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all option pricing formula developed by Black-
Scholes (1973) was a landmark in the history of 
financial modelling and still remains a favoured 

model for theoretical valuation of options.  However the 
comparison of observed prices for options and the 
theoretical valuations from the Black-Scholes formula 
has given rise to a large literature. One of the co-author 
of the model, Black (1975) himself observed certain 
biases in the formula. 

 The reasons for difference in pricing are 
numerous. Though the model assumes a lognormal 
distribution of the stock prices,  Benoit Mandelbrot 
(1963) observed that the asset price returns are highly 
leptokurtic (exhibit ‗fat tails‘) as the actual returns from a 
stock show evidence of extreme movements more 
frequently than possible from a lognormal distribution.  
Few studies investigated on the nature of the underlying 
asset price process which differed from the lognormal 
Brownian motion. These models assumed that volatility 
of the stock price process is stochastic and 
investigation was directed to capture the varying nature 
of the volatility. Similarly, few studies have tried to 
explain biases of the model and attempted to adjust the 
parameters of the model to eliminate systematic biases 
correction but none seems to be complete (Robinstein, 
1985). As no alternative closed form parametric solution 
better than the B-S model was found, a number of non-
parametric approaches were tried out and Artificial 
Neural Network (ANN) based models are found as a 
promising alternative (Bennell and

 
Sutcliffe, 2003).

 

Artificial Neural Networks offer several 
advantages 
 Firstly, Artificial Neural Networks have the ability to 

recognize patterns from training data sets and 
display ability to discover relationships among 
inputs and outputs directly from the data. 

 Secondly, Black-Scholes option pricing formulas 
use nonlinear functions. The ANN models are 
equipped to handle non-linearity by suitable version 
of a non-linear activation function. 

 Thirdly, parametric models use complex functions to 
frame relationship and in many cases the out of 
sample performance is poor (Bakshi et.al., 1997). 

 Fourthly, the markets are changing rapidly and 
unless a model has capability to constantly update 
its parameters based on changing market 
scenarios, the validity of the model in the long run is 
uncertain. ANN models have some capability to 
learn continuously from the data and revise the 
knowledge in its network weights. 

The present study is based on original work of 
Black and Scholes model on which the ANN concept is 
superimposed in such a way that each input parameter 
is modulated by a multiplier. These multipliers are 
allowed to change to build a better input-output 
relationship. 

The paper organized follows. A brief literature 
survey on application of ANN in pricing stock options is 
presented in Section 2. A description of the Black and 
Scholes Option pricing formula and few issues related to 
measurement of volatility is given in section 3. An 
overview of neural network and development of an ANN 
model is presented in Section 4. The data and numerical 
analysis comparing performance of the ANN model with 
Black & Scholes model is produced in Section 5 and the 
paper is concluded in Section 6. 

 

A large number of academic studies have 
examined the relative performance of ANNs in pricing 
equity options in several countries, few of the studies are 
mentioned here. Hutchinson et al. (1994) used three 
ANN models and compared their performance with the 
Black–Scholes model in American-style call options and 
found that the ANN models gave better results in 
comparison to Black–Scholes. Similarly, Geigle and 
Aronson (1999) studied the performance of ANN models 

C 

© 2012 Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
T
ec

hn
ol
og

y 
 V

ol
um

e 
X
II
 I
ss
ue

  
IV

  
V
er
si
on

 I
 

  
  
   

  

7

  
 

  
20

12
Fe

br
ua

r y

Author : Institute of Management Technology, Nagpur

E-mail : skmitra@imtnag.ac.in



in American-style options on S&P500 futures, and 
confirmed the superiority of Black–Scholes. Malliaris and 
Salchenberger (1993) also carried out a similar study 
but found that Black–Scholes model was better for in-
the-money options, but the ANN models performed 
superior for out-of-the-money options. 

Ghaziri et al. (2000), Saito and Jun (2000) and 
many others compared the performance of ANN models 
in European-style call and concluded that the ANN 
models can give superior results compared to Black–
Scholes.  Lajbcygier et al. (1996) used three ANN 
models in pricing American-style call options on 
Australian Share Price Index futures and found that the 
ANN models were inferior to the theory-based Models in 
general but for near-the-money of short-maturity period, 
the ANN models were better. 

