
© 2012 Dr.L.V.Reddy, J.Durga. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Volume 12 Issue 2 Version 1.0 January 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: & Print ISSN:

Abstract - In this paper we discuss some of the architectural principles which are useful to support

the continuous media applications in a microkernel environment. In particular, we discuss i) the

principle of upcall-driven application structuring whereby communications events are system rather

than application initiated, ii) the principle of split-level system structuring whereby, key system

.functions are carried out co-operatively between kernel and user level components and iii) the

principle of decoupling of control transfer and data transfer. Under these general headings a number

of particular mechanisms and techniques are discussed.

GJCST Classification: H.5.1

Architectural principles support the continuous multimedia applications

Strictly as per the compliance and regulations of:

Architectural principles support the continuous
 multimedia applications

Dr.L.V.Reddy α, J.Durga Ω

Abstract - In this paper we discuss some of the architectural
principles which are useful to support the continuous media
applications in a microkernel environment. In particular, we
discuss i) the principle of upcall-driven application structuring
whereby communications events are system rather than
application initiated, ii) the principle of split-level system
structuring whereby, key system .functions are carried out co-
operatively between kernel and user level components and iii)
the principle of decoupling of control transfer and data
transfer. Under these general headings a number of particular
mechanisms and techniques are discussed.

I. INTRODUCTION

e are interested in both communications and
processing support for distributed real-
lime/multimedia applications in end systems,

and believe that such applications require thread-to-
thread realtime support according to user supplied
quality of service (QoS) parameters. Such support,
depending on the level of QoS commitment required,
may require dedicated, per-connection, resource
allocation the CPU scheduler, virtual memory system
and communication system. It may also require ongoing
dynamic QoS management in all these areas[1].
Another important requirement we have imposed on
ourselves is to support standard UNIX applications on
the same machine as our real-time/ multimedia support
infrastructure; we do not want to build a specialist real-
time system that is isolated from the standard
application environment. In our paper the prime
consideration is the efficiency. In particular in minimizing
system imposed overheads by reducing the cost and
number of system calls, context switches and copy
operation.

In this paper is structured as three main
sections, each of which describes a key architectural
principle of our design. The three principles are: i) up
call driven application structuring whereby
communications events are system rather than
application initiated, ii) split-level system structuring
whereby key system functions are carried out
cooperatively between kernel and user level
components and iii) decoupling of control transfer and
data transfer whereby the transfer of control is carried
out asynchronously with respect to the transfer of data.

Author α

: Professor, Department of CSE, SVEC,A.Rangampeta.

E-mail :

lakkireddy.v@gmail.com

Author Ω

: Asst.professor, Department of. CSE, SVEC,A.Rangampeta.

E-mail : durgapriyadharshini@gmail.com

II. UPCALL-DRIVEN APPLICATION
STRUCTURING

In conventional designs, system APIs are mostly
passive and applications are mostly active. For
example, when an application needs to send or receive
data, it typically invokes a system call such send() or
recv(). It also provides the buffer from/to which data is to
be sent/received. In contrast, our continuous media API
is structured so that the system infrastructure is active
and applications are passive. Application programmers
attach rthandlers, which are C functions containing
application code to process the real-time media, to
rtports, which are globally unique units of addressing.
Then, programmers establish connections with a given
QoS between rtports. At connect time, the system,
rather than the application, allocates buffers for
connections ,and provides the thread on which the
rthandlers will be executed. At data transfer time, the
system decides to upcall the application to obtain/
deliver data at instants determined by the QoS
specification (in terms of rate, jitter, delay etc.) provided
by the application at connect time. When an application
rthandler is upcalled, the address of the associated
rtport's buffer is passed as an argument so that
application code in the rthandler can access the buffer.
Source rthandlers are expected to fill buffers with data to
be sent, and sink rthandlers to use the data as provided.

In conventional designs, systems API are mostly
passive and applications are mostly active. For
example, when an applications needs to send or receive
data, it typically invokes a system call such as send() or
recv(). It also provides the buffer from/ to which data is
to be sent/received. In contrast, the continuous media
API is structured so that the system infrastructure is
active and applications are passive.

There are three major benefits of style of an
application/system interaction in our context. First, it
relieves the application of the burden of explicitly
creating threads and allocating buffers. Second, the
system, rather than the application, can choose the
timing of application code execution, and thus can
optimally monitor and manage the Quality of Service
(QOS) of the connection, including the execution of
application code, to provide the required thread-to-
thread QOS support. Third, the structuring of the API
with the API rthandlers is a natural and effective model

W

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

7

 Ja

nu
ar
y

 2
01

2

for real-time programming. Real-time programming is

considerably simplified when programmers can
structure applications to react to events and delegate to
the system the responsibility for initiating communication
events. The programmer is still ultimately in control of
event initiation but this control is expressed declaratively
through the provision of QOS parameters at connect
time and need not be explicitly programmed in a
procedural style[2].

