Global Journals INTEX JournalKaleidoscope™

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

, "Globally Recorded binary encoded Domain Compression
. algorithm in Column Oriented Databases”

3 Mehul Mahrishi !, Anita Shrotriya? and Devendra Kr. Sharma?

. 1

5 Received: 17 November 2011 Accepted: 18 December 2011 Published: 24 December 2011

6

7 Abstract

s through this study, we propose two algorithms. The first algorithm describes the concept of
o compression of domains at attribute level and we call it as 7Attribute Domain Compression?.
10 This algorithm can be implemented on both row and columnar databases. The idea behind
1 the algorithm is to reduce the size of large databases as to store them optimally. The second
12 algorithm is also applicable for both concepts of databases but will optimally work for

13 columnar databases. The idea behind the algorithm is to generalize the tuple domains by

1 giving it a value say (n) such that all other n-1 tuples or at least maximum can be identified.

15

16 Index terms— Compression, Columnar database, tuples, tables.

7 1 INTRODUCTION

18 ill now we have studied that a database is a collection of inter-related data which is organized in a matrix with
19 rows and columns. Each column represents the attribute of that particular entity which is converted into the
20 database table, while each row of the matrix generally called a tuple represents the different values that an
21 attribute can possess. Each row in a table represents a set of related data, and every row in the table has the
22 same structure.

23 For example, in a table that represents employee, each row would represent a single employee. Columns
24 might represent things like employee name, employee street address, his SSN etc. In a table that represents the
25 relationship of employees with departments, each row would relate one employee with one department.

» 2 RISE OF COLUMN DATABASE

27 The relational databases present today are designed predominantly to handle online transactional processing
28 (OLTP) applications. A transaction (e.g. an online purchasing a laptop through internet dealer) typically maps
29 to one or more rows in a relational database, and all traditional RDBMS designs are based on a per row paradigm.
30 For transactional-based systems, this architecture is well suited to handle the input of incoming data.

31 Data warehouses are used in almost every large organizations and research states that their size doubles after
32 every third year. Moreover the hourly workload of these warehouses is huge and approximately 20lakhs SQL
33 statements are encountered hourly.

34 Warehouses contain a lot of data and hence any leak or illegal publication of information risks the individuals’
35 privacy. However, for applications that are very read intensive and selective in the information being requested,
36 the OLTP database design isn’t a model that typically holds up well. Business intelligence and analytical
37 applications queries often analyze selected attributes in a database. The simplicity and performance characteristic
38 of columnar approach provides a cost effective implementation.

39 Column oriented database generally known as ”columnar database” reinvents how data is stored in databases.
40 Storing data in such a fashion increases the probability of storing adjacent records on disk and hence odds of
41 compression. This architecture suggests a different model in which inserting and deleting transactional data are
42 done by a row-based system, but selective queries that are only interested in a few columns of a table are handled
43 by columnar approach.

44
45
46
47
48
49
50
51
52

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76

7

78
79

80

81

82

83
84

85

86
87
88
89
90
91
92
93
94
95
96
97
98

8 A) ENCODING OF DISTINCT VALUES

As we know that logical and critical queries requires more number of rows that that of physical I/O queries
which are comparatively slower queries, the performance gap between row-oriented architectures and column-
oriented architecture oftentimes widens as the database grows.

Different methodologies such as indexing, materialistic views, horizontal partitioning etc. are provided by row
oriented databases which are rather Global Journal of Computer Science and Technology Volume XI Issue XXIII
Version 1 27 better ways of query execution, but they also have some disadvantages of their own. For example,
in business intelligence/analytic environments, the ad-hoc nature of such scenarios makes it nearly impossible
to predict which columns will need indexing, so tables end up either being over-indexed (which causes load and
maintenance issues) or not properly indexed and so many queries end up running much slower than desired.

3 III. ANONYMIZATION

Warehouses contain a lot of data and hence any leak or illegal publication of information risks the individuals’
privacy. N-Anonymity is a major technique to deidentify a data set. The idea behind the technique is to determine
the value of a tuple, say n, such that other remaining n-1 tuples or at least maximum tuples can be identified by
the value of n.

The intensity of protection increases with increase the number of n. One way to produce n identical tuples
within the identifiable attributes is to generalize values within the attributes, for example, removing city and
street information in a address attribute.

There are many ways through which data unidentification can be done and one of the most appropriate
approaches is generalization. Various generalization techniques include global recoding generalization multidi-
mensional recoding generalization, and local recoding generalization. Global recoding generalization maps the
current domain of an attribute to a more general domain. For example, ages are mapped from years to 10-year
intervals.