Similarly, Anders et al. (1998) found that ANN 
models performed better than Black–Scholes on 
European-style DAX call options. In Japanese market, 
Yao et al. (2000) used ANN models on American style 
call options on Nikkei 225 futures, and found they ANN 
models outperformed Black–Scholes.  

Saxena (2008) studied CNX Nifty Options in 
India and concluded that ANNs can be trained to learn 
the nonlinear relationship underlying the BS model and 
hence provide better estimates of fair value of options. 

Many of these papers maintain the view that 
ANN models are capable of generating better results in 
comparison to closed-form models in pricing call 
options. In the present study the original Black and 
Scholes model is taken as the benchmark and the ANN 
concept of applying multipliers to the data is 
superimposed. 

 

The original Black–Scholes (1973) formula uses 
five input parameters to price European style equity 
options. The Black-Scholes formulas for the prices of 
European Calls (C) and Puts (P) for no dividend paying 
stocks are (Hull, 2004)   

 

)(..)(. 21 dNeXdNSC rt  

)(.)(.. 12 dNSdNeXP rt    

Where 
   2
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ln / / 2s x r
d t
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In this formula 

S = current price of the security 

X = Exercise price of option 

r  =  Risk free rate of interest 

t  = Time to expiry of the option content 

 = Volatility of the underlying asset 

N(x) is the cumulative probability function for a 
standardised normal variable.  In other words, it is the 
probability that a variable with a standard normal 
distribution Ф (0,1) will be less than x. 

Among parameters described above, the 
standard deviation (σ) of the returns during the life of the 
option can not be known in advance and consequently 
an estimate is required. There is no consensus on the 
appropriate method for estimating standard deviation of 
the price series. Further, it is a common knowledge that 
‗σ‘ of the price series varies with time. As a 
consequence very old data may not be appropriate for 
estimating the value of σ.  According to Hull (2004), a 
compromise solution is to use closing daily prices of few 
recent months and converting the daily volatility to the 
annualised volatility as follows  

.annualised daily Trading days per annum   

 
The number of trading days per year excluding 

weekly offs and holidays are usually taken 250 or 252.  
The historical volatility of a security is calculated as a 
standard deviation of a stock's returns over a fixed 
number of days. Choosing the appropriate period of 
observation is tricky. Longer period of observation by 
and large improve accuracy; however, it is found that 
volatility varies with time and very old data may not be 
relevant for predicting the future. Therefore, using a past 
period that is close to the validity period of the option is 
used by many investors.  

As volatility is time varying, a time series 
approach can be used to measure and forecast σ. The 
J.P. Morgan RiskMetrics approach to estimating volatility 
uses an exponentially weighted moving average model 
(EWMA). The exponential moving average of historical 
observations allows capturing the dynamic features of 
volatility. The expected volatilities of a future period in 
the EWMA model are estimated using the following 
formula: 

 2 2 2
1 11n n nr      , where rn-1 is the 

return of the price series for the day (n-1). The return is 
obtained using natural logarithm of the price ratio from 

day n to day n-1, i.e n
n-1

n-1

pr = ln
p

 
 
 

where pn is the 

actual price on day n.  is a decay factor that 

determines the weight of past returns in comparison to 
immediate return. A further improvement of EWMA 
model is the application of ARCH-GARCH series of 
models 

An alternative method is to estimate a standard 
deviation that minimizes option pricing error in previous 
transaction and the measure is known as implied 
volatility. Many studies documented presence of 
systematic biases in implied volatility measures. 
Robinstein (1985) found that implied volatility is a 
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function of money-ness 
s
x

 
 
 

 and time to expiration (t). 

The measure often exhibits a U-shape curve which is 
known as ―volatility smile‖. 

The absence of a unanimous procedure to 
estimate volatility to be used in the B–S model is a major 
hindrance as different measures give different option 
pricing. Nevertheless an estimate of σ is required as it is 
one of the important inputs for getting option value and 
practitioners use various approximations as per 
convenience. 

