
Maintenance vs. Reengineering Software Systems1

Bakhshsish Singh Gill12

1 Guru Nanak Dev University3

Received: 7 November 2011 Accepted: 5 December 2011 Published: 20 December 20114

5

Abstract6

Maintenance and reengineering terms are closely coupled with each other. These terms came7

from the world of hardware objects. Now these entered the world of software and are well8

suitable for software systems. It is difficult to draw a clear cut line between these two terms.9

Many a times these are used interchangeably. Reengineering of software systems is a topic of10

importance and in coming time it will be gaining more attention in the world of software11

systems. Software managers are often confused over maintenance and reengineering. These12

two terms should be separated to promote the subject matter because one is problem for the13

other. I will try to put them in different non overlapping regions. Maintenance and14

reengineering are two different areas in software engineering. Maintenance is for running the15

system till the age of the system where as the reengineering make the system new to work for16

another life span. Scope of reengineering is vast and challenging as compared to maintenance.17

Reengineering is to reduce the expenses on software systems in the organizations.18

Reengineering has more scope in the world of software than in the world of hard ware objects.19

Software systems and software objects do not wear and tear out like hardware objects in the20

real world. Maintenance is close to repair/mend where as reengineering is very close to new21

development.22

23

Index terms— Object, reengineering zone, maintenance zone, transition state, reverse engineering24

1 INTRODUCTION25

oftware engineering is a topic of importance in the age of software and is gaining attention. It is developing fast26
area and not existing from centuries. Software maintenance and software reengineering both fall in the ambit27
of software engineering. Both terms came from the real hard ware objects. These are more suited to software28
systems and software objects as these do not wear or tear out like real world physical objects.29

These two terms are yet young and developing. There is not clear cut line between them. These terms are30
mingled and the people are using them interchangeably. One is the problem in the developing the subject matter31
of the other. Now software is gaining importance in every sphere of life and these two are very closely associated32
to software system life cycle. It is time to differentiate the two and promote the subject matter of these two33
concepts.34

2 II.35

3 SOFTWARE MAINTENANCE36

Software maintenance is one of the stages in the software development life cycle. It starts after the deployment of37
software in the working field. It is to remove the defects and deficiencies which encounters while starts actually38
working in the field.39

According to IEEE Std. 610.12 ??7] ’Software maintenance is the process of modifying a software system40
or component after delivery to correct faults, improve performances or other attributes, or adapt to a changed41

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



8 REENGINEERING

environment’. a) Nature and Scope of Maintenance Software maintenance has good scope in future times. In42
the world of fast changes, maintenance expertise will gain more importance which can sustain the working of43
software systems. Maintenance means modifying software system or a component of the software system to make44
it working on the platform and adapt to the minor changes in the requirements, environment or technology.45
Every system needs maintenance for the whole life period. Maintenance is preservation of the legacy software46
system.47

Many surveys have shown that software maintenance can account for 60 to 80 percent of the cost of total life48
cycle of software product. According to Erlikh more than 90 % of the total cost of software goes to maintenance49
and evolution of the software product ??1]. According to Lientz and Swanson many organizations were spending50
20% to 70% of their computing efforts on maintenance ??8].51

Software maintenance is of following four types52

4 Corrective maintenance:53

As its name implies, activities of correcting bugs in the software are included in this type of maintenance. It is54
for making the software system to conform to the real situation.55

5 Adaptive Maintenance56

It deals with making the software adjustable to the changed environment57

6 Preventive Maintenance58

Modification of the software to detect and correct hidden faults (bugs) before becoming active. This paper will59
help the software managers to recognize and make the best use of these two terminologies for right treatment of60
software systems.61

7 Perfective maintenance62

It is modification of the software for better performance, maintenance and reliability. The activities related to63
updating the software are included in this type of maintenance.64

The efforts (cost) distributions for these four types of maintenance are as under? Corrective maintenance 21%65
? Adaptive Maintenance 25% ? Preventive Maintenance 4% ? Perfective maintenance 50% [6].66

It is suggested from the above figure that perfective maintenance consumes major part of cost estimation.67
Preventive maintenance is not taken to any significant level in software industry.68

Software maintenance and reengineering are hot topics in theses days. Software managers use these two69
interchangeably. It is time to differentiate maintenance and reengineering in software industry. Software70
maintenance is last stage in the software development life cycle. Maintenance starts after the delivery of the71
software. The ability to accurately estimate the time and cost of software maintenance is the key factor for72
successful of maintenance project.73

Software maintenance starts after delivery of the software system. It goes on increasing with the increasing74
age of software as depicted in the following figure ??.75

