
© 2012 Sami Ouali, Naoufel Kraiem, Henda Ben Ghezala. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Volume 12 Issue 1 Version 1.0 January 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: & Print ISSN:

Abstract - Software product line engineering optimizes the development of individual systems by

leveraging their common characteristics and managing their differences in a systematic way. These

differences are called variabilities. We argue that it is difficult for business people to fully benefit of the

SPL if it remains at the software level. The paper proposes a move towards a description of software

product line in intentional terms, i.e. intentions and strategies to achieve business goals. We present

ISPL, the model to describe intentional Software Product Line. Thereafter, we propose our process to

show how to use this model.

Keywords : Software Product Line, variability, intentional level, comparison framework, features

modeling and metamodels.

GJCST Classification: D.4.6,

Intentional Software Product Line

Strictly as per the compliance and regulations of:

Intentional Software Product Line
Sami Ouali α, Naoufel KraiemΩ, Henda Ben Ghezala β

Abstract - Software product line engineering optimizes the
development of individual systems by leveraging their
common characteristics and managing their differences in a
systematic way. These differences are called variabilities. We
argue that it is difficult for business people to fully benefit of
the SPL if it remains at the software level. The paper proposes
a move towards a description of software product line in
intentional terms, i.e. intentions and strategies to achieve
business goals. We present ISPL, the model to describe
intentional Software Product Line. Thereafter, we propose our
process to show how to use this model.
Keywords : Software Product Line, variability, intentional
level, comparison framework, features modeling and
metamodels.

I. INTRODUCTION
oftware product line engineering optimizes the
development of individual systems by leveraging
their common characteristics and managing their

differences in a systematic way (Clements & Northrop,
2001). These differences are called variabilities. In
software product line engineering, two kinds of variability
can be distinguished: product line variability and
Software variability. Software variability refers to the
ability of a software system to be efficiently extended,
changed, customized or configured for use in a
particular context (Svahnberg et al., 2005). While
product line variability describes the variation between
the systems that belong to a product line (Coplien et al.,
1998; Pohl et al., 2005; Kang et al., 2002) in terms of
properties and qualities, like features that are provided
or requirements that are fulfilled. Defining product line
variability concerns the determination of what should
vary between the systems in a product line. In SPLE,
single system can be built rapidly from reusable assets,
such as a set of components.

The framework analysis which we proposed in
our previous work (Ouali et al., 2011) allows us to
identify many drawbacks of existing SPL construction
methods. In these methods, apart requirement
approaches ones, the problem is the matching between
users’ needs and the product offered by developers.
Many writers have observed that there is a "conceptual
mismatch" (Woodfield, 1997; Kaabi, 2007). The position
adopted in this paper is to suggest a move to intention-

driven SPL to bridge the gap

between high level users’
goals and low level software product line obtained. We
present in

this paper a model for intentional SPL

modeling.

Our process is based on goal modeling, feature
modeling and metamodels. Goal models model
stakeholder

intentions to fulfill the system-to-be. Feature
modeling allows us to model the common and variable
properties of product-line members throughout all
stages of product-line engineering. Metamodels allow
the expression of common and variable characteristics
of a set of applications. A metamodel represents the
concepts, relationships, and semantics of a domain.

This paper is organized as follows. A brief
description of different concept concerning software
product line and variability is presented in the next
section. Our previous work, which is the comparison
framework, is described in section 3. An intentional
software product line model is presented in section 4. In
section 5 we present our proposed process. The section
6 concludes this work with our contribution and research
perspectives.

Author α

: National School of

Computer Sciences University, Tunisia.
Telephone: +21623695033 E-mail

: samiouali@gmail.com

Author Ω

: Higher

Institute of Computer Science of

El Manar and RIADI
Labs, Tunisia. E-mail

: Naoufel.kraiem@ ensi. rnu.tn

Author β

: department of Informatics at the National School of
Computer Sciences of Tunis and the director of RIADI Labs, Tunisia.

E-mail

: henda.bg@cck.rnu.tn.

II.

