
© 2014. Abhay Kumar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, 
and reproduction inany medium, provided the original work is properly cited. 

  
Global Journal of Computer Science and Technology: E 
Network, Web & Security  
Volume 14 Issue 1 Version 1.0 Year 2014 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Modified TCP for Time Critical Applications        
By 

Abstract- A network is defined to be a congested network if the load on the network exceeds the 
capacity of the network. The traditional congestion control technique of slow-start and AIMD was 
adopted when the aim was more on the stability of the Internet. But as more and more time critical 
applications such as multimedia applications are being used, we need alternate technique that 
reduces the drastic fluctuations of window size present in the existing technique. Thispaper proposes 
a techniquefor fast delivery of packet for a time critical application. It reduces the packet overhead 
and time compared to existing slow-start and AIMD technique. The proposed technique uses 
information or intelligence from the unexpected packet received. It is a fine modification of the 
existing slow-start and AIMD technique by adapting them for time critical applications. We propose 
modification at both thesender and the receiver hosts without modifying anything in the intermediate 
hosts of the network. Extensivesimulation show that proposed technique reduces congestion in the 
network by reducing both packet overhead and time compared to the traditional slow-start and AIMD 
technique and delivers the packets in timely manner than the existing techniques.             

Keywords: network protocols, TCP, congestion control, slow-start, aimd. 

GJCST-E Classification :  C.2.5 

 

ModifiedTCPforTimeCriticalApplications                                                                       
 
 
 
 
 

Abhay Kumar                                                                                         
 JB Institue of Engineering and Technology, India 

 
 

Strictly as per the compliance and regulations of:

 
 



Modified TCP for Time Critical Applications 
Abhay Kumar 

Abstract- A network is defined to be a congested network if the 
load on the network exceeds the capacity of the network. The 
traditional congestion control technique of slow-start and 
AIMD was adopted when the aim was more on the stability of 
the Internet. But as more and more time critical applications 
such as multimedia applications are being used, we need 
alternate technique that reduces the drastic fluctuations of 
window size present in the existing technique. Thispaper 
proposes a techniquefor fast delivery of packet for a time 
critical application.  It reduces the packet overhead and time 
compared to existing slow-start and AIMD technique. The 
proposed technique uses information or intelligence from the 
unexpected packet received. It is a fine modification of the 
existing slow-start and AIMD technique by adapting them for 
time critical applications. We propose modification at both 
thesender and the receiver hosts without modifying anything in 
the intermediate hosts of the network. Extensivesimulation 
show that proposed technique reduces congestion in the 
network by reducing both packet overhead and time 
compared to the traditional slow-start and AIMD technique and 
delivers the packets in timely manner than the existing 
techniques. 
Keywords: network protocols, TCP, congestion control, 
slow-start, aimd. 

I. Introduction 

he Internet is a global network of interconnected 
computers which allows individuals and 
organizations around the world to communicate 

and share information with each other. This demand has 
natural fluctuation; therefore, the Internet performance is 
largely governed by it, leading to possible congestion 
which occurs when resource demands exceed the 
capacity of the network. Due to the explosive growth of 
the Internet and increasing demand for multimedia 
applications like voice over IP, real-time video 
streaming, IPTV and financial transactions, the issue of 
congestion has received tremendous attention from 
academia and industry. Transmission of real-time 
multimedia applications typically has large bandwidth, 
small delay and low-loss requirements. However, the 
current Internet does not guarantee any quality of 
service (QoS) as it is based on best-effort service model 
of IP [1]. A network is said to be congested from the 
perspective of a user if the service quality noticed by the 
user decreases because of an increase in network load. 
The goal of congestion control mechanisms is simply to 
use the network as efficiently as possible, that is, attain 
the  highest possible throughput while maintaining a low  
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loss ratio and small delay. Congestion must be avoided 
because it leads to queue growth and queue growth 
leads to delay and loss [2 

As the network grew, it was clear that 
unrestricted data transfer by many users over a shared 
resource, i.e., the Internet, could be bad for the end 
users; excess load on the links leads to packet loss and 
decreases the effective throughput. This kind of loss 
was experienced at a significant level in the ’80s and 
was termed congestion collapse [5]. Thus, there was a 
need for a protocol to control the congestion in the 
network, i.e., control the overloading of the network 
resources. It led to the development of a congestion 
control algorithm for the Internet by Van Jacobson [5]. 
This congestion control algorithm was implemented 
within the protocol used by the end hosts for data 
transfer called the Transmission Control Protocol (TCP).  

