
Modified TCP for Time Critical Applications1

Abhay Kumar 112

1 1 JB Institue of Engineering and Technology, Hyderabad, 2. Chaitanya Bharthi3

Institute of Technology, Hyderabad, 3. Jawaharlal Nehru Technological Uni4

Received: 10 December 2013 Accepted: 1 January 2014 Published: 15 January 20145

6

Abstract7

A network is defined to be a congested networkif the load on the network exceeds the capacity8

of the network. The traditional congestion control technique of slow-start and AIMD was9

adopted when the aim was more on the stability of the Internet. But as more and more time10

critical applications such as multimedia applications are being used, we need alternate11

technique that reduces the drastic fluctuations of window size present in the existing12

technique. Thispaper proposes a techniquefor fast delivery of packet for a time critical13

application. It reduces the packet overhead and time compared to existing slow-start and14

AIMD technique. The proposed technique uses information or intelligence from the15

unexpected packet received. It is a fine modification of the existing slow-start and AIMD16

technique by adapting them for time critical applications. We propose modification at both17

thesender and the receiver hosts without modifying anything in the intermediate hosts of the18

network. Extensivesimulation show that proposed technique reduces congestion in the network19

by reducing both packet overhead and time compared to the traditional slow-start and AIMD20

technique and delivers the packets in timely manner than the existing techniques.21

22

Index terms— network protocols, TCP, congestion control, slow-start, aimd.23

1 Introduction24

he Internet is a global network of interconnected computers which allows individuals and organizations around25
the world to communicate and share information with each other. This demand has natural fluctuation; therefore,26
the Internet performance is largely governed by it, leading to possible congestion which occurs when resource27
demands exceed the capacity of the network. Due to the explosive growth of the Internet and increasing demand28
for multimedia applications like voice over IP, real-time video streaming, IPTV and financial transactions, the29
issue of congestion has received tremendous attention from academia and industry. Transmission of real-time30
multimedia applications typically has large bandwidth, small delay and low-loss requirements. However, the31
current Internet does not guarantee any quality of service (QoS) as it is based on best-effort service model of IP32
[1]. A network is said to be congested from the perspective of a user if the service quality noticed by the user33
decreases because of an increase in network load. The goal of congestion control mechanisms is simply to use34
the network as efficiently as possible, that is, attain the highest possible throughput while maintaining a low loss35
ratio and small delay. Congestion must be avoided because it leads to queue growth and queue growth leads to36
delay and loss [2 As the network grew, it was clear that unrestricted data transfer by many users over a shared37
resource, i.e., the Internet, could be bad for the end users; excess load on the links leads to packet loss and38
decreases the effective throughput. This kind of loss was experienced at a significant level in the ’80s and was39
termed congestion collapse [5]. Thus, there was a need for a protocol to control the congestion in the network,40
i.e., control the overloading of the network resources. It led to the development of a congestion control algorithm41
for the Internet by ??an Jacobson [5]. This congestion control algorithm was implemented within the protocol42
used by the end hosts for data transfer called the Transmission Control Protocol (TCP).43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

3 SYSTEM MODEL

There are several different flavors of TCP congestion control, each of which operates somewhat differently.44
But most of the versions of TCP are windowbased protocols, wherein the idea is that each user maintains a45
number called a window size, which is the number of unacknowledged packets that are allowed to be sent into46
the network. Any packet from the new window can be sent only when an acknowledgment for the last packet47
in the previous sent window is received by the sender. TCP adapts the window size in response to congestion48
information. The window size is increased if the sender determines that there is excess capacity present in the49
route and decreases if the sender determines that the current number of in-flight packets exceeds the capacity of50
the route. The exact means of determining whether to increase or decrease the window size is what determines51
the difference between the congestion control mechanisms of different TCP flavors. The most commonly used52
TCP flavors used for congestion control in the Internet today are Reno and New Reno [12]. Both of them are53
updates of the TCP-Tahoe, which was introduced in 1988 [5]. Although, they vary significantly in many regards,54
the basic approach to congestion control is similar. The idea is to use successful reception of packets as an55
indication of available capacity and dropped packets as an indication of congestion. In most cases, eachtime56
the destination receives a packet, it sends an acknowledgement (also called ACK) asking for the next packet in57
sequence to be transmitted. When an acknowledgment for a windowis received, the protocol increases its window58
size. However, on reception of three duplicate acknowledgments or dupacks (i.e., four successive(D D D D D D59
D D)60

Year 2014 identical acknowledgments) by the sender is taken by it as an indication that packet has been lost61
due to congestion. In case the source does not receive any acknowledgement for a finite time (RTO [13]), it62
assumes that all unacknowledged packets have been lost. In both the cases the source aggressively proceeds to63
cut down the window size and retransmit the lost packets.64