Multidimensional recoding generalization maps a set of values to another set of values, some or all of which are
more general than the corresponding premapping values. For example, {male, 32, divorce} is mapped to {male,
[30, 40), unknown}. Local recoding generalization modifies some values in one or more attributes to values in
more general domains.

4 1IV. PROBLEM DEFINITION AND CONTRIBUTION

From the very beginning we have cleared that our objective is to make every tuple of a published table identical
to at least n-1 other tuples. Identity-related attributes are those which potentially identify individuals in a table.
For example, the record of an old-aged male in the rural area with the postcode of 302033 is unique in Table
4.1, and hence, his problem of asthma may be revealed if the table is published. To preserve his privacy, we may
generalize Gender and Postcode attribute values such that each tuple in attribute set {Gender, Age, Postcode}
has at least two occurrences.

5 QUALITY MEASURES OF ANONYMIZATION

After the study we can easily conclude that larger the size of equivalent set easier the compression and obviously
cost of anonymization is a factor of equivalent set. On the basis of this theory, we can determine that:() ? ? =7

6 RECORDS CAVG

7 VI. DOMAIN COMPRESSION THROUGH BINARY CON-
VERSION

We integrate two key methods, namely binary encoding of distinct values and pair wise encoding of attributes,
to build our compression technique.

8 a) Encoding of Distinct values

This compression technique is based on the assumption that the table we have published contains minimum
distinct domain of attributes and these values repeat over the huge number of tuples present in the database.
Therefore, binary encoding of the distinct values of each attribute, followed by representation of the tuple values
in each column of the relation with the corresponding encoded values would transform the entire relation into
bits and thus compress it.

We will find out the number of distinct values in each column and encode the data into bits accordingly. For
example consider an instant given below which represents the two major attributes of a relation Patients. To
examine the compression benefits achieved by this method assume that Age is of integer type and has 5 distinct
values as in Table 4.3. Suppose if there are 50 patients then the total storage required by Age attribute will be
50*size of (int) = 50*4 = 200 bytes.

With our compression technique, we find that there are 9 distinct values for age therefore we need the upper
bound of log (9) i.e. 4 bits to represent each data value in the Age field. It is easy to calculate that we would
need 50*%4 (bits) = 200 bits = 25 bytes which are reasonably less.

99
100
101
102
103
104
105
106

108
109
110
111
112
113
114
115
116
117
118
119
120

We call this as our stage 1 of our compression which just transforms one column into bits. If we apply
this compression to all columns of the table, the result will be significant. It can be easily seen from the above
example that besides optimizing the memory requirement of the relations, above encoding technique is also helpful
in reducing redundancy (repetition values) from the relation. That is, it is likely that they are few distinct values
of even (columnl, column2) taken together, in addition to just columnl’s distinct values or column2’s distinct
values. We then represent the two columns together as a single column with pair values transformed according to
the encoding. This constitutes Stage 2 of our compression in which we use the bit-encoded database from Stage
1 as input and further compress it by coupling columns in pairs of two, applying the distinct-pairs technique
outlined. To examine the further compression advantage achieved, suppose that we couple ’Age’ and "Problem’
columns. We can see in our table 4.3 that there are 5 distinct pairs (10, Cough & Cold), (20, cough & cold), (30,
obesity), (50, Diabetes), (70, Asthma) and hence our upper bound is log (5) = 2 bits approx. Table 4.6 shows
the result of stage 2 compression. After compressing the attribute, pairing or coupling of attributes is done. All
the columns are coupled in pair of two in a similar manner. If the database contains even number of columns it
is straightforward. If the columns are odd, we can intelligently choose any of the columns to be uncompressed.
The second technique focuses on the extension of existing compression by encoding the domain in binary form
and further encoding pairs of column values. It shows how coupling of columns can be effective if attributes are
properly rearranged. In particular I found that in most cases it is beneficial to couple the primary key with the
column having the maximum number of distinct values. Also, columns with very few distinct values should be
paired with columns with a large number of dissimilar values. Functional dependencies should be determined to
achieve better compression of related attributes. Overall, a better knowledge of the data distribution leads to
better compression. Based on the database and the application environment being targeted, the optimum stage
up to which compression is feasible and worthy also needs to be determined, i.e. we need to decide the point at
which the extra compression achieved is not worth the performance overhead involved. Y 2 8 4 5

L Ipen

Association ol

i |||'I.Ii_ SOCEIY

(Linted States)

2011

Figure 1: T © 2011

1 : a Typical Row oriented Database
Column 1 Column 2 Column 3

Figure 2: Table 2 .