There are several different flavors of TCP 
congestion control, each of which operates somewhat 
differently. But most of the versions of TCP are window-
based protocols, wherein the idea is that each user 
maintains a number called a window size, which is the 
number of unacknowledged packets that are allowed to 
be sent into the network. Any packet from the new 
window can be sent only when an acknowledgment for 
the last packet in the previous sent window is received 
by the sender. TCP adapts the window size in response 
to congestion information. The window size is increased 
if the sender determines that there is excess capacity 
present in the route and decreases if the sender 
determines that the current number of in-flight packets 
exceeds the capacity of the route. The exact means of 
determining whether to increase or decrease the 
window size is what determines the difference between 
the congestion control mechanisms of different TCP 
flavors. The most commonly used TCP flavors used for 
congestion control in the Internet today are Reno and 
New Reno [12]. Both of them are updates of the TCP-
Tahoe, which was introduced in 1988[5]. Although, they 
vary significantly in many regards, the basic approach to 
congestion control is similar. The idea is to use 
successful reception of packets as an indication of 
available capacity and dropped packets as an indication 
of congestion. In most cases, eachtime the destination 
receives a packet, it sends an acknowledgement     
(also called ACK) asking for the next packet in sequence 
to be transmitted. When an acknowledgment for a 
windowis received, the protocol increases its window 
size. However, on reception of three duplicate 
acknowledgments or dupacks (i.e., four successive 

T 
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identical acknowledgments) by the sender is taken by it 
as an indication that packet has been lost due to 
congestion. In case the source does not receive any 
acknowledgement for a finite time (RTO [13]), it 
assumes that all unacknowledged packets have been 
lost. In both the cases the source aggressively proceeds 
to cut down the window size and retransmit the lost 
packets. 

TCP Vegas improves upon TCP Reno through 
three main techniques. The first is a new retransmission 
mechanism where timeout is checked on receiving the 
first duplicate acknowledgment, rather than waiting for 
the third duplicate acknowledgment, and results in a 
more timely detection of loss. The second technique is a 
more prudent way to grow the window size during the 
initial use of slow-start when a connection starts up, and 
it results in fewer losses. The third technique is a new 
congestion avoidance mechanism that corrects the 
oscillatory behavior of Reno. The idea is to have a 
source estimate the number of its own packets buffered 
in the path and try to keep this number between α 
(typically 1) and β (typically 3) by adjusting its window 
size. The window size is increased or decreased linearly 
in the next round-trip time according to whether the 
current estimate is less than α or greater than β. 
Otherwise the window size is unchanged. The rationale 
behind this is to maintain a small number of packets in 
the pipe to take advantage of extra capacity when it 
becomes available. A source periodically measures the 
round-trip queuing delay and sets its rate to be 
proportional to the ratio of its round-trip propagation 
delay to queuing delay, the proportionality constant 
being between α and β. Hence, the more congested its 
path, the higher the queuing delay and the lower the 
rate. The Vegas source obtains queuing delay by 
monitoring its round-trip time (the time between sending 
a packet and receiving its acknowledgment) and 
subtracting from it the round-trip propagation delay [7]. 

In today’s Internet, real-time applications such 
as VoIP, videoconferencing and on-line gaming mostly 
use RTP over UDP or UDP alone to transport data. 
Because these protocols are unresponsive to 
congestion events, the growing popularity of 
applications that use them endangers the stability of the 
Internet. So, to make it possible that real-time 
applications are widely adopted, common congestion 
control mechanisms suitable for real time multimedia are 
expected to be deployed[3] [4]. 

The existing techniques does not use any 
information or intelligence from the unexpected packet 
received, unexpected packets are simply discarded. The 
proposed techniques tries to retrieve information based 
on the unexpected packet received and perform the 
congestion control accordingly. 

The remaining paper is organized as follows: 
Section II explains the system or network model used in 

this paper. Section III describes our proposed 
Unexpected Packet based Congestion Control (UPCC) 
Technique. Section IV presents the simulation results 
that demonstrate our proposed UPCC technique 
reduces congestion in the network compared to 
traditional slow-start and AIMD technique. Finally 
Section V concludes the paper. 

II. System Model 

This paper considers a realistic computer 
network consisting of several sources and destinations 
connected via multiple routers and links. The source 
(sender) communicates to the destination (receiver) in 
form of packets. The series of routers and links that a 
packet follows from the source to destination is called a 
route. A pair of sender and receiver may be connected 
via multiple routes. This network is represented in the 
Figure 1. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1 :
 
Network model

 

For simplicity of the explanation, we consider 
only a pair of sender (S) and receiver (R) connected via 
multiple routes, as shown in Figure 2.

 

The sender and 
the receiver may be running multiple different 
applications. However, the packets of the application 
are transmitted using the first come first serve policy. 
The connection is established using three-way 
handshake as in case of existing TCP. However, this 
paper proposes few modifications in this phase also to 
make the subsequent transmissions congestion aware. 

 
 

 
 
 
 
 
 
 
 
 

 

Figure 2 :
  