Along with these benefits, an efficiency gain

potentially results from upcall-driven application
structuring, because a single thread ca be used for both
protocol and application processing. In conventional
systems, application interface with communications by
performing system calls which block and reschedule if
the communications system is not ready to send or if
data has not yet arrived. With infrastructure initiated
communication, on the other hand, it is not necessary
for the application and communications system to wait
for each other, and thus no context switch is incurred, as
the communication system always initiates the
exchange and the application code is always be ready
to run.

 III.

SPLIT-LEVEL SYSTEM

STRUCTURING

 The distributed multimedia applications will
require high degree of internal concurrency. For
example, it is likely that each media stream will require
at least one thread of execution and it is also likely that
applications will be structured as pipelines of
processing stages on streams of media. Split-level
structuring is used to maintain the merits of user space
management while mitigating its demerits.

 IV.

SPLIT LEVEL SCHEDULING

 The above merits and demerits are particularly
evident in the case of CPU resource management
through user level threads. Here the benefits are cheap
user level concurrency and the drawback is that the
relative urgencies of threads in different address spaces
are not visible to the kernel scheduler.

In split level scheduling, a small number of

virtual processors (VPs) execute user threads in each
address space. The split level scheduling schemes
maintains the invariant that [5]:

 •

Each user level scheduler (ULS) always runs its
most urgent user thread, and

•

The kernel level scheduler (KLS) always runs
the VP supporting the globally most urgent user
thread.

 Split level scheduling allows many contexts
switches to take place cheaply in the same address
space but

also ensures that the relative urgencies of
threads across the whole machine are appropriately
taken into account.

V. SPLIT LEVEL COMMUNICATION
The strategy of split level communication

structuring is a leave the kernel responsible for
multiplexing and demultiplexing network packets to
application address spaces, but the application address
spaces perform transport level processing. In this way,
transport protocol processing can automatically take
advantages of the split level scheduling infrastructure
and thus exploit cheap user level context switches. Split level communication structuring also
allows meaningful deadlines to be placed on (transport
level) protocol processing activities, as the ultimate
deadline of the final packet delivery is easily available in
the application context. Thus, the scheduling of protocol
processing need not be performed ’blind’ as it is in
typical kernel implementation. Another advantage is that
multiple transport protocols can easily be dynamically
configured in and out of applications according to their
particular requirements. This is important in a
multimedia context where different protocols may be
appropriate for different media types.

VI. SPLIT LEVEL BUFFER MANAGEMENT
The strategy of split level buffer management is

for the kernel level manager to ‘loan’ physical, locked,
buffers to per-address space managers, but to reserve
the rights to reclaim the buffers if memory is urgently
required or to retain the buffer longer than it has agreed
to. The policy adopted in the design level is that the
application is allowed to keep buffer for at least the
normal duration of transport protocol processing time
plus rthandlers execution time. If the period has elapsed
and the application space has not returned ownership of
the buffer to the kernel, the kernel may reclaim the
buffer. The semantic of ‘reclaiming’ locked buffers is to
convert locked memory into standard swappable virtual
memory. In this way, applications do not lose their data
although they do lose guaranteed access latency to that
data as the memory region is subject to being paged
out. If the kernel does not need to reclaim buffers at the
end of an rthandler execution, the user space manager
may reuse buffers for other connections.

VII.

DECOUPLING OF CONTROL TRANSFER
AND DATA TRANSFER

In traditional systems, the transfer of control and

the transfer of data are usually tightly coupled. For
example, the execution of a UNIX system calls passes
data to the kernel and simultaneously transfers control
to the kernel.

VIII.

DIRECT CONNECTIONS

In distributed multimedia applications it is often
required to receive continuous media data from the

Architectural principles support the continuous multimedia applications
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

8

Ja
nu

ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

network and directly play it out on a device such as an
audio card or a frame buffer (which is probably

managed by kernel level code). The application may or
may not require keeping track of the transfer of
individual buffers of data for synchronization purposes.
The opposite scenario, where data from a local device is
to be put directly onto the network, is equally common.
In conventional operating system, the only way to
achieve such a data flow is to route the data through an
intermediate user process. But it involves significant per-
buffer overheads [2].

In a direct connection, data that is to be passed
directly between the network and a local device does
not pass into user space at all; it is processed entirely
within kernel space. When a direction connection is
established, the infrastructure pre-maps the buffer
associated with the connection into the output device’s
memory. Then, the data can be directly copied off the
network card on to the device without leaving kernel
space. The fragmentation/re-assembly functions of the
in-kernel transport protocol.

