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Abstract - In this paper we discuss some of the architectural principles which are useful to support 

the continuous media applications in a microkernel environment. In particular, we discuss i) the 

principle of upcall-driven application structuring whereby communications events are system rather 

than application initiated, ii) the principle of split-level system structuring whereby, key system 

.functions are carried out co-operatively between kernel and user level components and iii) the 

principle of decoupling of control transfer and data transfer. Under these general headings a number 

of particular mechanisms and techniques are discussed.  
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Abstract - In this paper we discuss some of the architectural 
principles which are useful to support the continuous media 
applications in a microkernel environment. In particular, we 
discuss i) the principle of upcall-driven application structuring 
whereby communications events are system rather than 
application initiated, ii) the principle of split-level system 
structuring whereby, key system .functions are carried out co-
operatively between kernel and user level components and iii) 
the principle of decoupling of control transfer and data 
transfer. Under these general headings a number of particular 
mechanisms and techniques are discussed.  

I. INTRODUCTION 

e are interested in both communications and 
processing support for distributed real-
lime/multimedia applications in end systems, 

and believe that such applications require thread-to-
thread realtime support according to user supplied 
quality of service (QoS) parameters. Such support, 
depending on the level of QoS commitment required, 
may require dedicated, per-connection, resource 
allocation the CPU scheduler, virtual memory system 
and communication system. It may also require ongoing 
dynamic QoS management in all these areas[1]. 
Another important requirement we have imposed on 
ourselves is to support standard UNIX applications on 
the same machine as our real-time/ multimedia support 
infrastructure; we do not want to build a specialist real-
time system that is isolated from the standard 
application environment. In our paper the prime 
consideration is the efficiency. In particular in minimizing 
system imposed overheads by reducing the cost and 
number of system calls, context switches and copy 
operation. 

In this paper is structured as three main 
sections, each of which describes a key architectural 
principle of our design. The three principles are: i) up 
call driven application structuring whereby 
communications events are system rather than 
application initiated, ii) split-level system structuring 
whereby key system functions are carried out 
cooperatively between kernel and user level 
components and iii) decoupling of control transfer and 
data transfer whereby the transfer of control is carried 
out asynchronously with respect to the transfer of data. 
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II. UPCALL-DRIVEN APPLICATION 
STRUCTURING 

In conventional designs, system APIs are mostly 
passive and applications are mostly active. For 
example, when an application needs to send or receive 
data, it typically invokes a system call such send() or 
recv(). It also provides the buffer from/to which data is to 
be sent/received. In contrast, our continuous media API 
is structured so that the system infrastructure is active 
and applications are passive. Application programmers 
attach rthandlers, which are C functions containing 
application code to process the real-time media, to 
rtports, which are globally unique units of addressing. 
Then, programmers establish connections with a given 
QoS between rtports. At connect time, the system, 
rather than the application, allocates buffers for 
connections ,and provides the thread on which the 
rthandlers will be executed. At data transfer time, the 
system decides to upcall the application to obtain/ 
deliver data at instants determined by the QoS 
specification (in terms of rate, jitter, delay etc.) provided 
by the application at connect time. When an application 
rthandler is upcalled, the address of the associated 
rtport's buffer is passed as an argument so that 
application code in the rthandler can access the buffer. 
Source rthandlers are expected to fill buffers with data to 
be sent, and sink rthandlers to use the data as provided. 

In conventional designs, systems API are mostly 
passive and applications are mostly active. For 
example, when an applications needs to send or receive 
data, it typically invokes a system call such as send() or 
recv(). It also provides the buffer from/ to which data is 
to be sent/received. In contrast, the continuous media 
API is structured so that the system infrastructure is 
active and applications are passive.  