Simplified network model
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TCP operates in two distinct phases. When file 
transfer begins, the window size is 1, but the source 
rapidly increases its transmission window size so as to 
reach the available capacity quickly. Let us denote the 
window size by W. The algorithm increases the window 
size by 1 each time an acknowledgement for a packet 
indicating success is received. This is called the slow-
start phase. Since one would receive 
acknowledgements corresponding to one window’s 
worth of packets in an RTT [13], and we increase the 
window size by one for each successful packet 
transmission, this also means that (if all transmissions 
are successful) the window would double in each RTT, 
so wehave an exponential increase in rate as time 
proceeds. Slow-start refers to the fact that the window 
size is still small in this phase, but the rate at which the 
window is increased is quite rapid. When the window 
size either hits a threshold, called the slow-start 
threshold (ssthresh) or the transmission suffers a loss 
(immediately leading to a halving of window size), the 
algorithm shifts to a more conservative approach called 
the congestion avoidance phase. When in the 
congestion-avoidance phase, the algorithm increases 
the window size by 1 every time feedback of a 
successful packet transmission in the corresponding 
window is received. When a packet loss is detected by 
the receipt of three dupacks, the slow-start threshold 
(ssthresh) is set to half of the current window i. e TCP 
Reno cuts its window size by half (W ← W/2) and 
algorithm enters additive increase phase where it start 
sending segments from current window onwards. Thus, 
in each RTT, the window increases by one packet i.e., a 
linear increase in rate. Protocols of this sort where 
increment is by a constant amount, but the decrement is 
by a multiplicative factor are called additive increase 
multiplicative decrease (AIMD) protocols. When packet 
loss is detected by a timeout, the slow-start threshold 
(ssthresh) is set to half of the current window and the 
algorithm enters the slow-start phase i.e., it start sending 
from 1 packet onwards. Let us call the congestion 
window at time t as W (t). This means that the number of 
packets in-flight is W (t). The time taken by each of these 
packets to reach the destination, and for the 
corresponding acknowledgement to be received is RTT. 
The RTT is a combination of propagation delay and 
queuing delay. A window-based congestion control 
scheme defines one control rule for window increase, 
and another rule forwindow decrease. AIMD uses the 
following control rule [19]: 

Increase:𝑊𝑊𝑡𝑡+1
 ⃪ 𝑊𝑊𝑡𝑡  + 𝛼𝛼,     𝛼𝛼 > 0 

       Decrease:𝑊𝑊𝑡𝑡  ⃪ 𝑊𝑊𝑡𝑡  − 𝛽𝛽𝑊𝑊𝑡𝑡 ,    0 < 𝛽𝛽 > 1 

Where α and β refer to the additive increase 
constant and multiplicative decrease constant β 

respectively. The standard TCPuses the value of these 
constants α and β as 1 and 0.5 respectively. 

This subsection provides the definition of 
several terms and the notations that will beused 
throughout the remainder of this paper. 

• SYN: To establish a connection, TCP uses a three-
way handshake. Synchronize (SYN) [9] packet is the 
first control packet sent for the three-way handshake 
by the sender wishing to establish the TCP 
connection. 

• ACK: An acknowledgement (ACK) [14] is a control 
packet used between communicating processes or 
computers to signify receipt of receiving a data 
packet, and it is a part of a communication protocol. 
For example, ACK packets are used in the 
Transmission Control Protocol (TCP) to 
acknowledge the receipt of SYN packets while 
establishing a connection in three-way handshake, 
and acknowledge the receipt of data packets while 
a connection is in data transfer phase. 

• SS-AIMD:  In the Slow-Start (SS) [5] [8] and Additive 
Increase Multiplicative Decrease (AIMD)[5] [14] 
algorithm, when a TCP connection first starts, the 
slow-start phase initializes a congestion window to 
one packet and transmits. After receiving 
acknowledgement from the receiver, the window 
increases by one packet for each acknowledgement 
returned. After successful transmission of these two 
packets and acknowledgements received, the 
window is increased to four packets and so on, 
doubling from there up to a threshold known as 
slow-start threshold (ssthresh). After slow-start 
threshold, the algorithm enters into additive increase 
multiplicative decrease (AIMD) phase where window 
increases by one packet for successful transmission 
of all the packets in the window i.e., additive 
increase. In this phase, the transmission rate slows 
down to avoid congestion. But whenever a packet is 
lost, the sender immediately sets its transmission 
window to one half of the current window size i.e., 
multiplicative decrease. 

• ssthresh: Slow-start threshold (ssthresh)[2] is a 
point where slow-start phase ends and additive 
increase multiplicative decrease (AIMD) phase 
starts.  

• dupacks: When receiver receives a TCP packet with 
a sequence number higher than the expected one 
(out of turn packet). The receiver sends an 
immediate ACK with the Acknowledgement field set 
to the Sequence number the receiver was 
expecting. This ACK is a duplicate of an ACK 
(dupacks) [2] which was sent previously. This is 
done to update the sender with regards to the 
missing TCP packets.  

• rwnd: Receiver advertised window (rwnd)[10] or 
receiver queue capacity is the most recent 
advertised window that contains the number of 
packets a receiver can process. This is one of the 
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two variables which affect how much 
unacknowledged data a sender can send; the other 
variable is congestion window. The receiver 
advertised window is the value of the window field in 
a TCP packet header. 

• cwnd: Congestion window (cwnd)[12] is a TCP state 
variable maintained at the sender that limits the 
amount of data a TCP can transmit without facing 
congestion through the network. At any given time, 
a TCP transmit minimum of congestion window and 
receiver advertised window. 

• TCP: The Transmission Control Protocol (TCP)[14] 
is used as a highlyreliable host-to-host protocol 
between hosts in packet-switched 
computercommunication networks, and in 

interconnected systems of such networks.TCP is a 
connection-oriented, end-to-end reliable protocol 
designed to fit into a layered hierarchy of transport 
layer protocolswhich support multi-network 
applications. The TCP provides for reliable inter-
process communicationbetween pairs of processes 
in host computers attached to distinct but 
interconnected computer communication networks.  

