only by
transactions, all

the database's states are
consistent. An aborted transaction does not change

the database state it has started from, as if it never
existed (atomicity above).

•

Isolation

-

Transactions cannot interfere with each
other.Moreover, usually (depending on concurrency
control method) the effects of an incomplete
transaction are not even visible to another
transaction. Providing isolation is the main goal of
concurrency control.

•

Durability

-

Effects of successful (committed)
transactions must persist through crashes (typically
by recording the transaction's effects and its commit
event in a non-volatile memory).

IV.

REQUIREMENTS FOR DATABASE
TRANSCATION

Every database transaction should fullfill
following requirements:

•

Safety Property: The safety property states that at

any point of time, only one transaction can access
the data.

•

Liveness Property: This property states the absence
of deadlock and starvation. Two or more
transactions should not endlessly wait for a
particular object which will never arrive. In addition,
a transaction must not wait indefinitely to access an
object while other transactions are repeatedly
acquiring the same.

•

Fairness: Fairness property states that each
transaction should get chance to access an object.
In concurrency control algorithms, the fairness
property generally means the requests are executed
in the order of their arrival (time is determined by a
logical clock) in the system.

V.

NEED FOR CONCURRENCY CONTROL

If transactions are executed serially, i.e.
sequentially with no overlap in time, no transaction
concurrency control required.However if concurrent
transactions with interleaving operations are allowed in
an uncontrolled manner, some unexpected, undesirable
result may occur. Here are some typical examples:

1.

The lost update problem:

when a transaction writes
a new value of a data-item on top of a first value
written by a first concurrent transaction, and the first
value is lost to other transactions running
concurrently which need to read the first value.

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

24

20
1 1

D
ec

em
be

r
An Analytical Review of Orientation Based Concurrency Control Algorithm

2. The dirty read problem: when Transactions read a
value written by a transaction that has been later
aborted. This value disappears from the database
upon abort, and should not have been read by any
transaction ("dirty read"). The reading transactions
end with incorrect results.

3. The incorrect summary problem: While one
transaction takes a summary over the values of all
the instances of a repeated data-item, a second
transaction updates some instances of that data-

item. The resulting summary does not reflect a
correct result for any precedence order between the
two transactions (if one is executed before the
other), but rather some random result, depending
on the timing of the updates, and whether certain
update results have been included in the summary
or not.

VI.

REVIEW OF TIMESTAMP AND
ORIENTATION BASED CURRENCY

CONTROL ALGORITHM

In the concept of timestamp ordering[4][7],

transaction timestamp TS(T) is a unique identifier
assigned to each transaction based on the order in
which transaction are started.Hence if transaction T1

starts before transaction T2

then TS(T1)<TS(T2).There
are two method for preventing deadlock using the
concept of timestamp ordering:

a.

Wait-die: suppose that transaction T1

wants to lock
an item X

but is not able to do so because X is
locked by some other transaction T2

with a
conflicting lock.Now if TS(T1)<TS(T2).Then T1

is
allowed to wait,otherwise abort T1 and restart it later
with the same timestamp.

b.

Wound-wait: if TS(T1)<TS(T2)

then abort T2

and
restart it later with the same time stamp;otherwise
T1 is allowed to wait.

In wait-die protocol, only the requester with
smaller timestamp can wait for

the holder with larger
timestamp and in the wound-wait protocol, only the
requester with larger timestamp can wait for the holder
transaction with smaller timestamp. The constraints of
these protocols are so strong that only one-way waiting
is allowed.Algorithm based on orientation will try to
make the condition somehow weaker. This algorithm
allows both side waiting i.e the older waits for the
younger (as wait-die protocol) and younger waits for the
older (as wound-wait protocol).In the reviewedalgorithm,

a new term is introduced which is called as orientation of
a transaction.It uses combination of time stamp and
orientation to decide which transaction will wait and
which transaction will be wounded when conflict exists
among transactions. An orientation of a transaction T,
denoted as Ot(T),can have three values:neutral, forward,
and backward.

Following are the orientation
determination rules for the system:

Rule 1: The initial orientation of a transaction is 'n'.

Rule 2:

When Tr

requests for Th,

if TS(Th)>
TS(Tr)

and Tr can waitfor Th, then Ot(Tr):= Ot(Th):= 'f'.

We call this kind of waiting as forwardwaiting.