If the user application does not need to

synchronize with the delivery of buffers, no further
overhead is incurred. However, if it is required to
synchronize, the application can attach an rthandler to
the rtport. This is up called on each buffer transfer with
the usual rthandler semantic. The only difference in the
API between this case and the normal case is that buffer
pointer passed as an argument to the rthandler upcall
will be a null pointer as the application context will not
have the rights to directly access the kernel managed
buffer.

IX.

ASYNCHRONOUS SYSTEM CALLS

For continuous media connections

asynchronous system calls exploit the predictable
periodicity of the transfer of control and data between
application address spaces and the kernel. To issue an
asynchronous system call (e.g. an asynchronous
version of send()), user level library code:

•

Places an operation identifier and parameters in
the shared KLS/ULS memory bulletin board
area and then

•

Sets an ‘operation request’ bit, also in the
bulletin board area.

The KLS, when it runs at the next system clock

tick, notices that an operation bit is consequently
passes the user’s parameters to a kernel server thread
which carries out the system call on behalf of the ULS.
This avoids a special domain crossing for the system
call at the expense a bitmap on each clock interrupt.

X.

ASYNCHRONOUS SOFTWARE
INTERRUPTS

The implementation of software interrupts is
similar to that of asynchronous system calls and
similarly avoids a special domain crossing. The
mechanism for kernel to VP control transfer is as follows:

•

The KLS places an event identifier and
parameters in the KLS/ULS bulletin board area

•

The KLS alters the program counter field of the
target VP’s context structure points to a
standard entry point in the ULS.

Thus, when the VP is next scheduled, the VP
immediately enters its ULS, which picks up the event
identifier and parameters, and schedules a user thread
to deal with event. Asynchronous software interrupts are
also provided as a service accessible from user level
code. This service enables library code in one address
space to cheaply notify an event to another address
space on the same machine. The service also allows the
sender to name a pre-existing memory segment shared
between the sender and receiver address spaces so
that data can be optionally transferred in the same call.

XI.

USER LEVEL PIPELINES

The API for pipelines of processing stages is
very similar to the connection abstraction. But rather
than passing a pair of rtports as arguments to the
connect() primitives, we pass a list of rtports. In the case
of pipelines, the delay QOS parameter applies end-to-
end over the entire chain of rtports.

Intermediate processing stages in pipelines are
also realized in a similar way to that described above:
When data arrives at an intermediate processing stage,
the rthandler returns, it is assumed that the rthandler’s
application code has performed some appropriate
processing on the buffer whose address was passed up
to it, and the data can be passed on to the next page.

As the various stages of a pipeline form part of
the same application, it is typically the case that
pipelines are implemented in a single address space.
The data transfer mechanism in this case is as follows:
When an rthandler implementing one stage of a pipeline
returns, having operated on a buffer, the

next stage in
the pipeline is simply passed the address of the same
buffer. Meanwhile, the first stage sets of work on a
second buffer; and so on. At the end of the pipeline,
when buffers are finished with, they are returned to a
user level pool from which that can be reused by the first
pipeline stage. With this implementation, intra address
space pipelines incur only user level control transfers
between the threads dedicated to each pipeline stage,
and zero copy operations between stages. The API is
the identical regardless of whether intra-address space,
inter-address space or inter-machine connections or

Architectural principles support the continuous multimedia applications

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

9

 Ja

nu
ar
y

 2
01

2

pipelines are used. Inter-address space communication
on the same machine uses buffers that are statically
mapped into both the source and sink address spaces
for data transfer, and use asynchronous software
interrupts.

XII. PROPOSED SCENARIO

The integrated use of the principles and
techniques described above, the scenario is illustrated

in figure 1, involves the transfer of compressed video
from a frame grabber card on a source machine to a
decompress/display application on a sink machine. In
figure 1, the large ovals represent user address spaces
with library code below the horizontal line and
application code above. The rectangles represent kernel
space with the enclosed shaded regions representing
devices.The send side features a direct connection,
involves the video capture device and the network
interface, which avoids the need for data to pass into
user space. It also features the (optional) use of an
rthandler to allow the sender, which is structured as an
upcall-driven application, to monitor and synchronize
with the progress of the connection.

On the receive side, the split level buffer
management system allocates a physical buffer from
the kernel buffer pool to hold incoming network packets
associated with the connection. This buffer is statically
mapped into both kernel space and the application
address space.In the split level communication system,
when a complete network level packet has been
received, the application address space’s ULS is
notified via the conditional deadline mechanism and
initiates transport level processing.