• UDP: The User Datagram  Protocol  (UDP)[15] is 
defined as a datagram mode of packet-switched 
computer communication in the environment of an 
interconnected set of computer networks. This 
protocol assumes that the Internet Protocol (IP) [16] 
is used as the underlying protocol. User Datagram 
Protocol is unreliable connection-less protocol used 
at transport layer 

• IP: The Internet Protocol (IP)[17] is designed for use 
in interconnected systems ofpacket-switched 
computer communication networks. The internet 
protocol provides fortransmitting blocks of data 
called datagram from sources to destinations. The 
internet protocol also provides forfragmentation and 
reassembly of long datagram, if required, 
fortransmission through "small packet" networks. 

Internet Protocol is unreliable connection-less 
protocol used at network layer 

•
 

RTP:
 

The real-time transport protocol (RTP)[18] 
provides end-to-end network transport functions 
suitable forapplications transmitting real-time 
information, like audio, video ordata, over multicast 
or unicast network services. RTP does not provide 
resource reservation and also does not guarantee 
quality-of-service for

 
real-time services. This 

transport protocol is also augmented by another 
real-time control protocol (RTCP) to allow 
monitoring of the data delivery in amanner scalable 
to large multicast networks, and to provide 
minimalcontrol and identification functionality. RTP 
and RTCP are designedto be independent of the 
underlying transport and network layers.

 

• VoIP: Voice over Internet Protocol (VoIP) [3] is a 
mechanism that allows telephone calls to be made 
over computer networks like the Internet. VoIP 
converts analog voice signals into digital data 
packets and supports real-time, two-way 
transmission of conversations using Internet 
Protocol. 

• IPTV: Internet Protocol television (IPTV)[3] is the 
process of transmitting and broadcasting television 
programs using the Internet protocol suite over a 
packet-switched network such as the Internet, 
instead of being delivered through traditional 
terrestrial, satellite signal and cable television 
formats. 

• RTO: The retransmission timeout (RTO) [13] is 
aretransmission timer used by the Transmission 
Control Protocol to ensure data delivery in the 
absence of anyfeedback from the remote data 
receiver. The duration of this timeris referred to as 
RTO. The retransmission timeout timer is used for 
retransmissions of lost or delayed packet. 

• RTT (∆): Round trip time (RTT)[13] is the length of 
time it takes for a packet to be sent and the length 
of time it takes for an acknowledgment of that 
packet to be received 

• QoS: Quality of service (QoS) [2] is the ability to 
provide different priority to different applications, 
users, or data flows i.e., it guarantees a certain level 
of performance to a data flow. Quality of service 
guarantees are important if the network capacity is 
insufficient, especially for real-time multimedia 
applications such as voice over IP, online games 
and IPTV, since these applications often require 
fixed bit rate and are delay sensitive. A best-effort 
network like Internet does not support quality of 
service. 

Table 1 :  Notations. 

𝑋𝑋𝐸𝐸 The number of windows and hence number 
of acknowledgements used in the existing 
slow-start and AIMD technique 

𝑋𝑋𝑃𝑃 The number of windows and hence number 
of acknowledgements used in the 
proposed Unexpected Packet based 
Congestion Control technique 

𝑇𝑇𝐸𝐸 The total time required to transmit an 
application in the existing slow-start and 
AIMD technique 

𝑇𝑇𝑃𝑃 The total time required to transmit an 
application in the proposed Unexpected 
Packet based Congestion Control 
technique 

W Window size 
Ws Window start 
Wend Window end 
∆ Round trip time 
δ Time required to transmit consecutive 

packets in a window 
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III. Proposed Unexpected Packet based 
Congestion Control (upcc) 

Technique 
The proposed technique is a fine modification 

of the existing slow-start and AIMD technique by 
adapting it and making congestion aware. We propose 
modification at both the sender and receiver hosts 
without modifying anything in the intermediate hosts of 
the network. The proposed modification can be 
described in the form of a dialogue between sender and 
receiver from initiation to the termination of a 
connection. 

At sender side: 
Whenever a sender host wants to communicate 

it will send a SYN (i) packet to the receiver host 
expressing its desire to communicate as in existing 
technique [8] [9]. On sending the SYN(i) packet the 
sender will start a timer based on RTT within which it 
should ideally receive an ACK (i+1) packet from the 
receiver. This can be seen in Figure 3. In case, he does 
not receive an ACK (i+1) packet, he assumes that there 
is congestion in the network and therefore it retransmit 
SYN (i) packet with doubled RTT. This information about 
congestion is stored in a separate variable ‘C’ that will 
be used in data transfer stage, i.e., it set C=1. This 
communication can be seen in Figure 4. 

Algorithm for three-way handshake at sender 
start 

Send a SYN message and start a timer 
Wait for an ACK 
If timer expires and no ACK received 
C=1 
Resend the SYN message with RTT=2RTT 

stop 

 

Figure 3 : Three-way handshakein an ideal condition. 

At receiver side: 
On receiving a SYN(i) packet it will send an 

ACK(i+1) packet containing its available queue capacity 
‘rwnd’ together with its own SYN(j) and set C=0 to 
inform its readiness for communication and no 

congestion perceived so far. To complete the three-way 
handshake of TCP connection it starts its timer waiting 
for an ACK (j+1) from sender for his SYN (j) as shown in 
Figure 5. However, if it receives unexpected duplicate 
SYN (i) message or no ACK (j+1) within its RTT, it 
indicates that its ACK (i+1) or ACK (j+1) was lost and 
hence congestion may be present. It responds to this 
new SYN (i) received or RTT time out by 

 

Figure 4 : Three-way handshakewhen ACK from receiver 
is lost. 

retransmitting with a packet containing SYN(j), 
ACK(i+1), and rwnd. This information about congestion 
is stored in a separate variable ‘C’ that will be used in 
data transfer stage, i.e., it set C=1. This communication 
can be seen in Figures 6 and 7.  

