
© 2014. Abhay Kumar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: E
Network, Web & Security
Volume 14 Issue 1 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Modified TCP for Time Critical Applications
By

Abstract- A network is defined to be a congested network if the load on the network exceeds the
capacity of the network. The traditional congestion control technique of slow-start and AIMD was
adopted when the aim was more on the stability of the Internet. But as more and more time critical
applications such as multimedia applications are being used, we need alternate technique that
reduces the drastic fluctuations of window size present in the existing technique. Thispaper proposes
a techniquefor fast delivery of packet for a time critical application. It reduces the packet overhead
and time compared to existing slow-start and AIMD technique. The proposed technique uses
information or intelligence from the unexpected packet received. It is a fine modification of the
existing slow-start and AIMD technique by adapting them for time critical applications. We propose
modification at both thesender and the receiver hosts without modifying anything in the intermediate
hosts of the network. Extensivesimulation show that proposed technique reduces congestion in the
network by reducing both packet overhead and time compared to the traditional slow-start and AIMD
technique and delivers the packets in timely manner than the existing techniques.

Keywords: network protocols, TCP, congestion control, slow-start, aimd.

GJCST-E Classification : C.2.5

ModifiedTCPforTimeCriticalApplications

Abhay Kumar
 JB Institue of Engineering and Technology, India

Strictly as per the compliance and regulations of:

Modified TCP for Time Critical Applications
Abhay Kumar

Abstract- A network is defined to be a congested network if the
load on the network exceeds the capacity of the network. The
traditional congestion control technique of slow-start and
AIMD was adopted when the aim was more on the stability of
the Internet. But as more and more time critical applications
such as multimedia applications are being used, we need
alternate technique that reduces the drastic fluctuations of
window size present in the existing technique. Thispaper
proposes a techniquefor fast delivery of packet for a time
critical application. It reduces the packet overhead and time
compared to existing slow-start and AIMD technique. The
proposed technique uses information or intelligence from the
unexpected packet received. It is a fine modification of the
existing slow-start and AIMD technique by adapting them for
time critical applications. We propose modification at both
thesender and the receiver hosts without modifying anything in
the intermediate hosts of the network. Extensivesimulation
show that proposed technique reduces congestion in the
network by reducing both packet overhead and time
compared to the traditional slow-start and AIMD technique and
delivers the packets in timely manner than the existing
techniques.
Keywords: network protocols, TCP, congestion control,
slow-start, aimd.

I. Introduction

he Internet is a global network of interconnected
computers which allows individuals and
organizations around the world to communicate

and share information with each other. This demand has
natural fluctuation; therefore, the Internet performance is
largely governed by it, leading to possible congestion
which occurs when resource demands exceed the
capacity of the network. Due to the explosive growth of
the Internet and increasing demand for multimedia
applications like voice over IP, real-time video
streaming, IPTV and financial transactions, the issue of
congestion has received tremendous attention from
academia and industry. Transmission of real-time
multimedia applications typically has large bandwidth,
small delay and low-loss requirements. However, the
current Internet does not guarantee any quality of
service (QoS) as it is based on best-effort service model
of IP [1]. A network is said to be congested from the
perspective of a user if the service quality noticed by the
user decreases because of an increase in network load.
The goal of congestion control mechanisms is simply to
use the network as efficiently as possible, that is, attain
the highest possible throughput while maintaining a low

Author: JB Institue of Engineering and Technology, Hyderabad, India.
e-mail: abhay1880@gmail.com

loss ratio and small delay. Congestion must be avoided
because it leads to queue growth and queue growth
leads to delay and loss [2

As the network grew, it was clear that
unrestricted data transfer by many users over a shared
resource, i.e., the Internet, could be bad for the end
users; excess load on the links leads to packet loss and
decreases the effective throughput. This kind of loss
was experienced at a significant level in the ’80s and
was termed congestion collapse [5]. Thus, there was a
need for a protocol to control the congestion in the
network, i.e., control the overloading of the network
resources. It led to the development of a congestion
control algorithm for the Internet by Van Jacobson [5].
This congestion control algorithm was implemented
within the protocol used by the end hosts for data
transfer called the Transmission Control Protocol (TCP).

There are several different flavors of TCP
congestion control, each of which operates somewhat
differently. But most of the versions of TCP are window-
based protocols, wherein the idea is that each user
maintains a number called a window size, which is the
number of unacknowledged packets that are allowed to
be sent into the network. Any packet from the new
window can be sent only when an acknowledgment for
the last packet in the previous sent window is received
by the sender. TCP adapts the window size in response
to congestion information. The window size is increased
if the sender determines that there is excess capacity
present in the route and decreases if the sender
determines that the current number of in-flight packets
exceeds the capacity of the route. The exact means of
determining whether to increase or decrease the
window size is what determines the difference between
the congestion control mechanisms of different TCP
flavors. The most commonly used TCP flavors used for
congestion control in the Internet today are Reno and
New Reno [12]. Both of them are updates of the TCP-
Tahoe, which was introduced in 1988[5]. Although, they
vary significantly in many regards, the basic approach to
congestion control is similar. The idea is to use
successful reception of packets as an indication of
available capacity and dropped packets as an indication
of congestion. In most cases, eachtime the destination
receives a packet, it sends an acknowledgement
(also called ACK) asking for the next packet in sequence
to be transmitted. When an acknowledgment for a
windowis received, the protocol increases its window
size. However, on reception of three duplicate
acknowledgments or dupacks (i.e., four successive

T

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

11

(
DDDD DDDD

)
Y
e
a
r

20
14

E

identical acknowledgments) by the sender is taken by it
as an indication that packet has been lost due to
congestion. In case the source does not receive any
acknowledgement for a finite time (RTO [13]), it
assumes that all unacknowledged packets have been
lost. In both the cases the source aggressively proceeds
to cut down the window size and retransmit the lost
packets.