8 A) ENCODING OF DISTINCT VALUES

4
1 : Published Table
No. Gender Age Postcode Problem
01 Male Young 302020 Heart
02 Male Old 302033 Asthma
03 Female Young 302015 Obesity
04 Female Young 302015 Obesity
Table 4.2 : View of published table by Global recording
No. Gender Age Postcode Problem
01 * Young 3020* Heart
02 * Old 3020* Asthma
03 * Young 3020* Obesity
04 * Young 3020* Obesity
A view after this generalization is given in Table

4.2. Since various countries use different postcode
schemes, we adopt a simplified postcode scheme,
where its hierarchy {302033, 3020%*, 30**, 3*** *}
corresponds to {rural, city, region, state, unknown},
respectively.
a) Identifier attribute set

A set of attributes that potentially identifies the
individuals in a table is a set of identifier attribute. For
example, attribute set {Gender, Age, Postcode} in Table
la is an identifier attribute set.
b) Equivalent Set (7)

V.

Figure 3: Table 4 .

4
Age Problem
10 Cough & Cold
20 Cough & Cold
30 Obesity
50 Diabetes
70 Asthma

Now if we adopt the concept of N-

Anonymization with global recording (refer 4.2), we can
map the current domain of attributes to more general
domain. For example Age can be mapped into 10-Age
interval as shown in the figure 4.4.

Figure 4: Table 4 .

6 : Representing Stage 2 compression

Age Problem
00 00
01 01
10 10
11 11

Figure 5: Table 4 .

7 : Representing Stage 2 compression coupling
Age-Problem

00

01

10

11

After this compression technique is applied we

can easily calculate the space required i.e.

Before compression: 5%(4) +4*(4) = 36 bytes

After Compression and coupling: 4*2 = 8 bits.

VII. CONCLUSION

In this study we discuss two different

compression techniques embedded with each other to
form a ”Globally Recorded binary encoded Domain
Compression”.

The first study defines generalization and

discuss its different type in anonymization the attributes.
It discusses how to handle a major problem in global
recoding generalization, inconsistent domains in a field
of a generalized table, and propose a method to
approach the problem. The tables in the examples
proposed global recoding method based on n-
anonymity, and consistency.

Figure 6: Table 4 .

8 A) ENCODING OF DISTINCT VALUES

'December

2© 2011 Clobal Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Tssue
XXIIT Version 1

3December”Globally Recorded binary encoded Domain Compression algorithm in Column Oriented
Databases”

“© 2011 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Issue
XXIII Version I 29 2011 December ”Globally Recorded binary encoded Domain Compression algorithm in Column
Oriented Databases”

5December”Globally Recorded binary encoded Domain Compression algorithm in Column Oriented
Databases”

121
122

123
124

125
126

127
128

129
130

131
132
133

[Software et al. (1994)] , A G Software , Adabas , Uberblick . ADA5000D0061IB. Software AG January 1994.
(Technical Report)

[A Deeper Look at Compression in Analytic Database Systems] A Deeper Look at Compression in Analytic
Database Systems,

[Vieiral and Bernardino2] Henrique Madeira3 Efficient compression of text attributes of data warehouse dimen-
stons, Jorge Vieiral , Jorge Bernardino?2 .

[Integrating Compression and Execution in Column-Oriented Database Systems| Integrating Compression and
Ezecution in Column-Oriented Database Systems,

[Goldstein et al. ()] ‘Squeezing the most out of relational database Systems’ J Goldstein , R Ramakrishna , U
Shaft . http://www.tpc.org/tpch/spec/tpch2.1.0.pdf2 Proc. of ICDE, (of ICDE) 2000. p. 81.

[Till Westmannl * Donald Kossmann2 Sven Helmerl Guido Moerkottel efficient compression of text attributes of data warehouse
Till Westmannl * Donald Kossmann2 Sven Helmer!l Guido Moerkottel efficient compression of text attributes
of data warehouse dimensions,

http://www.tpc.org/tpch/spec/tpch2.1.0.pdf2

	1 INTRODUCTION
	2 RISE OF COLUMN DATABASE
	3 III. ANONYMIZATION
	4 IV. PROBLEM DEFINITION AND CONTRIBUTION
	5 QUALITY MEASURES OF ANONYMIZATION
	6 RECORDS CAVG
	7 VI. DOMAIN COMPRESSION THROUGH BINARY CONVERSION
	8 a) Encoding of Distinct values