This may involve the receipt of further network
packets to build a complete user level buffer.When a
complete user buffer has been built, and the receiving
thread has the globally earliest deadline, the ULS runs a
thread which upcalls the application’s rthandler with the
address of the buffer as a parameter. The receive side
features a user level pipeline which involves one user
thread performing decompressed and another
displaying uncompressed video in a window. The
display is achieved by means of asynchronous system
calls to display device. Context switches between the

two pipeline threads are achieved at user level costs
and the transmission of data from the decompressor to
the displayer does not involve data copying.

XIII.

CONCLUSIONS

We discussed three architectural principles
useful for the support of distributed real-time multimedia
application in operating system. Firstly we contended
that the principles of upcall-driven application
structuring leads to well structural real-time applications,
relieves applications of the burden of explicit thread
creation and buffer allocation, and leads to potential
efficiency gains because of reduced context switches.

Secondly we argued for the principles of split-
level system structuring. We suggested that it can
improve efficiency by exploiting application specific
knowledge (e.g. scheduling deadline or buffer
requirements) in a local, user level, context where
application/manager interact6ion is cheap, while relying
on a kernel level manager to ‘bias’ resources to
application address spaces of the basis of their relative
needs. Active co-operation of management information
between user and kernel level managers is key, but as
long as an asynchronous style of communication
between managers is acceptable, this can be achieved
cheaply by means of a shared memory ‘bulletin board’.

Finally we discussed the three principles
working together in

this paper. They are capable of
exploited in a range of operating system environments.
Similarly many of individual techniques can be useful in
a stand alone fashion. When it can be compared with
the distributed level, the principles which we have
discussed validated in terms of direct performance
measurements.

Architectural principles support the continuous multimedia applications
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

10

Ja
nu

ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

Application

rthandler

Application

rthandler

User level
Library

Video
Capture
Device

Network
Interfaces

Buffer
mapped from
kernel space

Kernel
Kernel
Site2Site1

Figure 1 : An illustrative Scenario

Architectural principles support the continuous multimedia applications

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

11

 Ja

nu
ar
y

 2
01

2

REFERENCES REFERENCES REFERENCIAS

1. A.P. Black, 1983, ‘An Asymmetric Stream
Communication System’, Proceedings of 9th ACM
Symposium in Operating System Principles’,
pp 4-10.

2. M. Acceta, A. Tevanian and M. Young, 1986, ‘Mach:
A new Kernel Foundatiuon for UNIX Development’,
Technical Report, Camegie Mellon University.

3. Geoff Coulson and Gordon Blair, 1995,
‘Architectural Principles and Techniques for
Distributed Multimedia Application Support in
Operating Systems’, ACM SIGOPS Operating
Systems Review, Vol.29 (4), pp17-24.

4. Geoff Coulson and Gordon Blair, 1994, ‘Micro-
kernel Support for Continuous Media in distributed
Systems’, Computer Networks and ISDN Systems,
Vol 26 (10), pp 1323-1341.

5. Geoff Coulson, Gordon Blair, P. Robin and D.
Shepherd, 1994,’Supporting Continuous Media
Applications in a Micro-Kernel Environment’,
Proceedings of the 1st International Workshop on
Architecture and Protocols for High-Speed
Networks, pp 215-234.

6. Ramesh Govindan, D.P. Anderson, 1991,
‘Scheduling and IPC mechanisms for continuous
media’, ACM SIGOPS Operating Systems Review,
Vol. 25 (5), pp 68-80.

7. C.L. Liu and J.W. Layland, 1973, ‘Scheduling
Algorithms for Multiprogramming in a Hard-Real-
Time Environment’, Journal of the ACM, Vol. 20(1),
pp 46-61.

8. C.A. Thekkath, T.D. Nguyen, 1993, ‘Implementing
network protocols at user level’, Proceedings on
Communications architectures, protocols and
applications, -73. 64pp

Architectural principles support the continuous multimedia applications
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II

V
er
si
on

 I

12

Ja
nu

ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

This page is intentionally left blank

	Architectural principles support the continuousmultimedia applications
	Author's
	I. INTRODUCTION
	II. UPCALL-DRIVEN APPLICATIONSTRUCTURING
	III. SPLIT-LEVEL SYSTEMSTRUCTURING
	IV. SPLIT LEVEL SCHEDULIN G
	V. SPLIT LEVEL COMMUNICATION
	VI. SPLIT LEVEL BUFFER MANAGEMENT
	VII. DECOUPLING OF CONTROL TRANSFERAND DATA TRANSFER
	VIII. DIRECT CONNECTIONS
	IX. ASYNCHRONOUS SYSTEM CALLS
	X. ASYNCHRONOUS SOFTWAREINTERRUPTS
	XI. USER LEVEL PIPELINES
	XII. PROPOSED SCENARIO
	XIII. CONCLUSIONS
	REFERENCES REFERENCES REFERENCIAS