There are three major benefits of style of an 
application/system interaction in our context. First, it 
relieves the application of the burden of explicitly 
creating threads and allocating buffers. Second, the 
system, rather than the application, can choose the 
timing of application code execution, and thus can 
optimally monitor and manage the Quality of Service 
(QOS) of the connection, including the execution of 
application code, to provide the required thread-to-
thread QOS support. Third, the structuring of the API 
with the API rthandlers is a natural and effective model 
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for real-time programming. Real-time programming is 



considerably simplified when programmers can 
structure applications to react to events and delegate to 
the system the responsibility for initiating communication 
events. The programmer is still ultimately in control of 
event initiation but this control is expressed declaratively 
through the provision of QOS parameters at connect 
time and need not be explicitly programmed in a 
procedural style[2]. 

 
Along with these benefits, an efficiency gain 

potentially results from upcall-driven application 
structuring, because a single thread ca be used for both 
protocol and application processing. In conventional 
systems, application interface with communications by 
performing system calls which block and reschedule if 
the communications system is not ready to send or if 
data has not yet arrived. With infrastructure initiated 
communication, on the other hand, it is not necessary 
for the application and communications system to wait 
for each other, and thus no context switch is incurred, as 
the communication system always initiates the 
exchange and the application code is always be ready 
to run. 

 III.

 

SPLIT-LEVEL SYSTEM

 

STRUCTURING

 The distributed multimedia applications will 
require high degree of internal concurrency. For 
example, it is likely that each media stream will require 
at least one thread of execution and it is also likely that 
applications will be structured as pipelines of 
processing stages on streams of media. Split-level 
structuring is used to maintain the merits of user space 
management while mitigating its demerits.  

 IV.

 

SPLIT LEVEL SCHEDULING

 The above merits and demerits are particularly 
evident in the case of CPU resource management 
through user level threads. Here the benefits are cheap 
user level concurrency and the drawback is that the 
relative urgencies of threads in different address spaces 
are not visible to the kernel scheduler. 

 
In split level scheduling, a small number of 

virtual processors (VPs) execute user threads in each 
address space. The split level scheduling schemes 
maintains the invariant that [5]:

 •

 

Each user level scheduler (ULS) always runs its 
most urgent user thread, and

 
•

 

The kernel level scheduler (KLS) always runs 
the VP supporting the globally most urgent user 
thread. 

 Split level scheduling allows many contexts 
switches to take place cheaply in the same address 
space but

 

also ensures that the relative urgencies of 
threads across the whole machine are appropriately 
taken into account. 

 

V. SPLIT LEVEL COMMUNICATION 
The strategy of split level communication 

structuring is a leave the kernel responsible for 
multiplexing and demultiplexing network packets to 
application address spaces, but the application address 
spaces perform transport level processing. In this way, 
transport protocol processing can automatically take 
advantages of the split level scheduling infrastructure 
and thus exploit cheap user level context switches.  Split level communication structuring also 
allows meaningful deadlines to be placed on (transport 
level) protocol processing activities, as the ultimate 
deadline of the final packet delivery is easily available in 
the application context. Thus, the scheduling of protocol 
processing need not be performed ’blind’ as it is in 
typical kernel implementation. Another advantage is that 
multiple transport protocols can easily be dynamically 
configured in and out of applications according to their 
particular requirements. This is important in a 
multimedia context where different protocols may be 
appropriate for different media types.  

VI. SPLIT LEVEL BUFFER MANAGEMENT 
The strategy of split level buffer management is 

for the kernel level manager to ‘loan’ physical, locked, 
buffers to per-address space managers, but to reserve 
the rights to reclaim the buffers if memory is urgently 
required or to retain the buffer longer than it has agreed 
to. The policy adopted in the design level is that the 
application is allowed to keep buffer for at least the 
normal duration of transport protocol processing time 
plus rthandlers execution time. If the period has elapsed 
and the application space has not returned ownership of 
the buffer to the kernel, the kernel may reclaim the 
buffer.  The semantic of ‘reclaiming’ locked buffers is to 
convert locked memory into standard swappable virtual 
memory.  In this way, applications do not lose their data 
although they do lose guaranteed access latency to that 
data as the memory region is subject to being paged 
out. If the kernel does not need to reclaim buffers at the 
end of an rthandler execution, the user space manager 
may reuse buffers for other connections. 