SOFTWARE PRODUCT LINE AND

VARIABILITY CONCEPTS
 Software product lines are recognized as a

successful approach to reuse in software development
(Clements & Northrop, 2001; Bosch, 2000). The idea
behind software product line is to economically exploit
the commonalities between software products, but also
to preserve the ability to vary the functionality between
these products.

These differences refer to the variability

which is a key success factor in product lines and reuse.
 This approach is based on the undertaking of the

development of a set of products as a single, coherent
development activity. Indeed, products are built from a
collection of artifacts from a core asset base that have
been specifically designed for use.

Core assets include

not only the architecture and its documentation but also
specifications, software components, tools…

 Variability is the ability of a system to be
efficiently extended, changed, customized or configured
for use in a particular context (Van Grup, 2000). Another
definition presents variability as the ability of a system,
an asset, or a development environment to support the
production of a set of artifacts that differ from each other
in a preplanned fashion (Czarnecki

&

Eisenecker, 2000).

In this definition variability means the ability of a core

S

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

27

 Ja

nu
a r
y

 2
01

2

asset to adapt to usages in the different product
contexts that are within the product line scope. Indeed,

variations in a product line context must be anticipated.

The purpose of Variability modeling is to
present an overview of a product line's commonality and
variability. Variability modeling terms concerns also
commonality modeling. The content of a variability
model serves as a basis for defining variability within the
artifacts that make up the product-line infrastructure as
well as for configuring individual product instances and
deriving them from the infrastructure.

SPL engineering is defined (Czarnecki

&

Eisenecker, 2000)

by distinguishing two levels of
engineering: Domain Engineering and Application
Engineering as presented in Fig.

1.

Fig.1

:

SPL

Engineering levels

 Domain Engineering

corresponds to the study

of the area of product line, identifying commonalities
and variabilities among products, the establishment of
a

generic software architecture and the implementation

of this architecture. Indeed, the domain engineering
consists on the construction of reusable components
known as asset which will be reused for the products
building.

 Application Engineering

is used to find the
optimal use for the development of a new product from
a product line by reducing costs and development time
and improve the quality.

At this level, the results of the

domain engineering are used for the derivation of a
particular product.

This derivation corresponds to the

decision-making towards the variation points.
 In the literature, the majority of variability

research concerns requirements and architecture. But
some works deals with implementation, verification and
validation, traceability and software product line
management.

The literature basically proposes methods

or techniques that address only a specific portion of

SPL

development.
 III.

COMPARISON FRAMEWORK

 We have elaborated a framework to compare
different approaches for the construction of SPL. The
idea is to consider a central concept (SPL) on four
different points of view. Defining a comparison
framework has proved its effectiveness in improving the
understanding of various engineering disciplines

(process, requirements, information systems…)

(Rolland, 1998; Jarke & Pohl, 1993).

Therefore, it can be
helpful for the better understanding of the field of
engineering SPLs.

As a result, our framework (Fig. 1) is
presented in (Ouali et al.,

2011).

The framework analysis allows us to identify the

following main drawbacks of existing SPL construction
methods. We realize that we have a

lack of sufficient tool

support for them and for their interactivity with their
users. The SPL approaches themselves are not enough
automated for deriving automatically a product from a
SPL. In addition, these methods didn’t cover all aspects
of SPL engineering. Indeed, every method tries to focus
on a particular part of SPL construction process. Finally,
in these methods, apart requirement approaches ones,
the problem is the matching between users’ needs and
the product offered by developers. Many writers have
observed that there is a "conceptual mismatch"
(Woodfield, 1997; Kaabi, 2007).

Fig.2 : Software Product Line comparison framework

evolution
We try in the next section of this paper to

resolve this last drawback by the proposal of a model
for intentional SPL modeling. We try to establish the
matching between users’ needs and the product offered
by developers by the expression of users’ needs in an
intentional way.

IV. INTENTIONAL SOFTWARE PRODUCT
LINE META-MODEL

This section describes a meta-model
synthesizing the different interesting points that we
previously identified after a state-of-the-art (software
product line, intention, feature…). We chose to
transform this meta-model into a UML profile to facilitate
the integration into UML models and to use it in our
MDA approach.
a) Meta-model Description

As depicted in Fig. 3, a product line contains
features. A product belongs to one product line and is
composed of features. These features associated to a
product must check some constraints (mutual exclusion

Intentional Software Product Line
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

28

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

and require relation) throw the conflict and require
relationships. The recommends relationship concerns
another feature that could be pertinent.