Figure ?? Accumulated affects of maintenance makes the system complex and deteriorate the system’s76
architecture. Software system goes on aging with time and maintenance cost increases. When maintenance77
cost is too much high or difficult to maintain, it means system is to retire. Then reengineering is solution at78
this point. Reengineered software starts working with normal maintenance for another life span. Reengineering79
should be done at right time. If we overlook this time, reengineering will be costly or even not feasible and then80
we have to throw the costly legacy software under utilized.81

III.82

8 REENGINEERING83

Reengineering is the analysis of existing software system and modifying it to constitute into a new form. Chikofsky84
and Cross define reengineering as ’the examination and alteration of a subject system to reconstitute it in a new85
form and subsequent implementation of that form’ [9].86

According to IEEE Std. 1998 ’A systemchanging activity that results in creating a new system that either87
retains or does not retain the individuality of the initial system’ [10]. a) Nature and Scope of Reengineering88
When maintenance cost is not feasible, we go for reengineering the software system. Reengineering makes the89
software system new. Reengineering has the following three stages.90

2



9 Reverse engineering 2. Architecture transformations 3. For-91

ward engineering92

10 Reverse engineering93

In this stage software is thoroughly understood. It is untied and underlying technology is perceived. Business94
process is improved and requirements are updated. Objects are added or deleted according to the new system95
planned. In this stage we go from code level to higher level abstraction.96

11 Forward engineering97

In this stage, we move from higher level of abstraction to code level. In this stage software integrated according98
to new design. It is vertically downward step as shown in the fig. 2.99

Figure 2 In the above figure, updation of user’s requirements and improvement in architecture of software is100
done in transformation phase.101

We can express reengineering by the following equation.102

12 Reengineering = Reverse engineering + ? + forward103

engineering104

The symbol in the above equation represents the enhancement and design change. In the coming future,105
reengineering can solve the problem of software backlogs and it can lower the software investment in organizations.106
Reengineering can increase the software age. Point T is the transition state from maintenance to reengineering107
zone. Transition state is new term defined by the author of this paper. It is the state in the life of software when108
reengineering is best possible with optimal cost. Software system is candidate for maintenance in the first zone109
and candidate for reengineering in the second zone. Maintenance phase is always first and reengineering phase110
starts after maintenance phase. When maintenance exhausts, reengineering phase is ready to serve the software111
system. Both zones are separated by red point T and must not overlap each other. Figure ?? Maintenance112
increases the age of the software and reengineering gave a fresh age period to software system. T is the transition113
point, beyond point T; it is not feasible to maintain the system. System should be reengineered at the point T.114
Reengineering cost will be optimal at the critical point T. If we do not reengineering the System at T and go on115
maintaining the software with high cost, reengineering zone will be exhausted and reengineering is not possible116
with feasible cost. Then there is no other option than to throw the legacy software and purchase costly new one.117
Legacy software will be added to the backlog of wasted software.118

Maintenance phase keeps the software up to date with environment changes and changing user requirements.119
Reengineering will give another life span to software with normal maintenance.120

13 b) Cost based Model121

Following figure ?? depicts the graph of maintenance cost and reengineering cost of Software system. Maintenance122
cost starts from the point O (Origin) and goes on increasing with time. It starts increasing rapidly from point123
T because software completes ten years, the normal age of the software. According to literature, software age is124
seven years for structured systems and ten years for object-oriented software systems. Reengineering cost is all125
most same up to point T because software is within age at the point T. After point T reengineering cost also starts126
increasing but with normal rate but maintenance cost increases at high rate. This happens because maintenance127
zone is over and the software is in reengineering zone beyond point T. Maintenance cost and reengineering cost128
are equal at the point T as depicted in the figure ??. If both the costs are equal then we must go for reengineer.129
Reengineering will make the system new on the new platform with new design. Reengineering of the system is130
needed to bring down the maintenance cost. At this point we think of reengineering or retiring the software. If131
we retire the system then we have to bear the cost of new software. Cost of new software is much high than the132
cost of reengineering.133

Figure ?? If we do not reengineering the software system at point T, maintenance cost will increase sharply134
(as shown in the figure ??) it will be difficult to maintain the system at such a high cost. Maintenance after135
the point T increases the complexity of the system and decreases the quality of software where as reengineering136
improves the quality of the software, controls the maintenance cost and increases the life span of the software137
system.138

The software system is old at the point T and high maintenance cost is required. It is difficult to maintain139
the system with such a high maintenance cost. At this point system should be reengineered or retired. If we140
reengineer the software at this point, Reengineering cost will be lowest (optimal). Reengineered Software will be141
new one with another life span and Maintenance cost will be ordinary.142

