
Towards full protection of web applications based on Aspect1

Oriented Programming2

Dr. Elinda Kajo Mece1 and Lorena Kodra23

1 University of Tirana4

Received: 9 April 2012 Accepted: 30 April 2012 Published: 15 May 20125

6

Abstract7

Web application security is a critical issue. Security concerns are often scattered through8

different parts of the system. Aspect oriented programming is a programming paradigm that9

provides explicit mechanisms to modularize these concerns. In this paper we present a10

technique for detecting and preventing common attacks in web applications like Cross Site11

Scripting (XSS) and SQL Injection using an aspect oriented approach by analyzing and12

validating user input strings. We use an aspect to capture input strings and compare them to13

predefined patterns. The intrusion detection aspect is implemented in AspectJ and is woven14

into the target system. The resulting system has the ability to detect malicious user input and15

prevent SQL Injection and Cross Site Scripting. We present an experimental evaluation by16

applying it to an insecure web application. The results of our tests show that our technique17

was able to detect all the attempted attacks without generating any false positives.18

19

Index terms— symbolic information, artificial intelligence, Flow control, Architecture.20

1 INTRODUCTION21

ser and critically important company information is managed using web applications. For this reason, web22
applications serve as a door for attacks. The vulnerabilities present in the application can be exploited by an23
attacker. Even with the rapid development of Internet technologies, web applications have not achieved the24
desired security levels. As a result, web servers and web applications are popular attack targets.25

Two common attacks on this type of systems are Cross Site Scripting (XSS) and SQL Injection. SQL Injection26
is a technique where an intruder injects SQL code into the user input field in order to modify the original27
structure of the query to post hidden data, or execute arbitrary queries in the database. Cross Site Scripting28
occurs when an intruder injects and executes scripts written in languages like JavaScript or VBScript. Aspect29
Oriented Programming is a programming paradigm that provides explicit mechanisms to modularize crosscutting30
concerns (behavior that cuts across different divisions of the software) such as security. This makes it a good31
candidate for applying security to a system.32

2 Author33

? ? : Department of Computer Engineering, Polytechnic University of Tirana, Tirana, Albania. E-mails :34
ekajo@fti.edu.al, lorena.kodra@gmail.com35

In this paper, we propose an Aspect Oriented protection system that detects and prevents attacks on web36
applications. This system analyzes and validates user input strings. We use an aspect to capture input strings37
and compare them to predefined patterns. The intrusion detection aspect is implemented in AspectJ and is38
woven into the target system. The resulting system has the ability to detect malicious user input and prevent39
SQL Injection and Cross Site Scripting. The advantage in using aspect oriented programming lies in separating40
the security code from application code. In this way it can be developed independently to adapt to new attacks.41

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

7 RELATED WORK AND PROPOSED SOLUTION

The rest of the paper is organized as follows. Section 2 presents principles of SQL Injection, XSS and42
AOP. Section 3 presents related work in this area and our proposed solution. Section 4 describes in detail the43
architecture of our system and its integration with the web application. Section 5 describes the experimentation44
and evaluation results. Section 6 concludes and discusses some future work.45

3 II.46

BACKGROUND a) SQL Injection SQL Injection consists in inserting malicious SQL commands into a parameter47
that a web application sends to a database in order to execute a malicious query. As a result, database contents48
can be corrupted or destroyed. The most popular techniques used in SQL injection are tautology, union, and49
comments.50

The general idea behind tautology is finding a disjunction in the WHERE clause of a SELECT or UPDATE51
statement and inserting malicious code into one or more conditional statements so that they always evaluate as52
true. Let us consider the case where the web application authenticates users by executing the following query:53
SELECT * FROM users WHERE username = ’admin’ and password = ’pass’ This query doesn’t select any54
rows because the password is incorrect. Injecting ’ OR 1=1 gives: SELECT * FROM users WHERE username55
= ’admin’ and password = ” OR 1=1’ SELECT productName FROM products WHERE productID = ’5’ An56
attacker can use the UNION clause to modify the structure of this query to: SELECT productName FROM57
products WHERE productID = ’5’ UNION SELECT username, password FROM users As a result, this query58
will display the product name together with the usernames and passwords of the users table.59