 

The interest in neural networks emerged after 
the concept was introduced by McCulloch and Pitts 
(1943). Artificial neural networks (ANN) are used as 
generalizations of mathematical models of natural 
systems. The necessary processing elements of neural 
networks are termed as artificial neurons, or nodes. The 
basic structure of a neural network consists of three 
types of neuron layers: input, hidden, and output layers. 
In case of a feed-forward network, the flow of 
information is from input to output units, in a 
unidirectional manner. The data passes through the 
multiple nodes without any feedback of information. 
There are different types of neural network architectures, 
depending on the requirements of the application. In the 
study, a unidirectional feed-forward model was used. 

 

 

Fig 1:  Signal Flow  
 
 
The flow of signal in the neural network model is 

illustrated in Figure 1, where the signal flow from inputs 
x1, . . . , xn and produce a final output ‗O‘. 

Transmission of signals between neurons is 
facilitated using an activation functions which are useful 
for the input to determine the output from a neuron. This 
function tries to establish a relationship between the 
input variables and the output desired. The popular 
transfer functions are the sigmoid, the hyperbolic 

tangent, the Gaussian and their variants. The transfer 
function also helps to establish non linear relationships 
in the modeling.  

In figure 1, the input signals are modified by 
multiplying a weight to each signal and the modified 
signals are added together to determine the combined 
strength of their output using the following activation 

function. 
1

n

i i
i

O f x


 
  

 
  

 

 
Fig 2  : A Multilayer ANN  

 
A multiplayer network consists of several layers 

are presented in figure 2. The input variables are 
presented to the input layer of processing elements, 
which sends signal that propagates through the network 
layer by layer till it produce final output. The number of 
hidden neurons determines the complexities of 
information processing and influence how well the 
network is able to process the data. A large number of 
hidden neurons will ensure perfect input-output data 
matching by framing complex relationships. In such 
case the network will be capable of giving correct 
prediction from the trained dataset, but its performance 
on new data remains questionable. The network need to 
be trained in such a way that it retains the capacity to 
generalize the learning and can process new data as 
well. With too few hidden neurons, the network may not 
learn the relationships amongst training data but will fail 
to generalize its output in the out of sample data. Thus 
selection of the number of hidden neurons is an 
important decision. In this paper a simple feed-forward 
network, which is one of the common artificial network 
model, is used.  

The knowledge of the network is supposed to 
be stored in the weights that are multiplied with the 
original signal strength.  The weights are obtained by a 
process of adaptation using past data where both 
inputs and outputs are known. The adjustments of the 
weights are carried out using an iterative process. At 
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each step in the process, small changes are introduced 
to the weights to bring the final outputs close to their 
desired values. This process is known as training the 
network and the set of examples as training set.  

Initially, the weights are initialized to random 
values and for each set of training, the difference (error) 
between known output and network output is estimated. 
In the next step the weights of network are altered in 
such a manner that the sum of errors is minimised. The 
values of weights that minimises the squared error are 
the optimised weights of the trained network.  After the 
completion of training the trained network can produce 

final output from a given input data set in the first layer.
 The study aims to develop an ANN model that 

can improve difference between the theoretical option 
price and actual quoted price. 

 
a)

 
Network Inputs  

 The Black & Scholes model uses five 
parameters as inputs to estimate the theoretical option 
price. In the proposed model the same five parameters 
are used with a multiplying factor attached to each of 
the parameter.

 
 

 
Table 1:

 
Input Parameters

 
 Sl

 

Parameter

 

Description

 1

 

S

 

Spot price of the security 

 2

 

X

 

Exercise price of call option 

 3

 

r

 

Risk free rate of interest 

 4

 

t

 

Time left until option expiry (date in year fraction)

 5

 

σ

 

A measure of implied volatility (calculated as standard deviation of past 
60 days daily  return of underlying security) 

 

 In absence of a standard procedure to measure 
volatility, σ

 

was estimated by calculating standard 
deviations from past 60 day‘s returns. Although GARCH 
based methodologies can measure time varying 
volatilities in a better way, we expect the network to 
establish some kind of relationship from the training 
procedure

 

and therefore relied on a simple estimation 
based on standard deviation. The volatility estimated on 
daily basis is annualized assuming 252 trading days in a 
year (Hull, 1999).