14 c) Object based Model143

This is object based model for differentiation of maintenance and reengineering. Maintenance is done to make144
the faulty object fine. As the system ages, software architecture deteriorate with ripple effects of maintenance.145

3



15 SUMMARY AND CONCLUSIONS

System object becomes faulty and maintenance makes it fine. The number of faulty objects increases with time146
and maintenance becomes difficult. Then what to Do? Software should be reengineered but when? This is the147
question. It is to be determined on the basis of the faulty objects. In this work, object is seen at a higher level148
of abstraction and is taken as conceptual module that can be plugged in and plugged out from the software149
system. Reengineering identifies reusable components (objects) and analyzes the changes that would be needed150
to regenerate them for reuse within new software architecture. The use of a repeatable, clearly defined and151
well understood software objects, has make reengineering more effective and reduced the cost of reengineering.152
Maintenance and reengineering will be separated on the basis of faulty objects.153

The object oriented approach attempts to manage the complexity inherent in the real world problems by154
abstracting out knowledge and encapsulating it ??2]. Object is an instance of a class and has an identity and155
stores attribute values ??3].156

All objects of the candidate software system are untied (Reverse engineering). Faulty objects are indentified157
and modified. Then redesigning of the structure (transformation of the architecture) of the system according to158
new modern design is done. Then according to new design objects are integrated (Forward Engineering).159

Abstraction is good tool for reengineering object oriented design as it helps in reducing complexity. Large160
systems are complex having more objects as each additional object increases the complexity of the system ??4].161
Reengineering of software system is accomplished by reengineering the faulty objects in the system. Software162
system is untied, objects are identified for reengineering. Identified objects for reengineering are called faulty163
objects. Faulty objects are reengineered independently and made Fine objects, software architecture is changed,164
and all the objects (now all objects are fine) are integrated according to the new architecture.165

Fine object is an object which conforms to our requirements and functions well in the system. As software166
ages some objects becomes faulty. Faulty object is an object which does not conform to our requirements and167
does not function well with in the system. We go on maintaining the faulty objects to maintain the software168
system. With maintenance of the faulty objects again and again, architecture of the software deteriorates. We169
reach at a point where reengineering of the system is needed. But what is that point? Let us suppose there are170
N objects in system which is our candidate system. Let it be O1, O 2 , O 3 ,?????..O N .171

Go on maintaining the software till half of the objects are not faulty. When half of the objects (N/2) are172
faulty in your application go for reengineering the software. The reengineering cost of the candidate system with173
N/2 faulty objects will be one forth (25%) of the new development cost ??5]. This is the optimal cost according174
to the research paper ’Cost of Reengineering (Object-Oriented Software Systems) versus Developing new One-A175
Comparison’ by the same author. Hence you reach the stage where reengineering starts.176

When N/2 or more objects are faulty (System with N objects) stop maintenance and reengineer software177
system. When N/2 objects become faulty; it is a transitional state from maintenance to reengineering. This is178
vital stage in the software life span for transition from maintenance to reengineering. If the software managers179
pay no heed to this transitional stage and go V.180

15 SUMMARY AND CONCLUSIONS181

In this piece of work four models are presented for differentiation in maintenance and reengineering as under These182
models are valuable to software managers for reengineering the software systems at the right time. Reengineering183
is not feasible before and after the transition state. These models will help to reengineering the software and184
escape the burden of purchasing costly new software. Software investment expenditure curve will fall in the185
organizations. There will be full utilization of the software and software backlog will be decreased. 1 2 3 4 5 6186
7187

1© 2011 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Issue
XXIII Version I 59 2011 December

2© 2011 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Issue
XXIII Version I 60 2011 December Maintenance vs. Reengineering Software Systems

3© 2011 Global Journals Inc. (US)
4DecemberMaintenance vs. Reengineering Software Systems
5© 2011 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Issue

XXIII Version I 63 2011 December Maintenance vs. Reengineering Software Systems
6© 2011 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XI Issue

XXIII Version I
7DecemberMaintenance vs. Reengineering Software Systems

4



Figure 1:

Figure 2:

5



15 SUMMARY AND CONCLUSIONS

2

Figure 3: 1. Thoroughfare differentiation model 2 .

1

Maintenance vs. Reengineering Software Systems
2011
December
62
on maintaining with high cost, it means they are
overlapping the reengineering zone. It this way, they will
strike in a situation when reengineering is not feasible.
The cost of reengineering is very much high or equal to
the new development. Then they will have to retire the
legacy software. It will be financial loss to the
organization as more investment on software is needed
to purchase new software.

[Note: © 2011 Global Journals Inc. (US)]

Figure 4: Table 1

6



.1 VI.