TCP Vegas improves upon TCP Reno through
three main techniques. The first is a new retransmission
mechanism where timeout is checked on receiving the
first duplicate acknowledgment, rather than waiting for
the third duplicate acknowledgment, and results in a
more timely detection of loss. The second technique is a
more prudent way to grow the window size during the
initial use of slow-start when a connection starts up, and
it results in fewer losses. The third technique is a new
congestion avoidance mechanism that corrects the
oscillatory behavior of Reno. The idea is to have a
source estimate the number of its own packets buffered
in the path and try to keep this number between α
(typically 1) and β (typically 3) by adjusting its window
size. The window size is increased or decreased linearly
in the next round-trip time according to whether the
current estimate is less than α or greater than β.
Otherwise the window size is unchanged. The rationale
behind this is to maintain a small number of packets in
the pipe to take advantage of extra capacity when it
becomes available. A source periodically measures the
round-trip queuing delay and sets its rate to be
proportional to the ratio of its round-trip propagation
delay to queuing delay, the proportionality constant
being between α and β. Hence, the more congested its
path, the higher the queuing delay and the lower the
rate. The Vegas source obtains queuing delay by
monitoring its round-trip time (the time between sending
a packet and receiving its acknowledgment) and
subtracting from it the round-trip propagation delay [7].

In today’s Internet, real-time applications such
as VoIP, videoconferencing and on-line gaming mostly
use RTP over UDP or UDP alone to transport data.
Because these protocols are unresponsive to
congestion events, the growing popularity of
applications that use them endangers the stability of the
Internet. So, to make it possible that real-time
applications are widely adopted, common congestion
control mechanisms suitable for real time multimedia are
expected to be deployed[3] [4].

The existing techniques does not use any
information or intelligence from the unexpected packet
received, unexpected packets are simply discarded. The
proposed techniques tries to retrieve information based
on the unexpected packet received and perform the
congestion control accordingly.

The remaining paper is organized as follows:
Section II explains the system or network model used in

this paper. Section III describes our proposed
Unexpected Packet based Congestion Control (UPCC)
Technique. Section IV presents the simulation results
that demonstrate our proposed UPCC technique
reduces congestion in the network compared to
traditional slow-start and AIMD technique. Finally
Section V concludes the paper.

II. System Model

This paper considers a realistic computer
network consisting of several sources and destinations
connected via multiple routers and links. The source
(sender) communicates to the destination (receiver) in
form of packets. The series of routers and links that a
packet follows from the source to destination is called a
route. A pair of sender and receiver may be connected
via multiple routes. This network is represented in the
Figure 1.

Figure 1 :

Network model

For simplicity of the explanation, we consider
only a pair of sender (S) and receiver (R) connected via
multiple routes, as shown in Figure 2.

The sender and
the receiver may be running multiple different
applications. However, the packets of the application
are transmitted using the first come first serve policy.
The connection is established using three-way
handshake as in case of existing TCP. However, this
paper proposes few modifications in this phase also to
make the subsequent transmissions congestion aware.

Figure 2 :

Simplified network model

.

.

.

.

S

R

App1

Routey

Routex

Routez

Appn

App1

Appn

App2

App2

.

.

.

.

S1

R1

Internet

Sn

S2

R2

Rn

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

12

(
DDDD

)
Y
e
a
r

20
14

E
Modified TCP for Time Critical Applications

TCP operates in two distinct phases. When file
transfer begins, the window size is 1, but the source
rapidly increases its transmission window size so as to
reach the available capacity quickly. Let us denote the
window size by W. The algorithm increases the window
size by 1 each time an acknowledgement for a packet
indicating success is received. This is called the slow-
start phase. Since one would receive
acknowledgements corresponding to one window’s
worth of packets in an RTT [13], and we increase the
window size by one for each successful packet
transmission, this also means that (if all transmissions
are successful) the window would double in each RTT,
so wehave an exponential increase in rate as time
proceeds. Slow-start refers to the fact that the window
size is still small in this phase, but the rate at which the
window is increased is quite rapid. When the window
size either hits a threshold, called the slow-start
threshold (ssthresh) or the transmission suffers a loss
(immediately leading to a halving of window size), the
algorithm shifts to a more conservative approach called
the congestion avoidance phase. When in the
congestion-avoidance phase, the algorithm increases
the window size by 1 every time feedback of a
successful packet transmission in the corresponding
window is received. When a packet loss is detected by
the receipt of three dupacks, the slow-start threshold
(ssthresh) is set to half of the current window i. e TCP
Reno cuts its window size by half (W ← W/2) and
algorithm enters additive increase phase where it start
sending segments from current window onwards. Thus,
in each RTT, the window increases by one packet i.e., a
linear increase in rate. Protocols of this sort where
increment is by a constant amount, but the decrement is
by a multiplicative factor are called additive increase
multiplicative decrease (AIMD) protocols. When packet
loss is detected by a timeout, the slow-start threshold
(ssthresh) is set to half of the current window and the
algorithm enters the slow-start phase i.e., it start sending
from 1 packet onwards. Let us call the congestion
window at time t as W (t). This means that the number of
packets in-flight is W (t). The time taken by each of these
packets to reach the destination, and for the
corresponding acknowledgement to be received is RTT.
The RTT is a combination of propagation delay and
queuing delay. A window-based congestion control
scheme defines one control rule for window increase,
and another rule forwindow decrease. AIMD uses the
following control rule [19]:

Increase:𝑊𝑊𝑡𝑡+1
 ⃪ 𝑊𝑊𝑡𝑡 + 𝛼𝛼, 𝛼𝛼 > 0

 Decrease:𝑊𝑊𝑡𝑡 ⃪ 𝑊𝑊𝑡𝑡 − 𝛽𝛽𝑊𝑊𝑡𝑡 , 0 < 𝛽𝛽 > 1

Where α and β refer to the additive increase
constant and multiplicative decrease constant β

respectively. The standard TCPuses the value of these
constants α and β as 1 and 0.5 respectively.