TCP Vegas improves upon TCP Reno through three main techniques. The first is a new retransmission65
mechanism where timeout is checked on receiving the first duplicate acknowledgment, rather than waiting for66
the third duplicate acknowledgment, and results in a more timely detection of loss. The second technique is67
a more prudent way to grow the window size during the initial use of slow-start when a connection starts up,68
and it results in fewer losses. The third technique is a new congestion avoidance mechanism that corrects the69
oscillatory behavior of Reno. The idea is to have a source estimate the number of its own packets buffered in70
the path and try to keep this number between ? (typically 1) and ? (typically 3) by adjusting its window size.71
The window size is increased or decreased linearly in the next round-trip time according to whether the current72
estimate is less than ? or greater than ?. Otherwise the window size is unchanged. The rationale behind this is73
to maintain a small number of packets in the pipe to take advantage of extra capacity when it becomes available.74
A source periodically measures the round-trip queuing delay and sets its rate to be proportional to the ratio of its75
round-trip propagation delay to queuing delay, the proportionality constant being between ? and ?. Hence, the76
more congested its path, the higher the queuing delay and the lower the rate. The Vegas source obtains queuing77
delay by monitoring its round-trip time (the time between sending a packet and receiving its acknowledgment)78
and subtracting from it the round-trip propagation delay [7].79

In today’s Internet, real-time applications such as VoIP, videoconferencing and on-line gaming mostly use RTP80
over UDP or UDP alone to transport data. Because these protocols are unresponsive to congestion events, the81
growing popularity of applications that use them endangers the stability of the Internet. So, to make it possible82
that real-time applications are widely adopted, common congestion control mechanisms suitable for real time83
multimedia are expected to be deployed ??3] [4].84

The existing techniques does not use any information or intelligence from the unexpected packet received,85
unexpected packets are simply discarded. The proposed techniques tries to retrieve information based on the86
unexpected packet received and perform the congestion control accordingly.87

The remaining paper is organized as follows: Section II explains the system or network model used in this88
paper. Section III describes our proposed Unexpected Packet based Congestion Control (UPCC) Technique.89
Section IV presents the simulation results that demonstrate our proposed UPCC technique reduces congestion90
in the network compared to traditional slow-start and AIMD technique. Finally Section V concludes the paper.91

2 II.92

3 System Model93

This paper considers a realistic computer network consisting of several sources and destinations connected via94
multiple routers and links. The source (sender) communicates to the destination (receiver) in form of packets.95
The series of routers and links that a packet follows from the source to destination is called a route. A pair96
of sender and receiver may be connected via multiple routes. This network is represented in the Figure 1. For97
simplicity of the explanation, we consider only a pair of sender (S) and receiver (R) connected via multiple routes,98
as shown in Figure 2. The sender and the receiver may be running multiple different applications. However, the99
packets of the application are transmitted using the first come first serve policy. The connection is established100
using three-way handshake as in case of existing TCP. However, this paper proposes few modifications in this101
phase also to make the subsequent transmissions congestion aware. Year 2014102

2

4 E103

TCP operates in two distinct phases. When file transfer begins, the window size is 1, but the source rapidly104
increases its transmission window size so as to reach the available capacity quickly. Let us denote the window105
size by W. The algorithm increases the window size by 1 each time an acknowledgement for a packet indicating106
success is received. This is called the slowstart phase. Since one would receive acknowledgements corresponding107
to one window’s worth of packets in an RTT [13], and we increase the window size by one for each successful108
packet transmission, this also means that (if all transmissions are successful) the window would double in each109
RTT, so wehave an exponential increase in rate as time proceeds. Slow-start refers to the fact that the window110
size is still small in this phase, but the rate at which the window is increased is quite rapid. When the window size111
either hits a threshold, called the slow-start threshold (ssthresh) or the transmission suffers a loss (immediately112
leading to a halving of window size), the algorithm shifts to a more conservative approach called the congestion113
avoidance phase. When in the congestion-avoidance phase, the algorithm increases the window size by 1 every114
time feedback of a successful packet transmission in the corresponding window is received. When a packet loss is115
detected by the receipt of three dupacks, the slow-start threshold (ssthresh) is set to half of the current window i.116
e TCP Reno cuts its window size by half (W ? W/2) and algorithm enters additive increase phase where it start117
sending segments from current window onwards. Thus, in each RTT, the window increases by one packet i.e., a118
linear increase in rate. Protocols of this sort where increment is by a constant amount, but the decrement is by a119
multiplicative factor are called additive increase multiplicative decrease (AIMD) protocols. When packet loss is120
detected by a timeout, the slow-start threshold (ssthresh) is set to half of the current window and the algorithm121
enters the slow-start phase i.e., it start sending from 1 packet onwards. Let us call the congestion window at122
time t as W (t). This means that the number of packets in-flight is W (t). The time taken by each of these123
packets to reach the destination, and for the corresponding acknowledgement to be received is RTT. The RTT is124
a combination of propagation delay and queuing delay. A window-based congestion control scheme defines one125
control rule for window increase, and another rule forwindow decrease. AIMD uses the following control rule126
[19]:Increase:?? ??+1 ? ?? ?? + ??, ?? > 0 Decrease:?? ?? ? ?? ?? ? ???? ?? , 0 < ?? > 1127

