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6

Abstract7

Support vector machines have been used as a classification method in various domains8

including and not restricted to species distribution and land cover detection. Support vector9

machines offer many key advantages like its capacity to handle huge feature spaces and its10

flexibility in selecting a similarity function. In this paper the support vector machine11

classification method is applied to remote sensed data. Two different formats of remote sensed12

data is considered for the same. The first format is a comma separated value format wherein a13

classification model is developed to predict whether a specific bird species belongs to14

Darjeeling area or any other region. The second format used is raster format which contains15

image of Andhra Pradesh state in India. Support vector machine classification method is used16

herein to classify the raster image into categories. One category represents land and the other17

water wherein green color is used to represent land and light blue color is used to represent18

water. Later the classifier is evaluated using kappa statistics and accuracy parameters.19

20

Index terms— classification, data mining, support vector machine, remote sensed data.21

1 Introduction22

ata mining is the process of extracting useful information from various data repositories wherein data might be23
present in different formats in heterogeneous environments [1] [2]. Various methods like classification, association,24
clustering, regression, characterization, outlier analysis can be used to mine the necessary information. In this25
paper we shall be focusing on classification.26

Classification is the process wherein a class label is assigned to unlabeled data vectors. Clas-sification can be27
further categorized as supervised and unsupervised classification. In supervised classify-cation the class labels or28
categories into which the data sets need to be classified into is known in advance. In unsu-pervised classification29
the class label is not known in advance [3]. Unsupervised classification is also known as clustering. Supervised30
classification can be subdivided into non-parametric and parametric classification. Parametric classifier method31
is dependent on the pro-bability distribution of each class. Non parametric cla-ssifiers are used when the density32
function is not known [4].33

One of the very prominent parametric supervised classification methods is support vector machines(SVM).34
In this paper SVM are used to perform the said classification. Herein the data vectors are represented in a35

feature space. Later a hyperplane that geometrically resembles a slope line is constructed in the feature space36
which divides the space comprising of data vectors into two regions such that the data items get classified under37
two different class labels corresponding to the two differrent regions [5]. It helps in solving equally two class38
and multi class classification problem [6] [7]. The aim of the said hyper plane is to maximize its distance from39
the adjoining data points in the two regions. Moreover, SVM’s do not have an additional overhead of feature40
extraction since it is part of its own architecture. Latest research has proved that SVM classifiers provide better41
classification results when one uses spatial data sets as compared to other classification algorithms like Bayesian42
method, neural networks and k-nearest neighbors classification methods ??8][9].43
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7 B) PROPOSED METHOD

SVM have been used to classify data in various domains like land cover classification [10], species distribution44
[11], medical binary classification[9], fault diag-nosis [12], character classification [5], speech recognition [13],45
radar signal processing [14], habitat prediction etc... In this paper SVM is used to classify remote sensed data46
sets. Two formats of remote sensed data viz. raster format and comma separated value(CSV) file formats have47
been used for performing the said classification using SVM.48

Our next section describes Background Knowledge about SVM classifiers. In section 3 materials and methods49
viz. data acquired and the proposed methodology have been discussed. Performance analysis is discussed in50
Section 4. Section 5 concludes this work and later acknowledgement is given to the data source followed by51
references. The line mentioned herein is called a hyperplane and can be mathematically represented by equation52
( 1) [21]:53

2 II.54

3 Background Knowledge55

mx i + b >= +1 mx i + b <= -1(1)56
The data points can be represented by equation ( ??) [22]:f(x)= sgn(mx+ b) (2)57
where sgn() is known as a sign function, which is mathematically represented by the following equa-58

tion:sgn(x)=? 1 if x > 0 0 if x = 0 ?1 if x < 0 (3)59
There can be many hyperplanes which can divide the data space into two regions but the one that increases60

the distance amid the bordering data points in the input data space is the result to the two class problem.61
The adjoining data points close to this hype-rplane are called support vectors. This concept can be illutrated62
geometrically as in Figure ??. This maximization problem viz. maximizing the distance between the hyperplane63
and the adjoining support vectors can be represented as a Quadratic Optimization Problem as in equation( ??)64
[22][23]:h(m)= 1 2 m t m (5)65

subject to y i (mx i + b) >=1,?i The solution for this problem can be provide by a Lagrange multiplier ? i66
which is associated with every constraint in the main problem. The solution can be represented as: m=? ??i??i??i67
b=y k -m t x k for any x k such that Lagrange multiplier ? k #0 (6) The classifier can be denoted as [16]:f(x)=68
? ??i??i??i ?? + ??(7)69

In the case of non-linear SVM’s the input data space can be generalized onto a higher dimensional feature70
space as illustrated in Fig 3. If every data point in the input data space is generalized onto a higher dimensional71
feature space which can be represented as [18]:K(x i ,x j )=f(x i ) t. f(x j )(8)72