This subsection provides the definition of
several terms and the notations that will beused
throughout the remainder of this paper.

• SYN: To establish a connection, TCP uses a three-
way handshake. Synchronize (SYN) [9] packet is the
first control packet sent for the three-way handshake
by the sender wishing to establish the TCP
connection.

• ACK: An acknowledgement (ACK) [14] is a control
packet used between communicating processes or
computers to signify receipt of receiving a data
packet, and it is a part of a communication protocol.
For example, ACK packets are used in the
Transmission Control Protocol (TCP) to
acknowledge the receipt of SYN packets while
establishing a connection in three-way handshake,
and acknowledge the receipt of data packets while
a connection is in data transfer phase.

• SS-AIMD: In the Slow-Start (SS) [5] [8] and Additive
Increase Multiplicative Decrease (AIMD)[5] [14]
algorithm, when a TCP connection first starts, the
slow-start phase initializes a congestion window to
one packet and transmits. After receiving
acknowledgement from the receiver, the window
increases by one packet for each acknowledgement
returned. After successful transmission of these two
packets and acknowledgements received, the
window is increased to four packets and so on,
doubling from there up to a threshold known as
slow-start threshold (ssthresh). After slow-start
threshold, the algorithm enters into additive increase
multiplicative decrease (AIMD) phase where window
increases by one packet for successful transmission
of all the packets in the window i.e., additive
increase. In this phase, the transmission rate slows
down to avoid congestion. But whenever a packet is
lost, the sender immediately sets its transmission
window to one half of the current window size i.e.,
multiplicative decrease.

• ssthresh: Slow-start threshold (ssthresh)[2] is a
point where slow-start phase ends and additive
increase multiplicative decrease (AIMD) phase
starts.

• dupacks: When receiver receives a TCP packet with
a sequence number higher than the expected one
(out of turn packet). The receiver sends an
immediate ACK with the Acknowledgement field set
to the Sequence number the receiver was
expecting. This ACK is a duplicate of an ACK
(dupacks) [2] which was sent previously. This is
done to update the sender with regards to the
missing TCP packets.

• rwnd: Receiver advertised window (rwnd)[10] or
receiver queue capacity is the most recent
advertised window that contains the number of
packets a receiver can process. This is one of the

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

13

(
DDDD DDDD

)
Y
e
a
r

20
14

E

Modified TCP for Time Critical Applications

two variables which affect how much
unacknowledged data a sender can send; the other
variable is congestion window. The receiver
advertised window is the value of the window field in
a TCP packet header.

• cwnd: Congestion window (cwnd)[12] is a TCP state
variable maintained at the sender that limits the
amount of data a TCP can transmit without facing
congestion through the network. At any given time,
a TCP transmit minimum of congestion window and
receiver advertised window.

• TCP: The Transmission Control Protocol (TCP)[14]
is used as a highlyreliable host-to-host protocol
between hosts in packet-switched
computercommunication networks, and in

interconnected systems of such networks.TCP is a
connection-oriented, end-to-end reliable protocol
designed to fit into a layered hierarchy of transport
layer protocolswhich support multi-network
applications. The TCP provides for reliable inter-
process communicationbetween pairs of processes
in host computers attached to distinct but
interconnected computer communication networks.

• UDP: The User Datagram Protocol (UDP)[15] is
defined as a datagram mode of packet-switched
computer communication in the environment of an
interconnected set of computer networks. This
protocol assumes that the Internet Protocol (IP) [16]
is used as the underlying protocol. User Datagram
Protocol is unreliable connection-less protocol used
at transport layer

• IP: The Internet Protocol (IP)[17] is designed for use
in interconnected systems ofpacket-switched
computer communication networks. The internet
protocol provides fortransmitting blocks of data
called datagram from sources to destinations. The
internet protocol also provides forfragmentation and
reassembly of long datagram, if required,
fortransmission through "small packet" networks.

Internet Protocol is unreliable connection-less
protocol used at network layer

•

RTP:

The real-time transport protocol (RTP)[18]
provides end-to-end network transport functions
suitable forapplications transmitting real-time
information, like audio, video ordata, over multicast
or unicast network services. RTP does not provide
resource reservation and also does not guarantee
quality-of-service for

real-time services. This

transport protocol is also augmented by another
real-time control protocol (RTCP) to allow
monitoring of the data delivery in amanner scalable
to large multicast networks, and to provide
minimalcontrol and identification functionality. RTP
and RTCP are designedto be independent of the
underlying transport and network layers.

• VoIP: Voice over Internet Protocol (VoIP) [3] is a
mechanism that allows telephone calls to be made
over computer networks like the Internet. VoIP
converts analog voice signals into digital data
packets and supports real-time, two-way
transmission of conversations using Internet
Protocol.

• IPTV: Internet Protocol television (IPTV)[3] is the
process of transmitting and broadcasting television
programs using the Internet protocol suite over a
packet-switched network such as the Internet,
instead of being delivered through traditional
terrestrial, satellite signal and cable television
formats.

• RTO: The retransmission timeout (RTO) [13] is
aretransmission timer used by the Transmission
Control Protocol to ensure data delivery in the
absence of anyfeedback from the remote data
receiver. The duration of this timeris referred to as
RTO. The retransmission timeout timer is used for
retransmissions of lost or delayed packet.