Where ? and ? refer to the additive increase constant and multiplicative decrease constant ? respectively.128
The standard TCPuses the value of these constants ? and ? as 1 and 0.5 respectively.129

This subsection provides the definition of several terms and the notations that will beused throughout the130
remainder of this paper.131

? SYN: To establish a connection, TCP uses a threeway handshake. Synchronize (SYN) [9] packet is the first132
control packet sent for the three-way handshake by the sender wishing to establish the TCP connection.133

? ACK: An acknowledgement (ACK) [14] is a control packet used between communicating processes or134
computers to signify receipt of receiving a data packet, and it is a part of a communication protocol. For135
example, ACK packets are used in the Transmission Control Protocol (TCP) to acknowledge the receipt of SYN136
packets while establishing a connection in three-way handshake, and acknowledge the receipt of data packets137
while a connection is in data transfer phase.138

? SS-AIMD: In the Slow-Start (SS) [5] [8] and Additive Increase Multiplicative Decrease (AIMD) [5] [14]139
algorithm, when a TCP connection first starts, the slow-start phase initializes a congestion window to one packet140
and transmits. After receiving acknowledgement from the receiver, the window increases by one packet for each141
acknowledgement returned. After successful transmission of these two packets and acknowledgements received,142
the window is increased to four packets and so on, doubling from there up to a threshold known as slow-start143
threshold (ssthresh). After slow-start threshold, the algorithm enters into additive increase multiplicative decrease144
(AIMD) phase where window increases by one packet for successful transmission of all the packets in the window145
i.e., additive increase. In this phase, the transmission rate slows down to avoid congestion. But whenever a146
packet is lost, the sender immediately sets its transmission window to one half of the current window size i.e.,147
multiplicative decrease.148

? ssthresh: Slow-start threshold (ssthresh) [2] is a point where slow-start phase ends and additive increase149
multiplicative decrease (AIMD) phase starts.150

? dupacks: When receiver receives a TCP packet with a sequence number higher than the expected one (out151
of turn packet). The receiver sends an immediate ACK with the Acknowledgement field set to the Sequence152
number the receiver was expecting. This ACK is a duplicate of an ACK (dupacks) [2] which was sent previously.153
This is done to update the sender with regards to the missing TCP packets.154

? rwnd: Receiver advertised window (rwnd) [10] or receiver queue capacity is the most recent advertised155
window that contains the number of packets a receiver can process. This is one of the ? cwnd: Congestion156
window (cwnd) [12] is a TCP state variable maintained at the sender that limits the amount of data a TCP157
can transmit without facing congestion through the network. At any given time, a TCP transmit minimum of158
congestion window and receiver advertised window.159

? TCP: The Transmission Control Protocol (TCP) ??14] is used as a highlyreliable host-to-host protocol160
between hosts in packet-switched computercommunication networks, and in interconnected systems of such161
networks.TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a layered hierarchy of162
transport layer protocolswhich support multi-network applications. The TCP provides for reliable interprocess163
communicationbetween pairs of processes in host computers attached to distinct but interconnected computer164
communication networks.165

3

5 AT SENDER SIDE:

? UDP: The User Datagram Protocol (UDP) [15] is defined as a datagram mode of packet-switched computer166
communication in the environment of an interconnected set of computer networks. This protocol assumes that the167
Internet Protocol (IP) ??16] is used as the underlying protocol. User Datagram Protocol is unreliable connection-168
less protocol used at transport layer ? IP: The Internet Protocol (IP) [17] is designed for use in interconnected169
systems ofpacket-switched computer communication networks. The internet protocol provides fortransmitting170
blocks of data called datagram from sources to destinations. The internet protocol also provides forfragmentation171
and reassembly of long datagram, if required, fortransmission through ”small packet” networks. Internet Protocol172
is unreliable connection-less protocol used at network layer ? RTP: The real-time transport protocol (RTP) [18]173
provides end-to-end network transport functions suitable forapplications transmitting real-time information, like174
audio, video ordata, over multicast or unicast network services. RTP does not provide resource reservation175
and also does not guarantee quality-of-service for real-time services. This transport protocol is also augmented176
by another real-time control protocol (RTCP) to allow monitoring of the data delivery in amanner scalable to177
large multicast networks, and to provide minimalcontrol and identification functionality. RTP and RTCP are178
designedto be independent of the underlying transport and network layers.179

? VoIP: Voice over Internet Protocol (VoIP) [3] is a mechanism that allows telephone calls to be made over180
computer networks like the Internet. VoIP converts analog voice signals into digital data packets and supports181
real-time, two-way transmission of conversations using Internet Protocol.182