 

 

b)

 

Network Structure

 

A three layered feed forward structure as given 

in figure-3 were chosen for the analysis. The input layer 
is used for entering five standard inputs of Black and 
Scholes model; S, X, r, t,

 

and . To enable the network 
to make auto adjustments, each input is

 

multiplied by an 
adjusting weight (w1

 

to w5). There is only one hidden 
layer and the layer contains two nodes (H1

 

and H2) to 
keep resemblance to the original B-S model. The 
network gives a single output in the final layer. The 
output is the estimated option price from the network.

 
 

Figure-3  :  Structure of Proposed ANN  
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c) Input-Output Relationships 
The study is based on the original B-S model 

but adjustment factors are used at signal transmission 
points. The five inputs of the model are multiplied by 
corresponding five adjustment factors (w1 to w5) and the 
H1 and H2 values in the hidden node are estimated as 
follows. It may be noted that no change is made in the 
original equation other than the introduction of 
adjustment weights.  

 

    21
1 3 5 4 5 4

2

.ln . . / 2 . . / . . .
.

w SH w r w w t w w t
w X

 
  

    
  

 
 2 1 5 4. . .H H w w t 

 

Finally, the value of call option as the output of 
the network is estimated using following function. 

 
( . )

6 1 7 2. . ( ) . . . ( )r tO w S N H w X e N H   

 
where w6 

and w7 
are additional adjustment 

factors, N(H1) 
and N(H2) 

are standard normal cumulative 
distribution of H1 

and H2 
values.

 
The above input-output relationship for the ANN 

model closely resembles the original B-S model except 
that each parameter is multiplied by an adjusting weight. 
When weights (w1 

to w7) are initialized to value of 1, the 
model gives output as expected from the original B-S 
model. While training the network, these weights (w1 

to 
w7) will be altered so as to minimize difference between 
the network output and quoted option price.

 

 

The purpose of the study is to develop a model 
that improves accuracy of theoretical option pricing. In 
this study option prices are calculated using both Black 
and Scholes model and the proposed ANN model and 
results are compared. 

a) Data 
The valuation using Black–Scholes model 

requires values for six input parameters: spot price, 
strike price, maturity, risk-less interest rate, dividend rate 
and volatility. The closing values of the S&P CNX Nifty 
index series were collected from the website of National 
Stock Exchange of India www.nseindia.co.in   for a three 
year period from 1st July 2008 to 30th June 2011.  

The mis-pricing in the thinly traded options are 
supposed to be higher than in case of highly traded 
options and therefore only those options where daily 
volume exceeded  more than 100 lots per day were 
short listed for the analysis.  

To facilitate avoiding redundant observations, 
the last traded option each day was considered that is a 
particular combination of strike price and time to 

maturity. The sample contains 29724 option prices and 
has been divided into 12 groups of tree months each. 
The short listed database is further split into 12 quarterly 
groups as under. 

 

From To No. of Observation 

1-Jul-08 30-Sep-08 1968 

1-Oct-08 31-Dec-08 2337 

1-Jan-09 31-Mar-09 1838 

1-Apr-09 30-Jun-09 2173 

1-Jul-09 30-Sep-09 1966 

1-Oct-09 31-Dec-09 2021 

1-Jan-10 31-Mar-10 2249 

1-Apr-10 30-Jun-10 2597 

1-Jul-10 30-Sep-10 2954 

1-Oct-10 31-Dec-10 3088 

1-Jan-11 31-Mar-11 3417 

1-Apr-11 30-Jun-11 3116 

 
b) Computing Errors Between Models 

The accuracy of an option pricing model can be 
judged by comparing the actual market prices and 
theoretical valuation as per the chosen model.The 
differences between actual and theoretical values are 
errors of the model. A model that produces lowest error 
can be considered as a better model.  There are several 
measures to compute errors, in the study, following 
estimates are used to measure errors. 