This is also called a kernel function. It is computed using an inner dot product in the feature space. Various73
kernel functions can be used to do the said mapping as mentioned in the below equations [23]: Linear Kernel74
function = x i t x j Polynomial kernel function = (1 + x i t x j ) p Gaussian radial based kernel function =75
exp(-|???? ????? | 2 2?? 2 )76

Sigmoid kernel function= tanh(? 0 x i x j +? 1 ) (9)77
One of the major advantages of SVM is that feature selection is automatically taken care by it and one need78

not separately derive features.79

4 III.80

5 Materials and Methods81

6 a) Data Acquisition82

In this paper SVM classification methodology is applied on two different data set formats. The first format of83
data sets used is a comma separated value(CSV) file which shall have all relevant attributes necessary for the said84
classification separated by comma. The data sets used in this category is taken from the birds species occurrences85
of North-east India [24]. The second format of data sets for classification is in raster format [25]. Raster image is86
a collection of pixels represented in a matrix form. Raster images can be stored in varying formats. The raster87
format used herein is TIFF format. A map of Andhra Pradesh state in India used.88

7 b) Proposed Method89

The data under consideration is first preprocessed. [26]. In the case of csv datasets comprising of information90
of birds of North-east India the attributes considered are id, family, genus, specific_epit-het, latitude, longitude,91
ver-b-atim _scientific_name, ve-rba-tim_family, verbatim_genus, verbatim_specific_ep-ithet and locality. A92
variable called churn acts as a class label which would categorize the data into two cate-goriesviz onehaving data93
sets of birds from Darjeeling area and the other having data sets of birds belonging to other north eastern parts94
in India. Before applying the clas-sification the data sets are cleaned to remove any mis-sing values. In the case95
of raster data set, a TIFF image is used. The image comprises of a map of Andhra Pradesh, a state in India.96
Initially a region of interest(ROI) is captured and later supervised SVM classification methodology is applied.97
Algorithm that explains implementation of SVM is given below [27]: Begin98

Step 1: Loop the n data items99
Step 2: Start dividing the input data set into two sets of data corresponding to two different categories100

2



Step 3: If a data item is not assigned any of the regions mentioned then add it to set of support vectors V101
Step 4: end loop102

8 End103

9 IV. erformance nalysis a) Environment Setting104

A total of 695 data set records act as test data set and are used to authenticate the classification results obtained105
for CSV data sets and in the case of TIFF raster data sets one Region of interest is extracted from the given input106
image. The proposed method has been implemented under the environment setting as shown in Classification107
accuracy can be measured using parameters of a confusion or error matrix view depending on whether the event108
is correctly classified or no event is correctly classified as shown in Table 2[9]. And the classified results for CSV109
format data sets is demonstrated in Figure 4. ??0), ( ??1), ( ??2) and ( ??3 Kappa statistics=Sensitivity +110
Specificity -1 (13) The efficiency of the proposed SVM classifier is evaluated using the said parameters. The111
confusion or error matrix view for SVM classifier while classifying the CSV data sets is given in Table 3. The112
confusion matrix or error matrix view for SVM Classifier while classifying raster TIFF data sets is given in Table113
4. Performance Measures using evaluation metrics are specified in Table 5 which are calculated using equations114
( ??0), ( ??1), ( ??2)and (13).115

10 V. Conclusion116

In this paper SVM classification method is used to build a classification model for two datasets. The first data set117
is of CSV format and the second one is a raster TIFF image. Later the classification model is validated against a118
test data set which is a subset of the input dataset. The performance of SVM is calculated using kappa statistics119
and accuracy parameters and it is established that for the given data sets SVM classifies the raster image dataset120
with better accuracy than the CSV dataset. The SVM classification methodology discussed herein can help in121
environment monitoring, land use, mineral resource identification, classification of remote sensed data into roads122
and land etc.. in the future. 1 2

Figure 1:
123
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Figure 2: Figure 1 :
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Figure 3: Figure 2 : 2 |??|
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Figure 4: Figure 3 :
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Figure 5: Figure 4 :
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Figure 6: Figure 5 :
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Figure 7:

1

Table1 : Environment Setting
Item Capacity
CPU Intel CPU G645 @2.9 GHz processor
Memory 8GB RAM
OS Windows 7 64-bit
Tools R, R Studio, Monteverdi tool
b) Result Analysis

Figure 8: Table 1 [

2

Real group Classification result
No Event Event

No Event True Negative(TN) False Positive(FP)
Event False Negative(FN) True Positive(TP)

Figure 9: Table 2 :

3

Prediction Reference Other parts Darjeeling
Other parts 571 1
Darjeeling 7 116

Figure 10: Table 3 :
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4

Prediction Reference Land Water
Land 78 0
Water 0 56

Figure 11: Table 4 :

5

datasets
Data set type Accuracy Kappa Statistics
CSV data sets 98.85 95.97
Raster TIFF data sets 100 100

Figure 12: Table 5 :
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