Algorithm for three-way handshake at receiver 
start 

If (SYN message received) 
Send ACK+SYN message and start a timer 
If timer expires and no ACK received or duplicate 
SYN (i) is received 
C=1 
Resend the ACK+SYN message with RTT=2RTT 

stop 

 

Figure 5 : Three-way handshake in an ideal condition 

After the three-way handshake is completed, 
proposed algorithm enters the data transfer phase. 
However, during the handshake if no timer expires or no 
duplicate SYN or ACK packets are received, the 
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proposed technique presumes network to be 
congestion free. Thus, it advocates an aggressive start 
wherein the window size is set to be equalto the receiver 
queue capacity ‘rwnd’. On the other hand, a congestion 
may be perceived when C=1 at either the sender or 
receiver side. In such case we follow the same existing 

 

Figure 6 : Three-way handshake when ACK from sender 
is lost. 

 

Figure 7 : Three-way handshake when receiver receives 
duplicate unexpected SYN(i). 

slow-start and AIMD technique[5] [8] for selecting the 
window size. After the selection of window size is made, 
the data transfer phase is initiated by the sender and the 
dialogue continues as follows: 
Algorithm for window selection 
start 
 If C=0 
Window Size = rwnd  
// we apply aggressive start i.e., it does not  
depend on cwnd as per standard TCP [5] 
 If C=1 
 Window Size = min (cwnd, rwnd)  
// we apply the standard TCP rule i.e.,  
slow-start with AIMD [8] 
stop 

At sender side: 
The sender will start sending the packets up to 

the window size (Ws, Wend) but it doesn’t expects any 
ACK till it completes sending the entire window. In other 
words, it expects one ACK (wend) per window. In ideal 

condition it will receive the ACK (wend) and assumes no 
congestion C=0 and will adjusts the window as per the 
policy defined above, in the algorithm for window 
selection. 

At receiver side: 
On receiving the ACK (j+1) with the window 

size it will set its window and will wait to receive the data 
packets. When requisite packets arrive it acknowledges 
them by sending ACK (wend) for the same. However, at 
any point of time, if it feels overloaded or underloaded, it 
will send its updated queue capacity ‘rwnd’ to the 
sender piggybacking with ACK(k) where k-1 is the last 
packet accepted from the sender.  

At sender side: 
If it receives an unexpected ACK (k) (as it 

expects only ACK (wend) for any window) then it will 
simply slides the window such that it starts with the first 
unacknowledged packet, i.e., packet with sequence 
number k. Further, it adjusts the window according to 
the new ‘rwnd’ suggested by the receiver. Thus, on 
receiving one unexpected ACK (k) the sender simply 
slides and adjust the window size and again expects 
one ACK (wend) within the RTT of the new window. This 
communication can be seen in Figure 8 where ‘k = 
n+3’ and new ‘rwnd = 12’.  

 

Figure 8 :
 

Data transfer phase when sender
 

receives an unexpected ACK with new rwnd

© 2014   Global Journals Inc.  (US)
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At receiver side: 
The above dialogue presumes that no 

congestion exists and hence, no packet loss occurs. 
However, if the receiver finds an out of turn packet it 
indicates that the intermediate packet/s could be lost. In 
such case it will send an ACK (k) with current ‘rwnd’ for 
the last in order packet i.e k-1 received. It will also slide 
its window but it does not expect a retransmission of the 
intermediate packet/s as they may be delayed. 
However, if it further receives second out of the turn 
packet it presumes that intermediate packet/s is lost. It 
sends a duplicate ACK (k) with current ‘rwnd’ and starts 
a timer based on RTT within which it should receive the 
lost packet. In case it does not, it will resend an ACK (k). 
This communication can be seen in Figure 9.   

 
Figure 9 :

 
Data transfer phase when sender receives 

duplicate unexpected ACK
 

At sender side: 
On receiving the first unexpected ACK

 
(k), the 

sender simply slides the window as was discussed in 
Figure 8. But if it receive a duplicate ACK

 
(k), i.e., two 

ACK
 
(k) it indicates that mild congestion is present in the 

network. This assumption of mild congestion is based 
on the understanding between sender and receiver that 
two duplicate acknowledgements will be send by the 
receiver only when the receiver receives two out of turn 
packets. Therefore, it must retransmit only that missing 
kth

 
packet and continue with sending the packets from 

first non-transmitted packets in the current window and 
expect the ACK

 
(wend) for the current entire window. This 

communication can be seen in Figure 9.
 

At receiver side: 
On receiving the missing packet, it will place it 

in order and continue receiving till the end of window. If 
all the packets arrive, the receiver will send the ACK 
(wend). However, if it misses another packet in the same 
window, it indicates that the congestion is increasing 
and it will send the duplicate ACK (j) with ‘rwnd’=rwnd/2 
as shown in Figure 10. 