Total Error (TE) is a sum of individual errors 
calculated as follows: 

1

N

n
n

TE e


 , where N is number of observation 

Mean Error (ME)
 
is the arithmetic average of 

individual errors: 
 

1

1 N

n
n

ME e
N 

 
 

 

Total squared error (TSE)
 
computes the sum of 

the squared error values. This method of measuring 
error is commonly used statistical modelling. Compared 
to the total error value, this measure is very sensitive to 
large errors and penalises a model heavily that produce 
large error.

 
Total Squared Error (TSE) can be computed 

as follows.
 

2

1

N

n
n

TSE e



 

 

Root Mean Squared Error (RMSE) is 
conceptually similar to the widely used statistic 
‗Standard Deviation‘. 
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2

1

1 N

n
n

RMSE e
N 

   

 
Paired Samples T-Tests is carried out to 

compares the means of two error series. It computes the 
difference between the two error variables and tests 
whether the average difference of error is significantly 
different from zero. The null hypothesis is that there is no 
significant difference between the means of the two 
error series.  

c) Error Analysis 
At the beginning all adjusting weights (w1 to w7) 

were initialized with value of 1, and output from the 
model were identical to the option prices as per B-S 
model. The error analysis is given in table 2. 

In the next step a training process was imparted 
to minimise the Total Squared Error by changing 
adjusting weights (w1 to w7). The total squared error in 
Black and Scholes model for the selected sample was 
77,714,382. To carry out minimisation, an Add-in Solver 
program was used (details for using solver programme 
is available from ‗help‘ menu in Microsoft Excel). The 
Solver parameters were set such that the cell address 
containing the formula for sum of squared errors were 
minimised, subject to changing contents of the cells that 
contain adjusting weights (w1 to w7). After several 
iterations, the solver gave a solution and the weights 
were optimised. The optimised weights of the ANN were 
given in table 3. These are the combination of weights 
that minimised total squared error. 

 

When the optimal weights are found out (table 
3) the weights are used for estimation of options and the 
error analysis is given in table 4. It may be observed 
from table 4 that the total squared error has substantially 
reduced from 77,714,382 to 19,622,082 (reduction of 
error by 74.75%). After the optimisation of weights the 
ANN model was capable to estimate option prices from 
new set of input data. 

However, in table 4, the adjusting weights for 
each quarter were calculated using data for the same 
quarter. Use of these weights was again to estimate 
option prices using ANN model of the same quarter can 
give rise to in-sample bias. To eliminate this bias, 
weights calculated using input data for a particular 
quarter were used to generate option prices for the next 
quarter. For example, weights (w1 to w7) for the quarter 
of January-March were used to calculate option prices 
in the quarter of April-June and so on. Thus optimised 
weights obtained after training with input data for a 
period was used in estimation of option prices for next 
period. This procedure was repeated on a rolling basis 
for each period and errors were produced in table 5. 

 It may be seen from the table 5 that the total 
squared error for the period was 34,261,514,which was 
substantially lower than the Black and Scholes total 
squared error value of 77,714,382 (reduction of 55.91%)

 The paired sample t-tests involving errors from 
Black and Scholes model and ANN model was 
produced in Table 6 and it was found that p-value was 
<0.01 and therefore difference of errors between the 
models were highly significant.

 

 
The classical biases found in the usual option 

pricing models motivated both researchers and 
practitioners to

 
investigate alternative methods and ANN 

models were found to be a promising alternative. In the 
study a new model was conceived based on the original 
Black and Scholes model and the ANN concept of 
attaching multiplier weights to the data were introduced. 
It was found that model using the ANN approach has 
given superior results compared to original Black–
Scholes model in pricing S&P CNX Nifty index call 
options. 

 
The study initially estimated the differences 

between the actual call prices in the market, and
 

theoretically estimated Black-Scholes call prices and 
used a training procedure that attempted minimizing the 
differences my altering values of the adjusting weights. 