? IPTV: Internet Protocol television (IPTV) [3] is the process of transmitting and broadcasting television183
programs using the Internet protocol suite over a packet-switched network such as the Internet, instead of being184
delivered through traditional terrestrial, satellite signal and cable television formats.185

? RTO: The retransmission timeout (RTO) [13] is aretransmission timer used by the Transmission Control186
Protocol to ensure data delivery in the absence of anyfeedback from the remote data receiver. The duration of187
this timeris referred to as RTO. The retransmission timeout timer is used for retransmissions of lost or delayed188
packet.189

? RTT (?): Round trip time (RTT) [13] is the length of time it takes for a packet to be sent and the190
length of time it takes for an acknowledgment of that packet to be received The proposed technique is a fine191
modification of the existing slow-start and AIMD technique by adapting it and making congestion aware. We192
propose modification at both the sender and receiver hosts without modifying anything in the intermediate hosts193
of the network. The proposed modification can be described in the form of a dialogue between sender and receiver194
from initiation to the termination of a connection.195

5 At sender side:196

Whenever a sender host wants to communicate it will send a SYN (i) packet to the receiver host expressing its197
desire to communicate as in existing technique [8] [9]. On sending the SYN(i) packet the sender will start a timer198
based on RTT within which it should ideally receive an ACK (i+1) packet from the receiver. This can be seen in199
Figure 3. In case, he does not receive an ACK (i+1) packet, he assumes that there is congestion in the network200
and therefore it retransmit SYN (i) packet with doubled RTT. This information about congestion is stored in a201
separate variable ’C’ that will be used in data transfer stage, i.e., it set C=1. This communication can be seen in202
Figure 4. At receiver side: On receiving a SYN(i) packet it will send an ACK(i+1) packet containing its available203
queue capacity ’rwnd’ together with its own SYN(j) and set C=0 to inform its readiness for communication204
and no congestion perceived so far. To complete the three-way handshake of TCP connection it starts its timer205
waiting for an ACK (j+1) from sender for his SYN (j) as shown in Figure 5. However, if it receives unexpected206
duplicate SYN (i) message or no ACK (j+1) within its RTT, it indicates that its ACK (i+1) or ACK (j+1)207
was lost and hence congestion may be present. It responds to this new SYN (i) received or RTT time out by208
retransmitting with a packet containing SYN(j), ACK(i+1), and rwnd. This information about congestion is209
stored in a separate variable ’C’ that will be used in data transfer stage, i.e., it set C=1. This communication210
can be seen in Figures 6 and 7. proposed technique presumes network to be congestion free. Thus, it advocates211
an aggressive start wherein the window size is set to be equalto the receiver queue capacity ’rwnd’. On the other212
hand, a congestion may be perceived when C=1 at either the sender or receiver side. In such case we follow the213
same existing Figure ?? : Three-way handshake when ACK from sender is lost. slow-start and AIMD technique214
[5] [8] for selecting the window size. After the selection of window size is made, the data transfer phase is initiated215
by the sender and the dialogue continues as follows:216

Algorithm for window selection start If C=0 Window Size = rwnd // we apply aggressive start i.e., it does not217
depend on cwnd as per standard TCP [5] If C=1 Window Size = min (cwnd, rwnd) // we apply the standard218
TCP rule i.e., slow-start with AIMD [8] stop At sender side:219

The sender will start sending the packets up to the window size (W s , W end) but it doesn’t expects any220
ACK till it completes sending the entire window. In other words, it expects one ACK (w end) per window. In221
ideal condition it will receive the ACK (w end) and assumes no congestion C=0 and will adjusts the window as222
per the policy defined above, in the algorithm for window selection.223

4

6 At receiver side:224

On receiving the ACK (j+1) with the window size it will set its window and will wait to receive the data packets.225
When requisite packets arrive it acknowledges them by sending ACK (w end) for the same. However, at any226
point of time, if it feels overloaded or underloaded, it will send its updated queue capacity ’rwnd’ to the sender227
piggybacking with ACK(k) where k-1 is the last packet accepted from the sender.228

7 At sender side:229

If it receives an unexpected ACK (k) (as it expects only ACK (w end) for any window) then it will simply230
slides the window such that it starts with the first unacknowledged packet, i.e., packet with sequence number k.231
Further, it adjusts the window according to the new ’rwnd’ suggested by the receiver. Thus, on receiving one232
unexpected ACK (k) the sender simply slides and adjust the window size and again expects one ACK (w end233
) within the RTT of the new window. This communication can be seen in Figure 8 where ’k = n+3’ and new234
’rwnd = 12’. At receiver side:235