 

Figure 10 :  Data transfer phase when sender receives 
second pair of unexpected ACK with reduced rwnd. 

At sender side: 
If sender receives another pair of unexpected 

ACK (j) in its current window, it indicates that the second 
packet in the same window has been lost implying that 
window size is too big. In such scenario the sender will 
slide the window to the first unacknowledged packet 
and retransmit the missing packet. It will also reduce its 
transmission window as indicated by the receiver to half. 

This communication can be seen in Figure 10.After 
transmission of the entire window the sender waits for 
RTT time to receive the acknowledgement ACK (wend). 
If it receives ACK (wend) within the stipulated time then 
he assumes that the network is congestion free and 
continues with the next window. However, if ACK wend) 
is not received within the RTT the sender presumes high 
congestion in the network. It retransmits the first packet 
in the window as shown in Figure 11, and starts the 
timer with RTT time as perexisting slow-start and AIMD 
algorithm [5] [8]. 
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At receiver side: 
If retransmission of a packet which is not asked 

by the receiver i.e., unexpected packet is received. The 
receiver will transmits the ACK (k) where k-1 is the last in 
order packet received. As demonstrated in the Figure 
11, when the sender retransmits the first packet of the 
last unacknowledged window i.e., Ws=n+9 when it 
does not receive ACK (n+15) i.e., ACK (Wend) within its 
RTT, the  
 

Figure 11 :  Data transfer phase when ACK(Wend) for 
complete window is lost 

receiver will respond by retransmitting the ACK (n+15) 
i.e., ACK (Wend) indicating the receipt of the complete 
window n+9 to n+14. By doing this the receiver avoids 
the retransmission of the remaining packets in the last 
unacknowledged window i.e., n+10 to n+14. For large 
window this is substantial reduction in retransmission 
improving the throughput of the network and reducing 
congestion. 

At sender side 
It may receive a unexpected delayed ACK 

(Wend) in response to Ws retransmitted by it for the 
previous window. As shown in Figure 11, it receives ACK 

(n+15) i.e., ACK (Wend) in response to its retransmission 
of packet Ws=n+9. Theexisting techniques [8] will 
discard this ACK (Wend). However, in the proposed 
technique it is not simply discarded but is used to 
indicate mild congestion and the previous window 
packets have been received without any problem. Thus, 
sender should stop retransmission and recover from 
slow-start phase by sliding the window up to the first 
unacknowledged packet and continue with the original 
window size.  

Both sender and receiver utilize the congestion 
information received for one connection over all other 
connections made by them leading to recovery from the 
congestion by the network. 

The proposed Unexpected Packet based 
Congestion Control (UPCC) technique is illustrated with 
the following motivational example which will illustrate 
the limitations of existing techniques. 

Let an application have 1024 packets and as 
considered by the authors in [10] [11], the slow-start 
threshold (ssthresh) as 40 packets and receiver 
advertised window (rwnd) as 50 packets, we also 
consider the same. We estimate the packet overhead 
gain and the time gain for the existing slow-start AIMD 
technique and the proposed UPCC techniques as 
follows. 

a) Existing SS-AIMD [8] technique in congestion free 
network 

The existing slow-start technique [5] will initially 
set the window as one packet. When its corresponding 
ACK arrives, the source sets the corresponding window 
to two packets. It then transmits two packets. On 
receiving the two corresponding ACK, it sets the window 
size to four and so on. Therefore, the slow start 
technique increases the window size from 1 
exponentially up to ssthreshold of 40 packets, forming a 
geometric progression of 1, 2, 4, 8, 16, and 32. From 
ssthreshold to rwnd, it will perform additive increase as 
arithmetic progression of 40, 41, 42, 43, 44, 45, 46, 47, 
48, 49 and 50. Beyond rwnd, the current size of the 
window cannot increase because it has to be minimum 
of cwnd and rwnd, thus it remains constant at rwnd. The 
existing technique during the slow start phase will 
expect an acknowledgement per packet, while in the 
subsequent phase only one ACK per window will be 
received.  Hence, apart from the 1024 data packet 
additionally 84 ACK packets will be required. 

However, to give the existing technique a fair 
chance we assume that only one ACK per window is 
required. Mathematically, the minimum number of ACKs 
required to transmit the application of 1024 packets in 
congestion free network is 

𝑋𝑋𝐸𝐸= 𝑛𝑛𝐺𝐺𝑃𝑃+
 

𝑛𝑛𝐴𝐴𝑃𝑃+

�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

𝑜𝑜𝑜𝑜
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑡𝑡𝑝𝑝
 

𝑡𝑡𝑜𝑜
 

𝑁𝑁𝑁𝑁
 

𝑡𝑡𝑁𝑁𝑝𝑝𝑛𝑛𝑝𝑝𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 −(𝑆𝑆𝐴𝐴𝑃𝑃 +𝑆𝑆𝐺𝐺𝑃𝑃 )

𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡
�  

Where 

𝑛𝑛𝐺𝐺𝑃𝑃=⌈𝑙𝑙𝑜𝑜𝑙𝑙2𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ⌉
 

𝑛𝑛𝐴𝐴𝑃𝑃= (rwnd-ssthresh)+1 

𝑆𝑆𝐴𝐴𝑃𝑃= 
(𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 −𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ+1)(𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ+𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 )

2
 

𝑆𝑆𝐺𝐺𝑃𝑃=2⌈𝑙𝑙𝑜𝑜𝑙𝑙2𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ⌉-1 
Thus, the variation in window size will be as 1, 2, 

4, 8, 16, 32,40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,50, 
50, 50, 50, 50, 50, 50, 50, 50and 16. In other words, 
additional X_E=27 number of acknowledgements must 
be sent by the receiver to acknowledge the correct 
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receipt of each window, causing the packet overhead in 
the network. 