• RTT (∆): Round trip time (RTT)[13] is the length of
time it takes for a packet to be sent and the length
of time it takes for an acknowledgment of that
packet to be received

• QoS: Quality of service (QoS) [2] is the ability to
provide different priority to different applications,
users, or data flows i.e., it guarantees a certain level
of performance to a data flow. Quality of service
guarantees are important if the network capacity is
insufficient, especially for real-time multimedia
applications such as voice over IP, online games
and IPTV, since these applications often require
fixed bit rate and are delay sensitive. A best-effort
network like Internet does not support quality of
service.

Table 1 : Notations.

𝑋𝑋𝐸𝐸 The number of windows and hence number
of acknowledgements used in the existing
slow-start and AIMD technique

𝑋𝑋𝑃𝑃 The number of windows and hence number
of acknowledgements used in the
proposed Unexpected Packet based
Congestion Control technique

𝑇𝑇𝐸𝐸 The total time required to transmit an
application in the existing slow-start and
AIMD technique

𝑇𝑇𝑃𝑃 The total time required to transmit an
application in the proposed Unexpected
Packet based Congestion Control
technique

W Window size
Ws Window start
Wend Window end
∆ Round trip time
δ Time required to transmit consecutive

packets in a window

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

14

(
DDDD

)
Y
e
a
r

20
14

E
Modified TCP for Time Critical Applications

III. Proposed Unexpected Packet based
Congestion Control (upcc)

Technique
The proposed technique is a fine modification

of the existing slow-start and AIMD technique by
adapting it and making congestion aware. We propose
modification at both the sender and receiver hosts
without modifying anything in the intermediate hosts of
the network. The proposed modification can be
described in the form of a dialogue between sender and
receiver from initiation to the termination of a
connection.

At sender side:
Whenever a sender host wants to communicate

it will send a SYN (i) packet to the receiver host
expressing its desire to communicate as in existing
technique [8] [9]. On sending the SYN(i) packet the
sender will start a timer based on RTT within which it
should ideally receive an ACK (i+1) packet from the
receiver. This can be seen in Figure 3. In case, he does
not receive an ACK (i+1) packet, he assumes that there
is congestion in the network and therefore it retransmit
SYN (i) packet with doubled RTT. This information about
congestion is stored in a separate variable ‘C’ that will
be used in data transfer stage, i.e., it set C=1. This
communication can be seen in Figure 4.

Algorithm for three-way handshake at sender
start

Send a SYN message and start a timer
Wait for an ACK
If timer expires and no ACK received
C=1
Resend the SYN message with RTT=2RTT

stop

Figure 3 : Three-way handshakein an ideal condition.

At receiver side:
On receiving a SYN(i) packet it will send an

ACK(i+1) packet containing its available queue capacity
‘rwnd’ together with its own SYN(j) and set C=0 to
inform its readiness for communication and no

congestion perceived so far. To complete the three-way
handshake of TCP connection it starts its timer waiting
for an ACK (j+1) from sender for his SYN (j) as shown in
Figure 5. However, if it receives unexpected duplicate
SYN (i) message or no ACK (j+1) within its RTT, it
indicates that its ACK (i+1) or ACK (j+1) was lost and
hence congestion may be present. It responds to this
new SYN (i) received or RTT time out by

Figure 4 : Three-way handshakewhen ACK from receiver
is lost.

retransmitting with a packet containing SYN(j),
ACK(i+1), and rwnd. This information about congestion
is stored in a separate variable ‘C’ that will be used in
data transfer stage, i.e., it set C=1. This communication
can be seen in Figures 6 and 7.

Algorithm for three-way handshake at receiver
start

If (SYN message received)
Send ACK+SYN message and start a timer
If timer expires and no ACK received or duplicate
SYN (i) is received
C=1
Resend the ACK+SYN message with RTT=2RTT

stop

Figure 5 : Three-way handshake in an ideal condition

After the three-way handshake is completed,
proposed algorithm enters the data transfer phase.
However, during the handshake if no timer expires or no
duplicate SYN or ACK packets are received, the

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

15

(
DDDD DDDD

)
Y
e
a
r

20
14

E

Modified TCP for Time Critical Applications

proposed technique presumes network to be
congestion free. Thus, it advocates an aggressive start
wherein the window size is set to be equalto the receiver
queue capacity ‘rwnd’. On the other hand, a congestion
may be perceived when C=1 at either the sender or
receiver side. In such case we follow the same existing

Figure 6 : Three-way handshake when ACK from sender
is lost.

Figure 7 : Three-way handshake when receiver receives
duplicate unexpected SYN(i).

slow-start and AIMD technique[5] [8] for selecting the
window size. After the selection of window size is made,
the data transfer phase is initiated by the sender and the
dialogue continues as follows:
Algorithm for window selection
start
 If C=0
Window Size = rwnd
// we apply aggressive start i.e., it does not
depend on cwnd as per standard TCP [5]
 If C=1
 Window Size = min (cwnd, rwnd)
// we apply the standard TCP rule i.e.,
slow-start with AIMD [8]
stop

At sender side:
The sender will start sending the packets up to

the window size (Ws, Wend) but it doesn’t expects any
ACK till it completes sending the entire window. In other
words, it expects one ACK (wend) per window. In ideal

condition it will receive the ACK (wend) and assumes no
congestion C=0 and will adjusts the window as per the
policy defined above, in the algorithm for window
selection.

At receiver side:
On receiving the ACK (j+1) with the window

size it will set its window and will wait to receive the data
packets. When requisite packets arrive it acknowledges
them by sending ACK (wend) for the same. However, at
any point of time, if it feels overloaded or underloaded, it
will send its updated queue capacity ‘rwnd’ to the
sender piggybacking with ACK(k) where k-1 is the last
packet accepted from the sender.