 
VII. 

DECOUPLING OF CONTROL TRANSFER 
AND DATA TRANSFER

 
In traditional systems, the transfer of control and 

the transfer of data are usually tightly coupled. For 
example, the execution of a UNIX system calls passes 
data to the kernel and simultaneously transfers control 
to the kernel.  

VIII.
 

DIRECT CONNECTIONS
 

In distributed multimedia applications it is often 
required to receive continuous media data from the 
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network and directly play it out on a device such as an 
audio card or a frame buffer (which is probably 



managed by kernel level code). The application may or 
may not require keeping track of the transfer of 
individual buffers of data for synchronization purposes. 
The opposite scenario, where data from a local device is 
to be put directly onto the network, is equally common. 
In conventional operating system, the only way to 
achieve such a data flow is to route the data through an 
intermediate user process. But it involves significant per-
buffer overheads [2]. 

 

In a direct connection, data that is to be passed 
directly between the network and a local device does 
not pass into user space at all; it is processed entirely 
within kernel space. When a direction connection is 
established, the infrastructure pre-maps the buffer 
associated with the connection into the output device’s 
memory. Then, the data can be directly copied off the 
network card on to the device without leaving kernel 
space. The fragmentation/re-assembly functions of the 
in-kernel transport protocol. 

 

If the user application does not need to

 

synchronize with the delivery of buffers, no further 
overhead is incurred. However, if it is required to 
synchronize, the application can attach an rthandler to 
the rtport. This is up called on each buffer transfer with 
the usual rthandler semantic.  The only difference in the 
API between this case and the normal case is that buffer 
pointer passed  as an argument to the rthandler  upcall 
will be a null pointer as the application context will not 
have the rights to directly access the kernel managed 
buffer.

  
IX.

 

ASYNCHRONOUS SYSTEM CALLS

 
For continuous media connections 

asynchronous system calls exploit the predictable 
periodicity of the transfer of control and data between 
application address spaces and the kernel. To issue an 
asynchronous system call (e.g. an asynchronous 
version of send()), user level library code:

 
•

 

Places an operation identifier and parameters in 
the shared KLS/ULS memory bulletin board 
area and then

 

•

 

Sets an ‘operation request’ bit, also in the 
bulletin board area.

 
The KLS, when it runs at the next system clock 

tick, notices that an operation bit is consequently 
passes the user’s parameters to a kernel server thread 
which carries out the system call on behalf of the ULS. 
This avoids a special domain crossing for the system 
call at the expense a bitmap on each clock interrupt.

 
 
 
  

X.

 

ASYNCHRONOUS SOFTWARE 
INTERRUPTS

 

The implementation of software interrupts is 
similar to that of asynchronous system calls and 
similarly avoids a special domain crossing. The 
mechanism for kernel to VP control transfer is as follows:

 

•

 

The KLS places an event identifier and 
parameters in the KLS/ULS bulletin board area

 

•

 

The KLS alters the program counter field of the 
target VP’s context structure points to a 
standard entry point in the ULS.

 

Thus, when the VP is next scheduled, the VP 
immediately enters its ULS, which picks up the event 
identifier and parameters, and schedules a user thread 
to deal with event.  Asynchronous software interrupts are 
also provided as a service accessible from user level 
code. This service enables library code in one address 
space to cheaply notify an event to another address 
space on the same machine. The service also allows the 
sender to name a pre-existing memory segment shared 
between the sender and receiver address spaces so 
that data can be optionally transferred in the same call. 

 

XI.

 

USER LEVEL PIPELINES

 

The API for pipelines of processing stages is 
very similar to the connection abstraction. But rather 
than passing a pair of rtports as arguments to the 
connect() primitives, we pass a list of rtports. In the case 
of pipelines, the delay QOS parameter applies end-to-
end over the entire chain of rtports.

 

Intermediate processing stages in pipelines are 
also realized in a similar way to that described above: 
When data arrives at an intermediate processing stage, 
the rthandler returns, it is assumed that the rthandler’s 
application code has performed some appropriate 
processing on the buffer whose address was passed up 
to it, and the data can be passed on to the next page. 