The above dialogue presumes that no congestion exists and hence, no packet loss occurs. However, if the236
receiver finds an out of turn packet it indicates that the intermediate packet/s could be lost. In such case it will237
send an ACK (k) with current ’rwnd’ for the last in order packet i.e k-1 received. It will also slide its window but238
it does not expect a retransmission of the intermediate packet/s as they may be delayed. However, if it further239
receives second out of the turn packet it presumes that intermediate packet/s is lost. It sends a duplicate ACK (k)240
with current ’rwnd’ and starts a timer based on RTT within which it should receive the lost packet. In case it does241
not, it will resend an ACK (k). This communication can be seen in Figure 9. On receiving the first unexpected242
ACK (k), the sender simply slides the window as was discussed in Figure 8. But if it receive a duplicate ACK (k),243
i.e., two ACK (k) it indicates that mild congestion is present in the network. This assumption of mild congestion244
is based on the understanding between sender and receiver that two duplicate acknowledgements will be send245
by the receiver only when the receiver receives two out of turn packets. Therefore, it must retransmit only that246
missing k th packet and continue with sending the packets from first non-transmitted packets in the current247
window and expect the ACK (w end) for the current entire window. This communication can be seen in Figure248
9.249

At receiver side:250
On receiving the missing packet, it will place it in order and continue receiving till the end of window. If all the251

packets arrive, the receiver will send the ACK (wend). However, if it misses another packet in the same window,252
it indicates that the congestion is increasing and it will send the duplicate ACK (j) with ’rwnd’=rwnd/2 as shown253
in Figure 10. If sender receives another pair of unexpected ACK (j) in its current window, it indicates that the254
second packet in the same window has been lost implying that window size is too big. In such scenario the sender255
will slide the window to the first unacknowledged packet and retransmit the missing packet. It will also reduce256
its transmission window as indicated by the receiver to half. This communication can be seen in Figure 10.After257
transmission of the entire window the sender waits for RTT time to receive the acknowledgement ACK (wend).258
If it receives ACK (wend) within the stipulated time then he assumes that the network is congestion free and259
continues with the next window. However, if ACK wend) is not received within the RTT the sender presumes260
high congestion in the network. It retransmits the first packet in the window as shown in Figure 11, and starts261
the timer with RTT time as perexisting slow-start and AIMD algorithm [5] At receiver side: If retransmission262
of a packet which is not asked by the receiver i.e., unexpected packet is received. The receiver will transmits263
the ACK (k) where k-1 is the last in order packet received. As demonstrated in the Figure 11, when the sender264
retransmits the first packet of the last unacknowledged window i.e., Ws=n+9 when it does not receive ACK265
(n+15) i.e., ACK (W end) within its RTT, the Figure 11 : Data transfer phase when ACK(W end) for complete266
window is lost receiver will respond by retransmitting the ACK (n+15) i.e., ACK (W end) indicating the receipt267
of the complete window n+9 to n+14. By doing this the receiver avoids the retransmission of the remaining268
packets in the last unacknowledged window i.e., n+10 to n+14. For large window this is substantial reduction269
in retransmission improving the throughput of the network and reducing congestion.270

8 At sender side271

It may receive a unexpected delayed ACK (Wend) in response to Ws retransmitted by it for the previous window.272
As shown in Figure 11, it receives ACK (n+15) i.e., ACK (W end) in response to its retransmission of packet273
W s =n+9. Theexisting techniques [8] will discard this ACK (W end). However, in the proposed technique it is274
not simply discarded but is used to indicate mild congestion and the previous window packets have been received275
without any problem. Thus, sender should stop retransmission and recover from slow-start phase by sliding the276
window up to the first unacknowledged packet and continue with the original window size.277

Both sender and receiver utilize the congestion information received for one connection over all other278
connections made by them leading to recovery from the congestion by the network.279

The proposed Unexpected Packet based Congestion Control (UPCC) technique is illustrated with the following280
motivational example which will illustrate the limitations of existing techniques.281

Let an application have 1024 packets and as considered by the authors in [10] [11], the slow-start threshold282
(ssthresh) as 40 packets and receiver advertised window (rwnd) as 50 packets, we also consider the same. We283

5

10 D) PROPOSED UPCC TECHNIQUE WITH SINGLE PACKET LOSS

estimate the packet overhead gain and the time gain for the existing slow-start AIMD technique and the proposed284
UPCC techniques as follows.285

a) Existing SS-AIMD [8] technique in congestion free network286
The existing slow-start technique [5] will initially set the window as one packet. When its corresponding ACK287

arrives, the source sets the corresponding window to two packets. It then transmits two packets. On receiving the288
two corresponding ACK, it sets the window size to four and so on. Therefore, the slow start technique increases289
the window size from 1 exponentially up to ssthreshold of 40 packets, forming a geometric progression of 1, 2, 4,290
8, 16, and 32. From ssthreshold to rwnd, it will perform additive increase as arithmetic progression of 40, 41, 42,291
43, 44, 45, 46, 47, 48, 49 and 50. Beyond rwnd, the current size of the window cannot increase because it has to292
be minimum of cwnd and rwnd, thus it remains constant at rwnd. The existing technique during the slow start293
phase will expect an acknowledgement per packet, while in the subsequent phase only one ACK per window will294
be received. Hence, apart from the 1024 data packet additionally 84 ACK packets will be required.295