At sender side:
If it receives an unexpected ACK (k) (as it

expects only ACK (wend) for any window) then it will
simply slides the window such that it starts with the first
unacknowledged packet, i.e., packet with sequence
number k. Further, it adjusts the window according to
the new ‘rwnd’ suggested by the receiver. Thus, on
receiving one unexpected ACK (k) the sender simply
slides and adjust the window size and again expects
one ACK (wend) within the RTT of the new window. This
communication can be seen in Figure 8 where ‘k =
n+3’ and new ‘rwnd = 12’.

Figure 8 :

Data transfer phase when sender

receives an unexpected ACK with new rwnd

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

16

(
DDDD

)
Y
e
a
r

20
14

E
Modified TCP for Time Critical Applications

At receiver side:
The above dialogue presumes that no

congestion exists and hence, no packet loss occurs.
However, if the receiver finds an out of turn packet it
indicates that the intermediate packet/s could be lost. In
such case it will send an ACK (k) with current ‘rwnd’ for
the last in order packet i.e k-1 received. It will also slide
its window but it does not expect a retransmission of the
intermediate packet/s as they may be delayed.
However, if it further receives second out of the turn
packet it presumes that intermediate packet/s is lost. It
sends a duplicate ACK (k) with current ‘rwnd’ and starts
a timer based on RTT within which it should receive the
lost packet. In case it does not, it will resend an ACK (k).
This communication can be seen in Figure 9.

Figure 9 :

Data transfer phase when sender receives

duplicate unexpected ACK

At sender side:
On receiving the first unexpected ACK

(k), the

sender simply slides the window as was discussed in
Figure 8. But if it receive a duplicate ACK

(k), i.e., two

ACK

(k) it indicates that mild congestion is present in the

network. This assumption of mild congestion is based
on the understanding between sender and receiver that
two duplicate acknowledgements will be send by the
receiver only when the receiver receives two out of turn
packets. Therefore, it must retransmit only that missing
kth

packet and continue with sending the packets from

first non-transmitted packets in the current window and
expect the ACK

(wend) for the current entire window. This

communication can be seen in Figure 9.

At receiver side:
On receiving the missing packet, it will place it

in order and continue receiving till the end of window. If
all the packets arrive, the receiver will send the ACK
(wend). However, if it misses another packet in the same
window, it indicates that the congestion is increasing
and it will send the duplicate ACK (j) with ‘rwnd’=rwnd/2
as shown in Figure 10.

Figure 10 : Data transfer phase when sender receives
second pair of unexpected ACK with reduced rwnd.

At sender side:
If sender receives another pair of unexpected

ACK (j) in its current window, it indicates that the second
packet in the same window has been lost implying that
window size is too big. In such scenario the sender will
slide the window to the first unacknowledged packet
and retransmit the missing packet. It will also reduce its
transmission window as indicated by the receiver to half.

This communication can be seen in Figure 10.After
transmission of the entire window the sender waits for
RTT time to receive the acknowledgement ACK (wend).
If it receives ACK (wend) within the stipulated time then
he assumes that the network is congestion free and
continues with the next window. However, if ACK wend)
is not received within the RTT the sender presumes high
congestion in the network. It retransmits the first packet
in the window as shown in Figure 11, and starts the
timer with RTT time as perexisting slow-start and AIMD
algorithm [5] [8].

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

17

(
DDDD DDDD

)
Y
e
a
r

20
14

E

Modified TCP for Time Critical Applications

At receiver side:
If retransmission of a packet which is not asked

by the receiver i.e., unexpected packet is received. The
receiver will transmits the ACK (k) where k-1 is the last in
order packet received. As demonstrated in the Figure
11, when the sender retransmits the first packet of the
last unacknowledged window i.e., Ws=n+9 when it
does not receive ACK (n+15) i.e., ACK (Wend) within its
RTT, the

Figure 11 : Data transfer phase when ACK(Wend) for
complete window is lost

receiver will respond by retransmitting the ACK (n+15)
i.e., ACK (Wend) indicating the receipt of the complete
window n+9 to n+14. By doing this the receiver avoids
the retransmission of the remaining packets in the last
unacknowledged window i.e., n+10 to n+14. For large
window this is substantial reduction in retransmission
improving the throughput of the network and reducing
congestion.

At sender side
It may receive a unexpected delayed ACK

(Wend) in response to Ws retransmitted by it for the
previous window. As shown in Figure 11, it receives ACK

(n+15) i.e., ACK (Wend) in response to its retransmission
of packet Ws=n+9. Theexisting techniques [8] will
discard this ACK (Wend). However, in the proposed
technique it is not simply discarded but is used to
indicate mild congestion and the previous window
packets have been received without any problem. Thus,
sender should stop retransmission and recover from
slow-start phase by sliding the window up to the first
unacknowledged packet and continue with the original
window size.

Both sender and receiver utilize the congestion
information received for one connection over all other
connections made by them leading to recovery from the
congestion by the network.

The proposed Unexpected Packet based
Congestion Control (UPCC) technique is illustrated with
the following motivational example which will illustrate
the limitations of existing techniques.