 
The differences in prices could also be the 

result of violations of some of the assumptions made in 
the derivation of the Black-Scholes model. For example, 
the original model assumed that the volatility and risk 
free interest rate were constant over the life of the option 
which is not true. The ANN model has a capacity to 
automatic adjustment of the changes in these variables 
by changing the adjusting weights.

 
Though the model is tested only on Call options 

of the index, it is expected that same can also be 
extended to other type of options. It is to be noted that 
the present study did

 
not alter any assumption of the 

original model; it merely superimposed adjustment 
weights at each input and intermediate variable. These 
adjustment weights are allowed to vary so that the 
valuation errors are minimized. It was observed that use 
of the concept could reduce the total squared error by 
55.91%. 

 
Based on the observation, it may be 

commented that Artificial Neural Networks used in the 
study had some capability to develop relationship from 
exposure of past data and these relationships were 
stored

 
in adjusting weights.

 
Further, markets were constantly changing and 

hence model needed constant updating. The ANN 
model used in the study was therefore trained and 
updated on quarterly intervals by altering the weights 
associated with it and produced output that were better 
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than that of the standard Black &  Scholes model.  It can 



therefore be concluded that the theoretical option 
pricing could be improved from the ANN approaches 

since they allow incorporating for factors that are difficult 
to include in the classical approaches. 

 Table 2 :
 

Error Analysis for Black & Scholes Model
  

       
From

 

To

 

No. of 
Observation

 

Total 
Error

 

Mean 
Error

 

Total Squared 
Error

 

RMSE

 1-Jul-08

 

30-Sep-08

      1-Oct-08

 

31-Dec-08

 

2337

 

-49495

 

-21

 

13097865

 

5605

 1-Jan-09

 

31-Mar-09

 

1838

 

-25819

 

-14

 

3170830

 

1725

 1-Apr-09

 

30-Jun-09

 

2173

 

-73642

 

-34

 

19644989

 

9040

 1-Jul-09

 

30-Sep-09

 

1966

 

-16043

 

-8

 

2849732

 

1450

 1-Oct-09

 

31-Dec-09

 

2021

 

7087

 

4

 

1531320

 

758

 1-Jan-10

 

31-Mar-10

 

2249

 

-6882

 

-3

 

3001634

 

1335

 1-Apr-10

 

30-Jun-10

 

2597

 

-39830

 

-15

 

5571740

 

2145

 1-Jul-10

 

30-Sep-10

 

2954

 

9034

 

3

 

1715159

 

581

 1-Oct-10

 

31-Dec-10

 

3088

 

6701

 

2

 

2217571

 

718

 1-Jan-11

 

31-Mar-11

 

3417

 

-28735

 

-8

 

3054544

 

894

 1-Apr-11

 

30-Jun-11

 

3116

 

-25311

 

-8

 

1449770

 

465

 1-Oct-08

 

30-Jun-11

 

27756

 

-311699

 

-11

 

77714382

 

2615

 

 
Table 3 :

 

Multipliers obtained after training of ANN

   

         
From

 

To

 

w1

 

w2

 

w3

 

w4

 

w5

 

w6

 

w7

 
1-Jul-08

 

30-Sep-08

 

1.0160

 

1.0407

 

0.8535

 

0.9366

 

0.7720

 

0.6808

 

0.6371

 

1-Oct-08

 

31-Dec-08

 

0.7434

 

0.7573

 

0.8565

 

0.8709

 

0.7446

 

0.7560

 

0.6969

 

1-Jan-09

 

31-Mar-09

 

1.0091

 

0.9925

 

0.7589

 

0.7165

 

0.9184

 

0.9281

 

0.9144

 

1-Apr-09

 

30-Jun-09

 

1.0051

 

0.9966

 

1.5000

 

1.1488

 

0.5172

 

0.9431

 

0.9246

 

1-Jul-09

 

30-Sep-09

 

1.0040

 

0.9921

 

0.8108

 

0.9209

 

0.9009

 

0.9468

 

0.9379

 

1-Oct-09

 

31-Dec-09

 

1.0003

 

0.9953

 

0.9997

 

0.9829

 

1.0200

 

0.9650

 

0.9604

 

1-Jan-10

 

31-Mar-10

 

1.0008

 

0.9928

 