However, to give the existing technique a fair chance we assume that only one ACK per window is required.296
Mathematically, the minimum number of ACKs required to transmit the application of 1024 packets in congestion297
free network is?? ?? = ?? ???? + ?? ???? + ? ???????????? ???? ?????????????? ???? ????298
???????????????????? ?(?? ???? +?? ????) ???????? ? Where ?? ???? =??????? 2 ??????????????? ??299
???? = (rwnd-ssthresh)+1 ?? ???? = (???????? ?????????????? ? +1)(????????????? ? +????????) 2300

?? ???? =2 ??????? 2 ????????????? ? ? -1 Thus, the variation in window size will be as 1, ??, 4, 8, 16, 32,40,301
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,50, 50, 50, 50, 50, 50, 50, 50, 50and 16. In other words, additional X_E=27302
number of acknowledgements must be sent by the receiver to acknowledge the correct The time required by the303
slow-start technique to transmit initial packets in the windows of 1, 2, 4, 8, 16, and 32 will be ? + (?+?) +304
(?+3?) + (?+7?) + (?+15?) + (?+31?) where ? is RTT and ? is the time to transmit consecutive packet305
in a window. Similarly, the time required for transmitting packets in the remaining windows can be estimated.306
Therefore, the total time required by the slow-start and AIMD technique will be T E = 27? + 997?.307

In the following subsection we discuss packet overhead gain and time gain for the proposed Unexpected Packet308
based Congestion Control technique in congestion free network.309

9 b) Proposed UPCC technique in congestion free network310

In congestion free network, the proposed UPCC technique advocates the use of rwnd (receiver advertised window)311
as a window size for the transmission. Therefore, the number of ACKs required for transmitting the application312
of 1024 packets will be?? ?? = ? ???????????? ???? ?????????????? ???? ???? ???????????????????? ????????313
?314

Hence, X P =21, implying 21 acknowledgements are required as compared to 27 acknowledgements in the315
existing technique. Thus, approximately 22% reduction in the number of acknowledgements is achieved through316
proposed UPCC technique. Further, the time required to transmit an application of 1024 packets will be ??317
?? = (?+49?) × 20 + (? + 23?)= 21? + 1003?. Thus, the proposed UPCC technique reduces the time by318
approximately 12% leading to lesser chance of congestion in the network.319

In the following subsection we discuss packet overhead gain and time gainin congested network where packet320
loss may occur while transmitting this application. c) Existing SS-AIMD [8] technique with single packet loss321
Consider that 240 th packet is lost while transmitting 11 th window where 44 packets can be transmitted without322
waiting for the acknowledgement. When receiver receives out of turn packets, it sends duplicate acknowledgement.323
When the sender receives 3 duplicate ACKs, it indicates mild congestion. The existing algorithm updates324
ssthreshold, cwnd and window size as ???????????????????? = cwnd 2 ? , ???????? = ????????????????????,325
and ???????????? ???????? = min(????????, ????????) respectively. It retransmits the lost packet and enters in326
to AIMD phase directly. In AIMD phase, the window starts increasing additively from new calculated ssthreshold327
to rwnd(receiver advertised window) as arithmetic progression. Thus, the variation in window size will be ??, 2,328
4, 8, 16, 32,40, 41, 42, 43, 44(loss occurs),22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,329
42, 43 and 37. Thus, ?? ?? = 34 + 3, i.e., 37 acknowledgements which include three duplicate acknowledgements330
must be sent by the receiver to acknowledge the correct receipt of each window, causing the packet overhead on331
the network. The total time required for this process will be ?? ?? = 34? + 991?.332

The subsection discusses the performance of the proposed technique under the same scenario.333

10 d) Proposed UPCC technique with single packet loss334

When 240 th packet is lost and receiver receives the 241 st packet after the receipt of 239 th packet. It sends an335
acknowledgement for the correct receipt of 239 th and expecting 240 th packet, i.e., ACK (240). However, when336
it receives the 242 nd packet it will resend the ACK (240). When sender receives two ACK (240), it retransmits337
the lost packet and keeps the ???????????? ???????? = ????????(receiver advertised window) indicating mild338
congestion. Thus, the proposed UPCC technique in congested network with single packet loss requires,?? ?? = 23,339
acknowledgements where 2 extra acknowledgements are used for informing loss of 240 th packet. Approximately340
38% and 24% reduction in the packet overhead and time is achieved respectively.341

Further, the performance of the proposed UPCC technique is evaluated with respect to the existing SS-AIMD342
technique under severe congestion wherein the ACK is not received within the stipulated RTO time, i.e., when343