Let an application have 1024 packets and as
considered by the authors in [10] [11], the slow-start
threshold (ssthresh) as 40 packets and receiver
advertised window (rwnd) as 50 packets, we also
consider the same. We estimate the packet overhead
gain and the time gain for the existing slow-start AIMD
technique and the proposed UPCC techniques as
follows.

a) Existing SS-AIMD [8] technique in congestion free
network

The existing slow-start technique [5] will initially
set the window as one packet. When its corresponding
ACK arrives, the source sets the corresponding window
to two packets. It then transmits two packets. On
receiving the two corresponding ACK, it sets the window
size to four and so on. Therefore, the slow start
technique increases the window size from 1
exponentially up to ssthreshold of 40 packets, forming a
geometric progression of 1, 2, 4, 8, 16, and 32. From
ssthreshold to rwnd, it will perform additive increase as
arithmetic progression of 40, 41, 42, 43, 44, 45, 46, 47,
48, 49 and 50. Beyond rwnd, the current size of the
window cannot increase because it has to be minimum
of cwnd and rwnd, thus it remains constant at rwnd. The
existing technique during the slow start phase will
expect an acknowledgement per packet, while in the
subsequent phase only one ACK per window will be
received. Hence, apart from the 1024 data packet
additionally 84 ACK packets will be required.

However, to give the existing technique a fair
chance we assume that only one ACK per window is
required. Mathematically, the minimum number of ACKs
required to transmit the application of 1024 packets in
congestion free network is

𝑋𝑋𝐸𝐸= 𝑛𝑛𝐺𝐺𝑃𝑃+

𝑛𝑛𝐴𝐴𝑃𝑃+

�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑜𝑜𝑜𝑜

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑡𝑡𝑝𝑝

𝑡𝑡𝑜𝑜

𝑁𝑁𝑁𝑁

𝑡𝑡𝑁𝑁𝑝𝑝𝑛𝑛𝑝𝑝𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 −(𝑆𝑆𝐴𝐴𝑃𝑃 +𝑆𝑆𝐺𝐺𝑃𝑃)

𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡
�

Where

𝑛𝑛𝐺𝐺𝑃𝑃=⌈𝑙𝑙𝑜𝑜𝑙𝑙2𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ⌉

𝑛𝑛𝐴𝐴𝑃𝑃= (rwnd-ssthresh)+1

𝑆𝑆𝐴𝐴𝑃𝑃=
(𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 −𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ+1)(𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ+𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡)

2

𝑆𝑆𝐺𝐺𝑃𝑃=2⌈𝑙𝑙𝑜𝑜𝑙𝑙2𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ⌉-1
Thus, the variation in window size will be as 1, 2,

4, 8, 16, 32,40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,50,
50, 50, 50, 50, 50, 50, 50, 50and 16. In other words,
additional X_E=27 number of acknowledgements must
be sent by the receiver to acknowledge the correct

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

18

(
DDDD

)
Y
e
a
r

20
14

E
Modified TCP for Time Critical Applications

receipt of each window, causing the packet overhead in
the network.

The time required by the slow-start technique to
transmit initial packets in the windows of 1, 2, 4, 8, 16,
and 32 will be ∆ + (∆+δ) + (∆+3δ) + (∆+7δ) +
(∆+15δ) + (∆+31δ) where ∆ is RTT and δ is the time to
transmit consecutive packet in a window. Similarly, the
time required for transmitting packets in the remaining
windows can be estimated. Therefore, the total time
required by the slow-start and AIMD technique will be
TE = 27∆ + 997δ.

In the following subsection we discuss packet
overhead gain and time gain for the proposed
Unexpected Packet based Congestion Control
technique in congestion free network.

b) Proposed UPCC technique in congestion free
network

In congestion free network, the proposed UPCC
technique advocates the use of rwnd (receiver
advertised window) as a window size for the
transmission. Therefore, the number of ACKs required
for transmitting the application of 1024 packets will be

𝑋𝑋𝑃𝑃 = �
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑡𝑡𝑝𝑝 𝑡𝑡𝑜𝑜 𝑁𝑁𝑁𝑁 𝑡𝑡𝑁𝑁𝑝𝑝𝑛𝑛𝑝𝑝𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡
�

Hence, XP =21, implying 21 acknowledgements
are required as compared to 27 acknowledgements in
the existing technique. Thus, approximately 22%
reduction in the number of acknowledgements is
achieved through proposed UPCC technique.

Further, the time required to transmit an
application of 1024 packets will be
𝑇𝑇𝑃𝑃 = (∆+49δ) × 20 + (∆ + 23δ)= 21∆ + 1003δ. Thus,
the proposed UPCC technique reduces the time by
approximately 12% leading to lesser chance of
congestion in the network.

In the following subsection we discuss packet
overhead gain and time gainin congested network
where packet loss may occur while transmitting this
application.

c) Existing SS-AIMD [8] technique with single packet
loss

Consider that 240th packet is lost while
transmitting 11th window where 44 packets can be
transmitted without waiting for the acknowledgement.
When receiver receives out of turn packets, it sends
duplicate acknowledgement. When the sender receives
3 duplicate ACKs, it indicates mild congestion. The
existing algorithm updates ssthreshold, cwnd and
window size as 𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ𝑜𝑜𝑙𝑙𝑡𝑡 = cwnd 2⁄ , 𝑝𝑝𝑟𝑟𝑛𝑛𝑡𝑡 =
𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ𝑜𝑜𝑙𝑙𝑡𝑡, and 𝑟𝑟𝑤𝑤𝑛𝑛𝑡𝑡𝑜𝑜𝑟𝑟 𝑝𝑝𝑤𝑤𝑠𝑠𝑁𝑁 = min(𝑝𝑝𝑟𝑟𝑛𝑛𝑡𝑡, 𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡)
respectively. It retransmits the lost packet and enters in
to AIMD phase directly. In AIMD phase, the window
starts increasing additively from new calculated
ssthreshold to rwnd(receiver advertised window) as
arithmetic progression. Thus, the variation in window

size will be 1, 2, 4, 8, 16, 32,40, 41, 42, 43, 44(loss
occurs),22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43 and 37. Thus, 𝑋𝑋𝐸𝐸 =
34 + 3, i.e., 37 acknowledgements which include three
duplicate acknowledgements must be sent by the
receiver to acknowledge the correct receipt of each
window, causing the packet overhead on the network.
The total time required for this process will be 𝑇𝑇𝐸𝐸 = 34∆
+ 991δ.