 An intentional software product line is a set of
features

captured at the business level, in business

comprehensible terms and described in an intentional
perspective. In this perspective, we focus on the
intention

it allows to achieve rather than on the

functionality it performs.

A

feature

is a set of related

requirements

that allows the user to satisfy an intention.

 We have two specializations of features which are
MandatoryFeature

and VariantFeature.

Mandatory

features are features which must be present

in every

configuration of a product from the product line.

A variant feature is modeled as a set of variation
point. The metamodel allows atomic variation points

(Variant)

or composite ones

(Composite

VariationPoint)

for a variant feature.

We use the composite pattern to
compose a variation point.

In our meta-model, we use a part of an existing
meta-model map (Rolland et al., 1999c) which is a
Process Model in which a non-deterministic ordering of
intentions

and strategies has been included. Map is a
labeled directed graph with intentions as nodes and
strategies

as edges between intentions. A

map

consists
of a number of sections.

Each

section

is a triplet formed
by a source intention, a target intention

and a strategy.

A
strategy

is a manner to achieve an intention.

Intentional Software Product Line

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

29

 Ja

nu
a r
y

 2
01

2

Fig.3 : Above is the example of single column image. Images must be of very high quality.

V. PROPOSED PROCESS

To avoid the drawbacks of the existing
methods, we try to propose a new process for the
construction of SPL. This process is a flexible approach
for automatically building SPL based on variability
models. This process is based basically on goal
modeling, features modeling, metamodels,
constraints…

In our process, we try to cover domain
engineering and application engineering. The domain
engineering process involves the creation of core
assets. In this process, our interest concerns the
elicitation of intentions and strategies using the MAP for
the design of users’ requirements. A map is a process
model expressed in a goal driven perspective which can
provides a process representation system based on
goals and strategies. The directed nature of the graph
shows which goals can follow which one. MAP is

considered as Intention-oriented process modeling
which follows the human intention of achieving a goal as
a force which drives the process (Soffer & Rolland,
2005). Having represented software product line
features intentionality as maps, we will proceed in our
process to determine features and their composition
according to the Intentional Software Product line. This
approach is presented in Fig. 4. Users’ intentions are
captured and modeled using Map Model to obtain an
SPL Model. This model contains an intentional view.
Variability in intentional software product line modelling
is mandatory and due to the need to introduce flexibility
in intention achievement. We use features diagrams to
model variability in software product line. We try to
capture commonality and variability of domain and to
reuse it for the derivation of a specific requirement
model in application Level.

Intentional Software Product Line
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

30

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

Fig.4 : Domain Level Engineering using Intentional
Software Product Line Model

We try to manage variability in SPL construction
process (functions, structures, behaviors, technologies).
Our strategy follows feature modeling approach, MDA
approach and the managing of the constraints. We base
our work on the creation of features models
representing the SPL structure. We use state machine to
model the behavior in the SPL. This process is based on
the automatic transformation of models until obtaining
executable applications. The process is flexible because
SPL developer has a lot of possibilities for the creation
of SPL and its constraints. It permits the generation of a
flexible SPL suitable to the users’ requirements elicited
in the beginning of the creation process and new ones.

VI. CONCLUSION

In this paper, our contribution was the proposal
of a model combining software product line, variability,
requirements and intentions. This suggested model
clarifies the notion of an intentional software product line
to model SPL in intentional context. It was build to
respond to the following purpose: to focus on the
intention it allows to achieve rather than on the
functionality it performs. An intentional software product
line is captured at the business level, in business
comprehensible terms and described in an intentional
perspective. This model will be useful to improve the
method used for software product line construction by
avoiding the conceptual mismatch. We try to establish
the matching between users’ needs and the product
offered by developers by the expression of users’ needs
in an intentional way.