The time required by the slow-start technique to 
transmit initial packets in the windows of 1, 2, 4, 8, 16, 
and 32 will be ∆ + (∆+δ) + (∆+3δ) + (∆+7δ) + 
(∆+15δ) + (∆+31δ) where ∆ is RTT and δ is the time to 
transmit consecutive packet in a window. Similarly, the 
time required for transmitting packets in the remaining 
windows can be estimated. Therefore, the total time 
required by the slow-start and AIMD technique will be             
TE = 27∆ + 997δ. 

In the following subsection we discuss packet 
overhead gain and time gain for the proposed 
Unexpected Packet based Congestion Control 
technique in congestion free network. 

b) Proposed UPCC technique in congestion free 
network 

In congestion free network, the proposed UPCC 
technique advocates the use of rwnd (receiver 
advertised window) as a window size for the 
transmission. Therefore, the number of ACKs required 
for transmitting the application of 1024 packets will be  

𝑋𝑋𝑃𝑃 = �
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑡𝑡𝑝𝑝 𝑡𝑡𝑜𝑜 𝑁𝑁𝑁𝑁 𝑡𝑡𝑁𝑁𝑝𝑝𝑛𝑛𝑝𝑝𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡
� 

Hence, XP =21, implying 21 acknowledgements 
are required as compared to 27 acknowledgements in 
the existing technique. Thus, approximately 22% 
reduction in the number of acknowledgements is 
achieved through proposed UPCC technique. 

Further, the time required to transmit an 
application of 1024 packets will be                                      
𝑇𝑇𝑃𝑃 = (∆+49δ) × 20 + (∆ + 23δ)= 21∆ + 1003δ. Thus, 
the proposed UPCC technique reduces the time by 
approximately 12% leading to lesser chance of 
congestion in the network. 

In the following subsection we discuss packet 
overhead gain and time gainin congested network 
where packet loss may occur while transmitting this 
application. 

c) Existing SS-AIMD [8] technique with single packet 
loss 

Consider that 240th packet is lost while 
transmitting 11th window where 44 packets can be 
transmitted without waiting for the acknowledgement. 
When receiver receives out of turn packets, it sends 
duplicate acknowledgement. When the sender receives 
3 duplicate ACKs, it indicates mild congestion. The 
existing algorithm updates ssthreshold, cwnd and 
window size as 𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ𝑜𝑜𝑙𝑙𝑡𝑡 = cwnd 2⁄ , 𝑝𝑝𝑟𝑟𝑛𝑛𝑡𝑡 =
𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑝𝑝ℎ𝑜𝑜𝑙𝑙𝑡𝑡, and 𝑟𝑟𝑤𝑤𝑛𝑛𝑡𝑡𝑜𝑜𝑟𝑟 𝑝𝑝𝑤𝑤𝑠𝑠𝑁𝑁 = min(𝑝𝑝𝑟𝑟𝑛𝑛𝑡𝑡, 𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡) 
respectively.  It retransmits the lost packet and enters in 
to AIMD phase directly. In AIMD phase, the window 
starts increasing additively from new calculated 
ssthreshold to rwnd(receiver advertised window) as 
arithmetic progression. Thus, the variation in window 

size will be 1, 2, 4, 8, 16, 32,40, 41, 42, 43, 44(loss 
occurs),22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 
35, 36, 37, 38, 39, 40, 41, 42, 43 and 37. Thus, 𝑋𝑋𝐸𝐸 =
34 + 3, i.e., 37 acknowledgements which include three 
duplicate acknowledgements must be sent by the 
receiver to acknowledge the correct receipt of each 
window, causing the packet overhead on the network. 
The total time required for this process will be 𝑇𝑇𝐸𝐸  = 34∆ 
+ 991δ.  

The subsection discusses the performance of 
the proposed technique under the same scenario. 

d) Proposed UPCC technique with single packet loss 
When 240th packet is lost and receiver receives 

the 241st packet after the receipt of 239th packet. It 
sends an acknowledgement for the correct receipt of 
239th and expecting 240th packet, i.e., ACK (240). 
However, when it receives the 242nd packet it will resend 
the ACK (240). When sender receives two ACK (240), it 
retransmits the lost packet and keeps the 
𝑟𝑟𝑤𝑤𝑛𝑛𝑡𝑡𝑜𝑜𝑟𝑟 𝑝𝑝𝑤𝑤𝑠𝑠𝑁𝑁 = 𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡(receiver advertised window) 
indicating mild congestion. Thus, the proposed UPCC 
technique in congested network with single packet loss 
requires,𝑋𝑋𝑃𝑃 = 23, acknowledgements where 2 extra 
acknowledgements are used for informing loss of 240th 
packet. Approximately 38% and 24% reduction in the 
packet overhead and time is achieved respectively. 