The subsection discusses the performance of
the proposed technique under the same scenario.

d) Proposed UPCC technique with single packet loss
When 240th packet is lost and receiver receives

the 241st packet after the receipt of 239th packet. It
sends an acknowledgement for the correct receipt of
239th and expecting 240th packet, i.e., ACK (240).
However, when it receives the 242nd packet it will resend
the ACK (240). When sender receives two ACK (240), it
retransmits the lost packet and keeps the
𝑟𝑟𝑤𝑤𝑛𝑛𝑡𝑡𝑜𝑜𝑟𝑟 𝑝𝑝𝑤𝑤𝑠𝑠𝑁𝑁 = 𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡(receiver advertised window)
indicating mild congestion. Thus, the proposed UPCC
technique in congested network with single packet loss
requires,𝑋𝑋𝑃𝑃 = 23, acknowledgements where 2 extra
acknowledgements are used for informing loss of 240th
packet. Approximately 38% and 24% reduction in the
packet overhead and time is achieved respectively.

Further, the performance of the proposed
UPCC technique is evaluated with respect to the existing
SS-AIMD technique under severe congestion wherein
the ACK is not received within the stipulated RTO time,
i.e., when RTO timer expires.

e) Existing SS-AIMD technique [5] when RTO timer
expires

Whenever sender’s RTO timer expires before
receiving acknowledgement, it indicates severe
congestion. The sender presumes that the entire
window is lost and starts retransmission by reducing the
window size back to one. In the above example, while
transmitting an application consisting of 1024 packets if
the RTO timer expireswhen the sender window is 44.
The algorithm updates ssthreshold, cwnd and window
size as ssthreshold = current window 2⁄ , cwnd = 1 and
window size = min(cwnd, rwnd) respectively. It then
starts retransmission by entering into slow-start phase
where the window size increases exponentially from 1
up to new ssthreshold of 22 packets as geometric
progression. After this it enters in AIMD phase, where
the window size increases additively from new
ssthreshold calculated to rwnd(receiver advertised
window) as arithmetic progression. Thus, the variation in
window size will be 1, 2, 4, 8, 16, 32, 40, 41, 42, 43,
44(timer expires), 1, 2, 4, 8, 16, 22, 23, 24, 25,…, 44 and
finally 5. Hence, 𝑋𝑋𝐸𝐸 = 40 number of acknowledgements
must be sent by the receiver. The total time required by
the existing SS-AIMD technique when timer expires will
be 𝑇𝑇𝐸𝐸 = 44∆ + 1028δ.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

19

(
DDDD DDDD

)
Y
e
a
r

20
14

E

Modified TCP for Time Critical Applications

The performance of the proposed Unexpected
Packet based Congestion Control (UPCC) technique
when RTO timer expires is as follows:

f) Proposed UPCC technique when RTO timer expires
Whenever sender’s RTO timer expires before

receiving an acknowledgement, it indicates severe
congestion due to single or multiple packet loss. In the
proposed technique the sender starts retransmission of
the first unacknowledged packet and waits for RTO time
again. In its response the receiver will send the ACK of
the last correctly received packet with the rwnd. This
ACK will indicate that how many packets are lost. If one
packet loss is perceived then the proposed technique
will assume that the network had mild congestion and
has recovered from it so it will continue with the rwnd
received i.e., 50, 50, 50, 50, 50(timer expires), 1, 50,
50,…, 50, and 25. However, if multiple packets are lost
then it updates rwnd and window size as 𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 =
𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 2⁄ , and 𝑟𝑟𝑤𝑤𝑛𝑛𝑡𝑡𝑜𝑜𝑟𝑟 𝑝𝑝𝑤𝑤𝑠𝑠𝑁𝑁 = 𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 respectively. This
reduction in window size will continue if repeatedly
multiple packet loss occur , however, the window size
will be boosted on successful transmission of a
complete window as 50, 50, 50, 50, 50(timer expires), 1,
25, 50, 50, 50, …,50 and 48. Therefore, approximately
42% and 40% reduction in packet overhead is received
in case of single and multiple packet loss when timer
expires respectively. Further, reduction in the
transmission time is perceived as approximately 35%
and 32% lower for the proposed UPCC technique in the
case of single and multiple packet lossrespectively
when timer expires.

The above example demonstrated that as more
and more packet are lost the performance of the
proposed UPCC technique improves both in terms of
packet overhead gain and time gain.

IV. Simulation Results

We perform extensive network simulations with
the help of ns-2, the widely used open-source network
simulator [20]. We compared our proposed Unexpected
Packet based Congestion Control (UPCC) technique
with traditional slow-start and AIMD technique
(NewReno[12]) and found that proposed UPCC
technique reduces the packet overhead by 22% to 40%
as shown in Figure 12 and also reduces the time to
transmit an application by 12% to 32% as depicted in
Figure 13. The variations in packet overhead and time
depend on the level of congestion present in the
network. The simulations were conducted in three
different categories as 1) congestion free 2) single
packet loss and 3) multiple packet loss. Figures 14 and
15 gives the results for congestion free network that
shows that proposed UPCC technique reduces packet
overhead and time thus minimizing the chance of
congestion in the network.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

20

(
DDDD

)
Y
e
a
r

20
14

E
Modified TCP for Time Critical Applications

Figure 12 : Packet overhead gain of proposed UPCC vs
SS-AIMD

Figure 13 : Time gain of proposed UPCC vs SS-AIMD

Similarly, we conducted simulations for varying
application sizes in case of multiple packet loss as
shown in Figures 16 and 17 that clearly demonstrate
that our proposed UPCC technique reduces packet
overhead and time thereby minimizing the chance of
congestion in the network.