In this paper, we have presented a proposal to
manage variability during the SPLs construction process
using a MAP for goals modeling, features diagrams
allows us to model the common and variable properties
of product-line members throughout all stages of
product-line engineering, metamodels allow the
expression of common and variable characteristics of a
set of applications.

Our future work will be the proposal of a tool
support to improve interactivity with users and to cover
the overall lifecycle of SPL. This tool support will be

based on Eclipse plug-in for feature modeling using the
Eclipse Modeling Framework (EMF), which significantly
reduced our development effort. Our tool support is
based on generative development for goal modeling,
feature modeling and metamodels. Integrating goals
modeling, feature modeling and metamodels as part of
a development environment helps to optimally support
modeling variability in different artifacts including
implementation code, models, documentation,
development process guidance...

REFERENCES REFERENCES REFERENCIAS

1. Clements, P. & Northrop, L. (2001). Software
Product Lines: Practices and Patterns. Addison-
Wesley, Boston, MA.

2. Svahnberg, M., Van Gurp, J., Bosch J. (2005). A
taxonomy of variability realization techniques, In:
Software Practice & Experience, Vol. 35, No. 8, pp.
705–754.

3. Coplien, J., Hoffman, D., Weiss, D. (1998).
Commonality and variability in software engineering.
In: IEEE Software, Vol. 15, No. 6, pp. 37 – 45.

4. Pohl, K., Böckle, G., Van der Linden, F. (2005).
Software Product Line Engineering: Foundations,
Principles and Techniques, Springer.

5. Kang, K. C., Lee, J., Donohoe, P. (2002). Feature-
oriented project line engineering. In: IEEE Software,
Vol. 19, No. 4, pp. 58–65.

6. Woodfield, S. N. (1997). The Impedance Mismatch
between Conceptual Models and Implementation
Environments, ER’97 Workshop on Behavioral
Models and Design Transformations: Issues and
Opportunities in Conceptual Modeling, UCLA, Los
Angeles, California.

7. Kaabi, R. (2007). Une Approche Méthodologique
pour la Modélisation Intentionnelle des Services et
leur Opérationnalisation (Thèse de doctorat).
Sorbonne: Université de Paris I.

8. Ouali, S., Kraïem, N. and Ben Ghezala, H. (2011). A
Flexible Process for SPL construction. Journal of
Computer Science and Engineering (JCSE), Volume
8, Issue 1.

9. Rolland, C. (1998). A Comprehensive View of
Process Engineering, Proceeding of the 10th
International Conference CAiSE'98, LNCS 1413,
Springer Verlag Pernici, C. Thanos (Eds), Pisa, Italie,
p. 1-24.

10. Jarke, M. & Pohl, K. (1993). Requirements
Engineering: An Integrated View of Representation,
Process and Domain, in Procedings 4th Euro.
Software Conf., Springer Verlag.

11. Bosch, J. (2000). Design & Use of Software
Architectures, Adopting and Evolving a product-line
approach, Addison-Wesley, ISBN 0-201-67494-7.

12. Van Grup, J. (2000). Variability in Software Systems,
the key to software reuse (Thesis). Sweden:
University of Groningem.

Intentional Software Product Line

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

31

 Ja

nu
a r
y

 2
01

2

13. Czarnecki, K. and Eisenecker, W. (2000). Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley.

14. Rolland, C., Prakash, N. and Benjamen, A. (1999c).
A Multi-Model View of Process Modelling,
Requirements Engineering Journal, 4:4, 169-187.

15. Soffer, P. & Rolland, C. (2005). Combining Intention-
Oriented and State-Based Process Modelling,
Proceedings of the International Conference on
ER’05, LNCS, pp47-62.

Intentional Software Product Line
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

32

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

This page is intentionally left blank

Ea
rly

 V
iew

	Intentional Software Product Line
	Author's
	Keywords :
	I. INTRODUCTION
	II. SOFTWARE PRODUCT LINE ANDVARIABILITY CONCEPTS
	III. COMPARISON FRAMEWORK
	IV. INTENTIONAL SOFTWARE PRODUCTLINE META-MODEL
	a) Meta-model Description

	V. PROPOSED PROCESS
	VI. CONCLUSION
	REFERENCES REFERENCES REFERENCIAS