Another type of SQL Injection uses comments to cut an SQL query and change its structure. The part of the60
SQL statement that comes after the comments will not be executed and the query will return the results that61
the attacker wanted. For example the following SQL statement:62

SELECT * FROM users WHERE username = ’alice’ and password = ’alice123’ can be transformed in the63
following way: SELECT * FROM users WHERE username = ’admin’ –and password = ”64

The query will return all the information about the admin user. b) Cross Site Scripting Cross Site Scripting65
(XSS) is an attack done towards the user’s browser in order to attack the local machine, steal user information66
or to spoof the user identity. The attacker uses a web application to send malicious code usually in the form of67
a script. Together with the legitimate content, the users get the malicious script from the web application. This68
attack is successful in web applications that do not validate user input.69

4 c) Aspect Oriented Programming and Security70

5 Aspect71

Oriented Programming is a programming paradigm whose aim is to solve problems like code scattering and72
code tangling that cannot be solved by traditional programming methodologies. Code scattering means that the73
problem code is spread over multiple modules. This means that when developers want to fix a bug they have74
to modify several source files. Code tangling means that the problem code is mixed with other code. In the75
case of web applications, security code needs to be applied in different modules of the system. This process is76
error prone and difficult to deal with. AOP is a good candidate for applying security in web applications. The77
security code can be encapsulated into modules called aspects which can be maintained separately from the web78
application in order to adapt to new attacks.79

6 III.80

7 RELATED WORK AND PROPOSED SOLUTION81

During recent years, different solutions have been proposed to address security issues in web applications. The82
most efficient way to protect against XSS and SQL Injection attacks is to inspect all the data the user inserts83
into the system, hence most of the work in this area treats user input.84

Zhu and Zulkerine propose a model-based aspect-oriented framework for building intrusion-aware software85
systems [2]. They model attack scenarios and intrusion detection aspects using an aspect-oriented Unified86
Modeling Language (UML) profile. Based on the UML model, the intrusion detection aspects are implemented87
and woven into the target system. The resulting target system has the ability to detect the intrusions88
automatically.89

Mitropoulos and Spinellis propose a method for preventing SQL Injection attacks by placing a database driver90
proxy between the application and its underlying relational database management system [1]. To detect an attack,91
the driver uses stripped-down SQL queries and stack traces to create SQL statement signatures that are later92
used to distinguish between injected and legitimate queries. The driver depends neither on the application nor on93
the RDBMS. Hermosillo et al. present ”AProSec” implemented in AspectJ and in the JBoss AOP framework, a94
security aspect for detecting SQL Injection and XSS [3]. They use the same aspect for dealing with SQL Injection95
and XSS. Their experiments show the advantage of runtime platforms such as JBoss AOP for changing security96
policies at runtime. We propose a system that performs a two-step validation of user input. In the first step it97
is validated syntactically to check whether it contains dangerous characters that can be used in XSS and SQL98

2

Injection. In the second step, the input is validated by the SQL validator in the context of a query to check99
whether it contains always true statements, comments or combinations of SQL keywords. In contrast to the100
systems described above, our system analyzes directly user input before it is being used as part of an SQL query.101
This facilitates the analyzing process. Another advantage of our system is the fact that the SQL validator checks102
the presence of SQL keywords in the user input. This prevents attacks that do not contain comments or always103
true statements but contain SQL keywords that can modify the original structure of the SQL query. Our system104
does not generate false positives because it considers as attack the presence of a combination of SQL keywords105
and not the presence of a single SQL keyword such as ”Union” that might be part of a legitimate user name.106

8 SYSTEM ARCHITECTURE107

Our system consists of three parts. The first and the most important part is an aspect called WebAppInputFilter108
that contains the logic of the whole defense process. It defines the advices that control the validation process109
as well as the steps to be taken (code to be executed) based on the results of the validation. The aspect also110
contains the pointcuts that define the vulnerable points of the web application and allow the weaving with the111
advice code. The second part consists of a validators class that validate against XSS and SQL Injection attacks112
the input defined in the advices. The third part consists of an encoder which encodes dangerous characters by113
converting them to their decimal equivalent, leaving them harmless.114