Figure 14 : Packet overhead gain of proposed UPCC vs
SS-AIMD in congestion free network

Figure 17 :

Time gain of proposed UPCC vs SS-AIMD

in
congested network with multiple packet loss

 V.

Conclusions

In this paper we have demonstrated the benefit
of using Unexpected Packet based Congestion Control
(UPCC) technique. The simulation results shows that
UPCC technique reduces the packet overhead and also
reduces the time to transmit an application of various
sizes as compared to the existing slow-start and AIMD
technique.

References Références Referencias

1.

R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V.
Subramanian, F. Baker, B. V. Steeg “PIE: A

Lightweight Control Scheme To Address the
Bufferbloat

Problem,” Cisco Systems, December
10, 2012, Internet Draft, draft-pan-tsvwg-pie-00
(work in progress).

2.

Michael Welzl, “Network Congestion Control,
Managing Internet Traffic,” John Wiley & Sons Ltd,
2005.

3.

Filipe Abrantes, and Manuel Ricardo, “On
Congestion

Control for Interactive Real-time
Applications in Dynamic Heterogeneous 4G
Networks,” March 17, 2005. This work was funded
by the Portuguese Science and Technology
Foundation.

4.

S. Floyd and K. Fall, Promoting the Use of End-to-
End Congestion Control in the

Internet, Networking,
IEEE/ACM Transactions on, August 1999.

5.

Jacobson, “Congestion avoidance and control,”
ACM Computer Communication Review, vol. 18, pp.
314–329, August 1988.

6.

Srinivas Shakkottai and R. Srikant, “Network
Optimization and Control, Foundations and
Trendsin Networking” Vol. 2, No. 3 (2007) 271–379,
2008 S. DOI: 10.1561/1300000007.

7.

Steven H. Low, Fernando Paganini, and John C.
Doyle, Internet Congestion Control, IEEE Control
Systems Magazine, February 2002.

8.

M. Allman, V. Paxson, E. Blanton “TCP Congestion
Control,” Purdue University September 2009,
Network Working Group, Request for Comments:
5681, Category: Standards Track.

9.

Y. Cheng “Seeding RTO with RTT sampled during
three-way handshake,” Google. IncInternet Draft,
draft-ycheng-tcpm-rtosynrtt-00.txt (work in
progress), Intended status: Standard

Updates:
3390, 2988, Creation date: June 30, 2010,
Expiration date: January 2011.

10.

B. Constantine, G. Forget, R. Geib, R. Schrage
“Framework for TCP Throughput Testing,” Internet
Engineering Task Force

(IETF), Request for
Comments: 6349, ISSN: 2070-1721.

11.

B. A. Forouzan “TCP/IP Protocol Suite,” Tata
McGraw-Hill, 3rd edition.

12.

S. Floyd, T. Henderson, A. Gurtov “The New

Reno
Modification to TCP’s Fast Recovery Algorithm,”

April 2004, Network

Working Group, Request for
Comments: 3782, Category: Standards Track.

13.

V. Paxson, M. Allman, J. Chu, M. Sargent
“Computing TCP’s Retransmission Timer,”

June
2011, Internet Engineering Task Force (IETF),
Request for Comments: 6298, Category: Standards
Track, ISSN: 2070-1721.

14.

RFC: 793, “TRANSMISSION CONTROL
PROTOCOL,” Defense Advanced Research Projects

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

21

(
DDDD DDDD

)
Y
e
a
r

20
14

E

Modified TCP for Time Critical Applications

Agency, September 1981, University of Southern
California.

15. Postel, J., “User Datagram Protocol,” RFC 768, ISI,
28 August 1980.

Figure 15 : Time gain of proposed UPCC vs SS-AIMD in
congestion free network

Figure 16 : Packet overhead gain of proposed UPCC vs
SS-AIMD in congested network with multiple packet loss

16.

Postel, J., “Internet Protocol,” RFC 760,
USC/Information

Sciences Institute, January 1980.

17.

RFC: 791, “INTERNET PROTOCOL,” Defense
Advanced Research Projects Agency, September
1981, University of Southern California.

18.

H. Schulzrinne, S. Casner, R. Frederick, V.
Jacobson “RTP: A Transport Protocol for Real-Time
Applications,” January 1996,

Network

Working
Group, Request for Comments: 1889, Category:
Standards Track.

19.

Shudong Jin, Liang Guo, Ibrahim Matta, Azer
Bestavros “A Spectrum of TCP-friendly Window-
based Congestion Control Algorithms,” Boston
University, July 2002, This work was supported in
part by NSF grants CAREERANI-0096045, ANI-
0095988, ANI-9986397, and ITR ANI-0205294, and
bygrants from IBM, Sprint Labs, and Motorola Labs.

20.

Network Simulator ns-2. http://www.isi.edu/ns

nam/ns/.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

22

(
DDDD

)
Y
e
a
r

20
14

E
Modified TCP for Time Critical Applications

	Modified TCP for Time Critical Applications
	Author
	Keywords
	I. Introduction
	II. System Model
	III. Proposed Unexpected Packet based Congestion Control (upcc)Technique
	a) Existing SS-AIMD [8] technique in congestion freenetwork
	b) Proposed UPCC technique in congestion freenetwork
	c) Existing SS-AIMD [8] technique with single packetloss
	d) Proposed UPCC technique with single packet loss
	e) Existing SS-AIMD technique [5] when RTO timerexpires
	f) Proposed UPCC technique when RTO timer expires

	IV. Simulation Results
	V. Conclusions
	References Références Referencias