6

RTO timer expires. e) Existing SS-AIMD technique [5] when RTO timer expires Whenever sender’s RTO timer344
expires before receiving acknowledgement, it indicates severe congestion. The sender presumes that the entire345
window is lost and starts retransmission by reducing the window size back to one. In the above example, while346
transmitting an application consisting of 1024 packets if the RTO timer expireswhen the sender window is 44.347
The algorithm updates ssthreshold, cwnd and window size as ssthreshold = current window 2 ? , cwnd = 1 and348
window size = min(cwnd, rwnd) respectively. It then starts retransmission by entering into slow-start phase where349
the window size increases exponentially from 1 up to new ssthreshold of 22 packets as geometric progression.350
After this it enters in AIMD phase, where the window size increases additively from new ssthreshold calculated351
to rwnd(receiver advertised window) as arithmetic progression. Thus, the variation in window size will be 1, 2,352
4, 8, 16, 32, 40, 41, 42, 43, 44(timer expires), 1, 2, 4, 8, 16, 22, 23, 24, 25,?, 44 and finally 5. Hence, ?? ?? =353
40 number of acknowledgements must be sent by the receiver. The total time required by the existing SS-AIMD354
technique when timer expires will be ?? ?? = 44? + 1028?. The performance of the proposed Unexpected355
Packet based Congestion Control (UPCC) technique when RTO timer expires is as follows: f) Proposed UPCC356
technique when RTO timer expires Whenever sender’s RTO timer expires before receiving an acknowledgement,357
it indicates severe congestion due to single or multiple packet loss. In the proposed technique the sender starts358
retransmission of the first unacknowledged packet and waits for RTO time again. In its response the receiver359
will send the ACK of the last correctly received packet with the rwnd. This ACK will indicate that how many360
packets are lost. If one packet loss is perceived then the proposed technique will assume that the network had361
mild congestion and has recovered from it so it will continue with the rwnd received i.e., 50, 50, 50, 50, 50(timer362
expires), 1, 50, 50,?, 50, and 25. However, if multiple packets are lost then it updates rwnd and window size as363
???????? = ???????? 2 ? , and ???????????? ???????? = ???????? respectively. This reduction in window size364
will continue if repeatedly multiple packet loss occur , however, the window size will be boosted on successful365
transmission of a complete window as 50, 50, 50, 50, 50(timer expires), 1, 25, 50, 50, 50, ?,50 and 48. Therefore,366
approximately 42% and 40% reduction in packet overhead is received in case of single and multiple packet loss367
when timer expires respectively. Further, reduction in the transmission time is perceived as approximately 35%368
and 32% lower for the proposed UPCC technique in the case of single and multiple packet lossrespectively when369
timer expires.370

The above example demonstrated that as more and more packet are lost the performance of the proposed371
UPCC technique improves both in terms of packet overhead gain and time gain.372

IV.373

11 Simulation Results374

We perform extensive network simulations with the help of ns-2, the widely used open-source network simulator375
[20]. We compared our proposed Unexpected Packet based Congestion Control (UPCC) technique with traditional376
slow-start and AIMD technique (NewReno [12]) and found that proposed UPCC technique reduces the packet377
overhead by 22% to 40% as shown in Figure 12 and also reduces the time to transmit an application by 12%378
to 32% as depicted in Figure 13. The variations in packet overhead and time depend on the level of congestion379
present in the network. The simulations were conducted in three different categories as 1) congestion free 2)380
single packet loss and 3) multiple packet loss. Year 2014 E 1381

1© 2014 Global Journals Inc. (US)

7

11 SIMULATION RESULTS

1

Figure 1: Figure 1 :

2

Figure 2: Figure 2 :

8

Figure 3:

Figure 4:

9

11 SIMULATION RESULTS

3

Figure 5: Figure 3 :

4

Figure 6: Figure 4 :

10

5

Figure 7: Figure 5 :

11

11 SIMULATION RESULTS

7

Figure 8: Figure 7 :

12

8

Figure 9: Figure 8 :

13

11 SIMULATION RESULTS

9

Figure 10: Figure 9 :

10

Figure 11: Figure 10 :

14

Figure 12:

Figure 13:

15

11 SIMULATION RESULTS

Figure 14:

1213

Figure 15: Figure 12 :Figure 13 :

16

1417

Figure 16: Figure 14 :Figure 17 :

17

11 SIMULATION RESULTS

1

?? ?? The number of windows and hence number
of acknowledgements used in the existing
slow-start and AIMD technique

?? ?? The number of windows and hence number
of acknowledgements used in the
proposed Unexpected Packet based
Congestion Control technique

?? ?? The total time required to transmit an
application in the existing slow-start and
AIMD technique

?? ?? The total time required to transmit an
application in the proposed Unexpected
Packet basedCongestionControl
technique

W Window size
W s Window start
W end Window end
? Round trip time
? Time required to transmit consecutive

packets in a window

[Note: ? QoS: Quality of service (QoS)[2] is the ability to provide different priority to different applications,
users, or data flows i.e., it guarantees a certain level of performance to a data flow. Quality of service guarantees
are important if the network capacity is insufficient, especially for real-time multimedia applications such as voice
over IP, online games and IPTV, since these applications often require fixed bit rate and are delay sensitive. A
best-effort network like Internet does not support quality of service.]