The basic idea behind our technique is to capture user input and validate it by comparing it to predefined115
patterns. In the case of SQL Injection, in contrast with current solutions [1, 2, 3], the user input is validated116
before being used as part of a query. The final query is a combination of user input and a partial SQL statement117
defined by the developer. We consider as safe the part of the query that is defined by the developer, so there118
is no need to validate it and we only validate the user input part. This facilitates and speeds up the evaluation119
process.120

The validation process happens in two steps. First the user input is validated to check whether it contains121
dangerous characters such as ’<’,’ >’, ’=’ and’ -’ that can be used to perform XSS and SQL Injection attacks. In122
the second step, the SQL Validator analyzes the input in the context of the query. This is done to check whether123
the query contains combined SQL keywords that can modify the original structure of the query or SQL code that124
can transform the original query in an SQL statement that results always true.125

Figure 1 shows the flow of information within the defense system. The aspect captures the user input string126
and sends it to the first analyzer. If the string is not dangerous it is passed on to the second validation step. If127
the string is dangerous it is send to the encoder. It encodes the dangerous characters and the result is passed128
to the SQL Validator. If the string is not considered dangerous, it is passed on to the web application as a129
legitimate request. If it is considered dangerous, it is erased. This aspect is implemented in AspectJ [7]. This is130
the most widely used language for aspect oriented programming. It represents the extension of Java for dealing131
with aspects. The aspect defines pointcuts in the vulnerable points of the web application. It monitors the traffic132
in servlets and captures some specific calls that implement the The syntactic validator, analyzes separately each133
character of the user input string and acts as a filter that allows only characters ’a-z’, ’A-Z’, numbers ’0-9’,134
spaces and characters like ”.” and ”,”. The rest of the characters are considered dangerous and will be sent to the135
encoder.136

The SQL Validator consists of several validation strings in the form of regular expressions that are matched137
against user input according to different possibilities of injecting SQL code into the user input field of the web138
application. The validation criteria include: always true comparisons (both string and numeric), presence of139
quotes or comments, keywords for executing stored procedures, combinations of SQL keywords like UNION,140
SELECT, DROP, INSERT, ALL, etc. As regards this least evaluation criterion, it protects in cases where no141
comments or always true statements are present in the query but it still may contain dangerous keywords that142
can execute arbitrary January 2012 operations in the database. We would also like to emphasize that the SQL143
Validator doesn’t simply detect the presence of SQL keywords, but the presence of combined SQL keywords that144
would potentially modify the original structure of the query. This means that input strings that simply contain145
SQL keywords (like UNION) will not be considered dangerous unless they contain some other SQL keyword that146
would create a risk for SQL Injection. This eliminates the false positive case of detection when a legitimate user147
has for example the word ”Union” in their name.148

V.149

9 EVALUATION RESULTS150

We evaluated our system by using it against a vulnerable web application ??8]. First we tried all sorts of SQL151
Injection and XSS injection attacks to see how the system behaved. Then we protected it using our system but152
were unable to bypass the application’s security.153

For example, let’s assume that an attacker tries to input the following script into the web application:154
<script>alert(document.cookie)</script>155

The system will detect the dangerous characters ”<”, ”>”, ”(”, ”)” and ”/” and encode them. In this way this156
input string will be considered as a simple string and not as a script and will not be interpreted by the browser.157
A wiser attack would be to encode the input string by using some encoding scheme (decimal, hexadecimal, octal,158

3

10 VI. CONCLUSIONS AND FUTURE WORK

Unicode, etc) prior to inserting it into the web application. For example, the above string in hexadecimal format159
(\xNN) would be:\x3c\x73\x63\x72\x69\x70\x74\x3e\x61\x6c \x65\x72\x74\x28\x64\x6f\x63\x75\x6d\x65160
\x6e\x74\x2e\x63\x6f\x6f\x6b\x69\x65\x29 \x3c\x2f\x73\x63\x72\x69\x70\x74\x3e161

Even in this case the attack wouldn’t be successful because the system detects the usage of ”\” and encodes the162
string to make it harmless. We tested our defense system by using other encodings (decimal, octal and Unicode)163
and none of the attacks were successful.164

In the case of SQL Injection, let’s assume that an attacker tries to inject a query that contains a statement165
that is always true into the system: SELECT * FROM user_data WHERE last_name = ’Smith’ OR ’1’=’1’166

The SQL Validator will detect that there is a statement that is always true and will delete this string without167
passing it to the web application.168