In this work three new terms ’Transition state’, ’Reengineering Zone’ and ’Maintenance Zone’ are coined and188
added to reengineering subject matter.189

.1 VI.190

.2 FUTURE WORKS TO BE DONE191

These given Models are new in the field of Reengineering of object oriented software systems. The future work192
is to test these models for suitability to fit on the basis of analysis of current and past data. These models can193
be accepted as it is or improved or rejected. Once fit and fine these models will help in reengineering the legacy194
software with optimal cost. This work will be beneficial to the both communities, the software managers and the195
software engineers. Software managers can order for reengineering at transitional point where maintenance zone196
ends and reengineering zone starts.197

[Jalote ()] An Integrated Approach to Software Engineering, P Jalote . 1996. New Delhi: Narosa Publishing198
House.199

[Bruegge and Allen ()] Bernd Bruegge , Dutoit Allen , H . Object-Oriented Software Engineering Using UML,200
Patterns, and Java, (Singapore) 2004. Pearson Education. p. 724.201

[Bakhshish Singh] Cost of Reengineering (Object-Oriented Software Systems) versus Developing new One-A202
Comparison’ Research paper, Gill Bakhshish Singh . New Delhi: Serials Publication. p. .203

[Brock et al. ()] Designing Object-Oriented Software, R W Brock , B Wilkerson , L Wiener . 2007. New Delhi:204
Prentice-Hall of India. p. 5.205

[Gill Nasib and Singh ()] Gill Nasib , Singh . Software Engineering: software reliability, Testing and Quality206
Assurance, (New Delhi) 2002. Khanna Book Publishing Co.(P) Ltd.207

[IEEE Standards Software Engineering ()] IEEE Std 1219-1998. IEEE Standards Software Engineering, 1999.208
IEEE Press. Two. (Process Standards)209

[Erlikh (200)] Leveraging legacy system dollars for Ebusiness, L Erlikh . http://users.jyu.fi/~koskinen/210
smcosts.htm 200. p. . (IEEE) IT Pro. Retrieved 24-02-2011 from)211

[Aggarwal and Singh ()] New age International, K K Aggarwal , Yogesh Singh . 2002. New Delhi: P) Ltd.,212
Publishers. (Software engineering)213

[Booch ()] Object Oriented Analysis and Design with Applications, Grady Booch . 2003. Singapore: Pearson214
Education.215

[Halladay and Wiebel] Object-Oriented Software Engineering, S Halladay , M Wiebel . New Delhi: BPB216
Publications. p. 35.217

[Chikofsky and Cross (1990)] ‘Reverse Engineering and Design Recovery: A Taxonomy’. E Chikofsky , J H Cross218
. IEEE Software Engineering journal Jan. 1990. p. .219

[Pressman ()] Software engineering, Roger S Pressman . 1992. New York: McGraw-Hill. (3 rd ed.)220

[Ian Sommerville ()] Software Engineering, Ian Sommerville . 1994. Singapore: Addison-Wesley Publishing221
Company.222

[Lientz and Swanson ()] Software Maintenance Management, Lientz , E Swanson . 1980. Addison-Wesley.223

[Arnold ()] Software Reengineering, Robert S Arnold . 1993. Alamitos, California: IEEE Computer Society Press224
Los. p. 60.225

[Arnold ()] Software Reengineering, Robert S Arnold . 1994. Los Alamitos, California: IEEE Computer Society226
Press.227

[Standard Glossary of Software Engineering Terminology ()] Standard Glossary of Software Engineering Termi-228
nology, IEEE Std. 610.12. 1990. Los Alamitos, CA: IEEE Computer Society Press.229

[Valenti ()] Successful Software Reengineering, Sal Valenti . 2002. 1331 E., Chocolate Avenue, Hershey: IRM230
Press.231

7

http://users.jyu.fi/~koskinen/smcosts.htm
http://users.jyu.fi/~koskinen/smcosts.htm
http://users.jyu.fi/~koskinen/smcosts.htm

	1 INTRODUCTION
	2 II.
	3 SOFTWARE MAINTENANCE
	4 Corrective maintenance:
	5 Adaptive Maintenance
	6 Preventive Maintenance
	7 Perfective maintenance
	8 REENGINEERING
	9 Reverse engineering 2. Architecture transformations 3. Forward engineering
	10 Reverse engineering
	11 Forward engineering
	12 Reengineering = Reverse engineering + ? + forward engineering
	13 b) Cost based Model
	14 c) Object based Model
	15 SUMMARY AND CONCLUSIONS
	.1 VI.
	.2 FUTURE WORKS TO BE DONE