Figure 17: Table 1 :

18

[Shakkottai and Srikant ()] , Srinivas Shakkottai , R Srikant . 10.1561/1300000007. Network Optimization and382
Control, Foundations and Trendsin Networking 2007. 2008. 2 (3) p. .383

[Jin et al. (2002)] ‘A Spectrum of TCP-friendly Windowbased Congestion Control Algorithms’. Shudong Jin ,384
Liang Guo , Ibrahim Matta , Azer Bestavros . ANI- 0095988. ANI-9986397, and ITR ANI-0205294, and385
bygrants from IBM, Sprint Labs, and Motorola Labs, July 2002. Boston University (This work was supported386
in part by NSF grants CAREERANI-0096045)387

[Jacobson (1988)] ‘Congestion avoidance and control’. Jacobson . ACM Computer Communication Review August388
1988. 18 p. .389

[Paxson et al. (1980)] ‘Defense Advanced Research Projects 16’. V Paxson , M Allman , J Chu , M Sargent ;390
Postel , J . Request for Comments: 6298, Category: Standards Track, June 2011. January 1980. 760. Internet391
Engineering Task Force (IETF ; USC/Information Sciences Institute (Internet Protocol)392

[Defense Advanced Research Projects Agency (1981)] Defense Advanced Research Projects Agency, RFC: 791.393
September 1981. University of Southern California (INTERNET PROTOCOL)394

[Constantine et al.] ‘Framework for TCP Throughput Testing’. B Constantine , G Forget , R Geib , R Schrage .395
Internet Engineering Task Force (IETF), Request for Comments 2070-1721. p. 6349.396

[Steven et al. (2002)] Internet Congestion Control, IEEE Control Systems Magazine, H Steven , Fernando Low397
, John C Paganini , Doyle . February 2002.398

[Welzl ()] Network Congestion Control, Managing Internet Traffic, Michael Welzl . 2005. John Wiley & Sons399
Ltd.400

[Network Simulator ns-2] Network Simulator ns-2, http://www.isi.edu/nsnam/ns/401

[Abrantes and Ricardo (2005)] On Congestion Control for Interactive Real-time Applications in Dynamic402
Heterogeneous 4G Networks, Filipe Abrantes , Manuel Ricardo . March 17, 2005. (This work was funded403
by the Portuguese Science and Technology Foundation)404

[Pan et al. (2012)] ‘PIE: A Lightweight Control Scheme To Address the Bufferbloat Problem’. R Pan , P405
Natarajan , C Piglione , M Prabhu , V Subramanian , F Baker , B V Steeg . Cisco Systems December406
10, 2012. (Internet Draft, draft-pan-tsvwg-pie-00 (work in progress)407

[Floyd and Fall (1999)] ‘Promoting the Use of End-to-End Congestion Control in the Internet, Networking’. S408
Floyd , K Fall . IEEE/ACM Transactions on August 1999.409

[Schulzrinne et al. (1996)] ‘RTP: A Transport Protocol for Real-Time Applications’. H Schulzrinne , S Casner ,410
R Frederick , V Jacobson . Request for Comments: 1889, Category: Standards Track, January 1996. Network411
Working Group412

[Cheng (2010)] ‘Seeding RTO with RTT sampled during three-way handshake’. Y Cheng . Intended status:413
Standard Updates: 3390, 2988, Creation date, June 30, 2010. January 2011. (Google. IncInternet Draft,414
draft-ycheng-tcpm-rtosynrtt-00.txt) (work in progress. Expiration date)415

[Allman et al. (2009)] ‘TCP Congestion Control’. M Allman , V Paxson , E Blanton . Request for Comments:416
5681, Category: Standards Track, September 2009. Purdue University ; Network Working Group417

[Forouzan] ‘TCP/IP Protocol Suite’. B A Forouzan . Tata McGraw-Hill (3rd edition)418

[Floyd et al. (2004)] ‘The New Reno Modification to TCP’s Fast Recovery Algorithm’. S Floyd , T Henderson ,419
A Gurtov . Request for Comments: 3782, Category: Standards Track, April 2004. Network Working Group420

19

http://dx.doi.org/10.1561/1300000007
http://www.isi.edu/nsnam/ns/

	1 Introduction
	2 II.
	3 System Model
	4 E
	5 At sender side:
	6 At receiver side:
	7 At sender side:
	8 At sender side
	9 b) Proposed UPCC technique in congestion free network
	10 d) Proposed UPCC technique with single packet loss
	11 Simulation Results