0.7617

 

1.0110

 

0.9798

 

0.9182

 

0.9115

 

1-Apr-10

 

30-Jun-10

 

1.0145

 

1.0028

 

0.6606

 

0.9664

 

0.7785

 

0.9277

 

0.9208

 

1-Jul-10

 

30-Sep-10

 

1.0096

 

1.0145

 

1.1975

 

1.0393

 

1.0207

 

0.9591

 

0.9555

 

1-Oct-10

 

31-Dec-10

 

1.0033

 

0.9981

 

1.0065

 

0.9795

 

0.9460

 

0.9760

 

0.9710

 

1-Jan-11

 

31-Mar-11

 

1.0061

 

0.9991

 

0.9270

 

0.9438

 

0.9092

 

0.9813

 

0.9786

 

1-Apr-11

 

30-Jun-11

 

1.0017

 

0.9994

 

0.9531

 

0.9831

 

0.9546

 

0.9828

 

0.9832
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From To

No. of 
Observation Total Error

Mean 
Error

Total Squared 
Error RMSE

1-Jul-08 30-Sep-08

1-Oct-08 31-Dec-08 2337 10218 4 2175413 931

1-Jan-09 31-Mar-09 1838 2715 1 722393 393

1-Apr-09 30-Jun-09 2173 14674 7 3097209 1425

1-Jul-09 30-Sep-09 1966 5590 3 1277338 650

1-Oct-09 31-Dec-09 2021 3227 2 1224967 606

1-Jan-10 31-Mar-10 2249 3860 2 1519347 676

1-Apr-10 30-Jun-10 2597 8681 3 1624959 626

1-Jul-10 30-Sep-10 2954 2003 1 1369816 464

1-Oct-10 31-Dec-10 3088 2117 1 1869777 605

1-Jan-11 31-Mar-11 3417 4649 1 2260257 661

1-Apr-11 30-Jun-11 3116 2932 1 986250 317

1-Oct-08 30-Jun-11 27756 68764 2 19622083 660

Table 4 : Error Analysis after optimisation of weights



   

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

 
 

 

Table 5 :

 

Error Analysis for ANN Model (without in-sample bias)

 

       

From

 

To

 

No. of 
Observation

 

Total Error

 

Mean 
Error

 

Total Squared 
Error

 

RMSE

 

1-Jul-08

 

30-Sep-08

      

1-Oct-08

 

31-Dec-08

 

2337

 

44298

 

19

 

3687783

 

1578

 

1-Jan-09

 

31-Mar-09

 

1838

 

-13704

 

-7

 

2372613

 

1291

 

1-Apr-09

 

30-Jun-09

 

2173

 

-7361

 

-3

 

6313491

 

2905

 

1-Jul-09

 

30-Sep-09

 

1966

 

18629

 

9

 

4070658

 

2071

 

1-Oct-09

 

31-Dec-09

 

2021

 

13866

 

7

 

1622056

 

803

 

1-Jan-10

 

31-Mar-10

 

2249

 

-12846

 

-6

 

2219662

 

987

 

1-Apr-10

 

30-Jun-10

 

2597

 

-28040

 

-11

 

3526846

 

1358

 

1-Jul-10

 

30-Sep-10

 

2954

 

40681

 

14

 

2794633

 

946

 

1-Oct-10

 

31-Dec-10

 

3088

 

2628

 

1

 

2444599

 

792

 

1-Jan-11

 

31-Mar-11

 

3417

 

-23921

 

-7

 

2623744

 

768

 

1-Apr-11

 

30-Jun-11

 

3116

 

-918

 

0

 

1091071

 

350

 

1-Oct-08

 

30-Jun-11

 

27756

 

41410

 

1

 

34261514

 

1153

 

 

Table 6 :

 

Paired Sample Test Results

    

      

Paired Samples Test

    

 

Paired Differences

 

t

 

p-value

 

(2-tailed)

 

Mean

 

Std. Deviation

 

Std. Error 
Mean

 

B-S & ANN Model 
Errors

 

-12.617

 

40.639

 

.236

 

-
53.527

 

.000
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