Further, the performance of the proposed 
UPCC technique is evaluated with respect to the existing 
SS-AIMD technique under severe congestion wherein 
the ACK is not received within the stipulated RTO time, 
i.e., when RTO timer expires. 

e) Existing SS-AIMD technique [5] when RTO timer 
expires 

Whenever sender’s RTO timer expires before 
receiving acknowledgement, it indicates severe 
congestion. The sender presumes that the entire 
window is lost and starts retransmission by reducing the 
window size back to one. In the above example, while 
transmitting an application consisting of 1024 packets if 
the RTO timer expireswhen the sender window is 44. 
The algorithm updates ssthreshold, cwnd and window 
size as ssthreshold = current window 2⁄ , cwnd = 1 and 
window size = min(cwnd, rwnd) respectively. It then 
starts retransmission by entering into slow-start phase 
where the window size increases exponentially from 1 
up to new ssthreshold of 22 packets as geometric 
progression. After this it enters in AIMD phase, where 
the window size increases additively from new 
ssthreshold calculated to rwnd(receiver advertised 
window) as arithmetic progression. Thus, the variation in 
window size will be 1, 2, 4, 8, 16, 32, 40, 41, 42, 43, 
44(timer expires), 1, 2, 4, 8, 16, 22, 23, 24, 25,…, 44 and 
finally 5. Hence, 𝑋𝑋𝐸𝐸 = 40 number of acknowledgements 
must be sent by the receiver. The total time required by 
the existing SS-AIMD technique when timer expires will 
be 𝑇𝑇𝐸𝐸 =  44∆ +  1028δ. 
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The performance of the proposed Unexpected 
Packet based Congestion Control (UPCC) technique 
when RTO timer expires is as follows: 

f) Proposed UPCC technique when RTO timer expires 
Whenever sender’s RTO timer expires before 

receiving an acknowledgement, it indicates severe 
congestion due to single or multiple packet loss. In the 
proposed technique the sender starts retransmission of 
the first unacknowledged packet and waits for RTO time 
again. In its response the receiver will send the ACK of 
the last correctly received packet with the rwnd. This 
ACK will indicate that how many packets are lost. If one 
packet loss is perceived then the proposed technique 
will assume that the network had mild congestion and 
has recovered from it so it will continue with the rwnd 
received i.e., 50, 50, 50, 50, 50(timer expires), 1, 50, 
50,…, 50, and 25. However, if multiple packets are lost 
then it updates rwnd and window size as 𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 =
𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 2⁄ , and 𝑟𝑟𝑤𝑤𝑛𝑛𝑡𝑡𝑜𝑜𝑟𝑟 𝑝𝑝𝑤𝑤𝑠𝑠𝑁𝑁 = 𝑁𝑁𝑟𝑟𝑛𝑛𝑡𝑡 respectively. This 
reduction in window size will continue if repeatedly 
multiple packet loss occur , however, the window size 
will be boosted on successful transmission of a 
complete window as 50, 50, 50, 50, 50(timer expires), 1, 
25, 50, 50, 50, …,50 and 48. Therefore, approximately 
42% and 40% reduction in packet overhead is received 
in case of single and multiple packet loss when timer 
expires respectively. Further, reduction in the 
transmission time is perceived as approximately 35% 
and 32% lower for the proposed UPCC technique in the 
case of single and multiple packet lossrespectively 
when timer expires. 

The above example demonstrated that as more 
and more packet are lost the performance of the 
proposed UPCC technique improves both in terms of 
packet overhead gain and time gain. 

IV. Simulation Results 

We perform extensive network simulations with 
the help of ns-2, the widely used open-source network 
simulator [20]. We compared our proposed Unexpected 
Packet based Congestion Control (UPCC) technique 
with traditional slow-start and AIMD technique 
(NewReno[12]) and found that proposed UPCC 
technique reduces the packet overhead by 22% to 40% 
as shown in Figure 12 and also reduces the time to 
transmit an application by 12% to 32% as depicted in 
Figure 13. The variations in packet overhead and time 
depend on the level of congestion present in the 
network. The simulations were conducted in three 
different categories as 1) congestion free 2) single 
packet loss and 3) multiple packet loss. Figures 14 and 
15 gives the results for congestion free network that 
shows that proposed UPCC technique reduces packet 
overhead and time thus minimizing the chance of 
congestion in the network. 
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Figure 12 : Packet overhead gain of proposed UPCC vs 
SS-AIMD

Figure 13 : Time gain of proposed UPCC vs SS-AIMD

Similarly, we conducted simulations for varying 
application sizes in case of multiple packet loss as 
shown in Figures 16 and 17 that clearly demonstrate 
that our proposed UPCC technique reduces packet 
overhead and time thereby minimizing the chance of 
congestion in the network.

Figure 14 : Packet overhead gain of proposed UPCC vs 
SS-AIMD in congestion free network



 

 
 

 

 
   

 

 

 
Figure 17 :

 

Time gain of proposed UPCC vs SS-AIMD

 

in 
congested network with multiple packet loss

 V.

 

Conclusions 

In this paper we have demonstrated the benefit 
of using Unexpected Packet based Congestion Control 
(UPCC) technique. The simulation results shows that 
UPCC technique reduces the packet overhead and also 
reduces the time to transmit an application of various 
sizes as compared to the existing slow-start and AIMD 
technique.
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