Rule 3: When Tr requests for Th, if TS(Th)<
TS(Tr) and Tr can waitfor Th, then Ot(Tr).'= Ot(Th):= 'b'.
We call this kind of waiting as backwardwaiting.

Rule 4: When Tr requests for Th, but Tr is not
allowed to wait for Th,then one of them may be rolled
back and restarted (the rolled-backtransaction is always
the younger).

The time stamp of restarted

transactiondoes not change but its orientation is
changed to 'n'.This algorithm based on orientation
minimizes no. of restarts than other standard algorithm.

VII.

CONCLUSION AND FUTURE WORK

Standard wait die and wound wait only logically
keep forward or backward orientation WFG,

respectively, in its protocol. But in the algorithm based
on orientation it keeps both backward and forward
orientation WFG

in the protocol. More importantly, it is
not necessary to physically maintain any WFG

in the
system.The new algorithm is deadlock free and livelock
free.This algorithm will require much fewer restarts than
standard wait-die or wound-wait protocol and thus will
achieve high throughout and efficiency of distributed
database system.There is still a issue to research as
future work,after finding a transaction conflicting
withanother transaction how much time should have to
wait torestart the aborted transaction. If it is restarted
very soon thereremains probability to conflict again. On
the other hand if thetransaction is restarted after some
period of time the abortedtransaction, especially if is it a
real time one, may fail to meetits deadline.

REFERENCES

REFERENCES

REFERENCIAS

1.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger, "The notions of consistence and predicate
locks in a database system,"Commun. ACM, vol. 19,
no. 11, pp. 624-633, Nov. 1976.

2.

A. Bernstein and Nathan Goodman,“Concurrency
Control in Distributed Database Systems”,
Computing Surveys, Vol. 13, No 2, June 1981.

3.

Ryan, R. R. Spiller, H, “The C programming
language and a C compiler”, IBM Systems Journal
Vol: 24 Issue: 1,No. 37 –

48,April 1985.

4.

Victor 0. K. LI, “Performance Models of Timestamp-
Ordering Concurrency Control Algorithms in
Distributed Databases” IEEE Trans. on Computers,
Vol. C-36, No. 9, September 1987.

5.

J.F.Pons and J.F. Vilarema, “A Dynamic and
Integrated Concurrency Control for Distributed

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

25

20
11

D
ec

em
be

r

An Analytical Review of Orientation Based Concurrency Control Algorithm

Databases”IEEE Journal on Selected Areas in
Comm. Vol. 7, No. 3, April 1989.

6. Ugur Halici & Asuman Dogac,” An Optimistic
Locking Technique For Concurrency Control in
Distributed Databases”, IEEE Trans.on Software
Engineering, vol. 17, no. 7. july 1991.

7. Subir Varma,“Performance Evaluation of the
TimestampOrdering Algorithm in a Distributed
Database”IEEE Trans. on Parallel and Distributed
Systems, vol. 4, no. 6, June 1993.

8. F. Bukhari and Sylvia L. Osborn,“Two Fully
Distributed Concurrency Control Algorithms” IEEE
Trans. on Knowledge and Data Engineering, vol. 5,
no. 5, October 1993.

9. Alexander Thomasian,“Distributed Optimistic
Concurrency Control Methods for High-Performance

and Data Engineering, Vol. 10, No. 1,
January/February 1998.

10.

Philip .Alexander Thomasian,”Concurrency Control:
Methods, Performance, and Analysis” ACM
Computing Surveys (CSUR) Survey Volume 30

1998. .

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

26

20
1 1

D
ec

em
be

r
An Analytical Review of Orientation Based Concurrency Control Algorithm

Transaction Processing” IEEE Trans. on Knowledge

Issue 1, March

	An Analytical Review of Orientation Based ConcurrencyControl Algorithm
	Authors

	Keywords
	I. INTRODUCTION
	II. BACKGROUND OF CONCURRENCYCONTROL METHODS
	III.RULES FOR A DATABASE TRANSACTION
	IV.REQUIREMENTS FOR DATABASETRANSCATION
	V.NEED FOR CONCURRENCY CONTROL
	VI.REVIEW OF TIMESTAMP ANDORIENTATION BASED CURRENCYCONTROL ALGORITHM
	VII.CONCLUSION AND FUTURE WORK
	REFERENCESREFERENCESREFERENCIAS