 

As the various stages of a pipeline form part of 
the same application, it is typically the case that 
pipelines are implemented in a single address space. 
The data transfer mechanism in this case is as follows: 
When an rthandler implementing one stage of a pipeline 
returns, having operated on a buffer, the

 

next stage in 
the pipeline is simply passed the address of the same 
buffer. Meanwhile, the first stage sets of work on a 
second buffer; and so on. At the end of the pipeline, 
when buffers are finished with, they are returned to a 
user level pool from which that can be reused by the first 
pipeline stage. With this implementation, intra address 
space pipelines incur only user level control transfers 
between the threads dedicated to each pipeline stage, 
and zero copy operations between stages. The API is 
the identical regardless of whether intra-address space, 
inter-address space or inter-machine connections or 
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pipelines are used. Inter-address space communication 
on the same machine uses buffers that are statically 
mapped into both the source and sink address spaces 
for data transfer, and use asynchronous software 
interrupts. 

XII. PROPOSED SCENARIO

The integrated use of the principles and 
techniques described above, the scenario is illustrated 



 

 

  

in figure 1, involves the transfer of compressed video 
from a frame grabber card on a source machine to a 
decompress/display application on a sink machine. In 
figure 1, the large ovals represent user address spaces 
with library code below the horizontal line and 
application code above. The rectangles represent kernel 
space with the enclosed shaded regions representing 
devices.The send side features a direct connection, 
involves the video capture device and the network 
interface, which avoids the need for data to pass into 
user space. It also features the (optional) use of an 
rthandler to allow the sender, which is structured as an 
upcall-driven application, to monitor and synchronize 
with the progress of the connection.

 

On the receive side, the split level buffer 
management system allocates a physical buffer from 
the kernel buffer pool to hold incoming network packets 
associated with the connection. This buffer is statically 
mapped into both kernel space and the application 
address space.In the split level communication system, 
when a complete network level packet has been 
received, the application address space’s ULS is 
notified via the conditional deadline mechanism and 
initiates transport level processing.

 

This may involve the receipt of further network 
packets to build a complete user level buffer.When a 
complete user buffer has been built, and the receiving 
thread has the globally earliest deadline, the ULS runs a 
thread which upcalls the application’s rthandler with the 
address of the buffer as a parameter. The receive side 
features a user level pipeline which involves one user 
thread performing decompressed and another 
displaying uncompressed video in a window. The 
display is achieved by means of asynchronous system 
calls to display device. Context switches between the 

two pipeline threads are achieved at user level costs 
and the transmission of data from the decompressor to 
the displayer does not involve data copying. 

  

XIII.

 

CONCLUSIONS

 

We discussed three architectural principles 
useful for the support of distributed real-time multimedia 
application in operating system.  Firstly we contended 
that the principles of upcall-driven application 
structuring leads to well structural real-time applications, 
relieves applications of the burden of explicit thread 
creation and buffer allocation, and leads to potential 
efficiency gains because of reduced context switches.

 

Secondly we argued for the principles of split-
level system structuring.  We suggested that it can 
improve efficiency by exploiting application specific 
knowledge (e.g. scheduling deadline or buffer 
requirements) in a local, user level, context where 
application/manager interact6ion is cheap, while relying 
on a kernel level manager to ‘bias’ resources to 
application address spaces of the basis of their relative 
needs. Active co-operation of management information 
between user and kernel level managers is key, but as 
long as an asynchronous style of communication 
between managers is acceptable, this can be achieved 
cheaply by means of a shared memory ‘bulletin board’.

 

Finally we discussed the three principles 
working together in

 

this paper. They are capable of 
exploited in a range of operating system environments. 
Similarly many of individual techniques can be useful in 
a stand alone fashion. When it can be compared with 
the distributed level, the principles which we have 
discussed validated in terms of direct performance 
measurements.
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Figure 1 : An illustrative Scenario
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