In order to evaluate the impact of the defense system in the performance of the web application we measured169
its response time using [9] under two scenarios. We measured the response time first in the absence of any defense170
and then in the presence of our defense system. We used a mix of input strings: harmless, XSS attack and SQL171
Injection attack strings. For every scenario we used 356 POST and 104 GET requests which make a total of172
460 requests. We executed the series of requests 5 times and measured the average response time. Our defense173
system introduced an average overhead of 2.11%. We feel that this is an acceptable level of overhead for use in174
many production environments and it will not be noticeable by the user.175

10 VI. CONCLUSIONS AND FUTURE WORK176

We have presented our approach for building a security system for a web application. This system detects XSS177
and SQL Injection attacks in requests. Our system was built separately and the initial code of the web application178
was not modified. This allows the separation of security concerns and allows the security system to be evolved179
independently from the web application to adapt to new attacks.180

As an advantage to similar solutions, besides checking for comments and always true statements, our SQL181
Validator also checks for the presence of a combination of SQL keywords in the input string. This can protect in182
cases where comments or always true statements are not present in the query but it still may contain dangerous183
keywords that can execute arbitrary operations in the database. Our system does not simply check for SQL184
keywords but for a combination of them. This is considered as an advantage in eliminating false positives like in185
the case of having for example the word ”Union” as part of a legitimate user name. Furthermore, in contrast to186
usual solutions, when protecting against SQL Injection our system analyzes directly the user input before being187
used as part of a query. There is no need to analyze the whole query because the other parts of it are defined188
by the developer and are considered safe. This has the advantage of facilitating and speeding up the evaluation189
process.190

Our system can be improved in some directions. A possible improvement might be the implementation of191
defense against other form of attacks. Also new techniques like machine learning and neural networks can be192
used to detect more sophisticated attacks. Another direction of improvement might be the implementation of193
runtime weaving using the JBoss AOP Framework [10]. 1 2194

1January 2012© 2012 Global Journals Inc. (US)IV.
2© 2012 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XII Issue I

Version I

4

1

Figure 1: Fig. 1 :

Figure 2:

5

10 VI. CONCLUSIONS AND FUTURE WORK

6

[AspectJ] , http://www.eclipse.org/aspectj/ AspectJ195

[Jmeter] , Apache Jmeter . http://jakarta.apache.org/jmeter/JBosswww.jboss.org/jbossaop196

[Zh et al. ()] ‘A model-based aspect-oriented framework for building intrusionaware software systems’. J Zh , Z197
Zhi , Mohammad . Information and Software Technology, 2009. 51 p. .198

[Gabriel et al. ()] ‘AProSec: An aspect for programming secure web applications’. H Gabriel , G Roberto , S199
Lionel , D Laurence . Proceedings of the The Second International Conference on Availability, Reliability and200
Security, (the The Second International Conference on Availability, Reliability and Security) 2007. p. .201

[Engin et al. ()] ‘Client-side cross-site scripting protection’. K Engin , J Nenad , K Christopher , V Giovanni .202
Computers & Security 2009. 28 (7) p. .203

[Etienne and Pavol ()] ‘Preventing SQL Injections in Online Applications: Study, Recommendations and Java204
Solution Prototype Based on the SQL DOM’. J Etienne , Z Pavol . OWASP AppSec Conference, 2008.205

[Dimitris and Spinellis ()] ‘SDriver: Location-specific signatures prevent SQL injection attacks’. M Dimitris ,206
Diomidis Spinellis . Computers & Security 2009. 28 p. .207

[Matias et al. ()] ‘Watch What You Write: Preventing Cross-Site Scripting by Observing Program Output’. M208
Matias , L Edward , W Jacob , C Brian . OWASP AppSec Conference, 2008.209

7

http://www.eclipse.org/aspectj/
http://jakarta.apache.org/jmeter/JBosswww.jboss.org/jbossaop

	1 INTRODUCTION
	2 Author
	3 II.
	4 c) Aspect Oriented Programming and Security
	5 Aspect
	6 III.
	7 RELATED WORK AND PROPOSED SOLUTION
	8 SYSTEM ARCHITECTURE
	9 EVALUATION RESULTS
	10 VI. CONCLUSIONS AND FUTURE WORK

