
Analytical Performance Comparison of BNP Scheduling1

Algorithms2

Gagandeep Kaur1, Er. Navneet Singh2 and Parneet Kaur33

14

Received: 9 December 2011 Accepted: 1 January 2012 Published: 15 January 20125

6

Abstract7

Parallel computing is related to the application of many computers running in parallel to solve8

computationally intensive problems. One of the biggest issues in parallel computing is efficient9

task scheduling. In this paper, we survey the algorithms that allocate a parallel program10

represented by an edge-directed acyclic graph (DAG) to a set of homogenous processors with11

the objective of minimizing the completion time. We examine several such classes of12

algorithms and then compare the performance of a class of scheduling algorithms known as13

the bounded number of processors (BNP) scheduling algorithms. Comparison is based on14

various scheduling parameters such as makespan, speed up, processor utilization and15

scheduled length ratio. The main focus is given on measuring the impact of increasing the16

number of tasks and processors on the performance of these four BNP scheduling algorithms.17

18

Index terms— Parallel computing, Scheduling, DAG, Homogeneous processors.19

1 Introduction20

arallel computing is a technique of executing multiple tasks simultaneously on multiple processors. The main goal21
of parallel computing is to increase the speed of computation. Efficient task scheduling & mapping is one of the22
biggest issue in homogeneous parallel computing environment [1]. The objective of Scheduling is to manage the23
execution of tasks in such a way that certain optimality criterion is met. Most scheduling algorithms are based on24
listscheduling technique [4] [6][2] [11]. There are two phases in List-scheduling technique: task prioritizing phase,25
where the priority is computed and assigned to each node in DAG, and a processor selection phase, where each26
task in is assigned to a processor in order of the priority of nodes that minimizes a suitable cost function. List27
scheduling algorithms are classified as static list scheduling if the processor selection phase starts after completion28
of the task prioritizing phase and dynamic list scheduling algorithm if the two phases are interleaved. A parallel29
program can be represented by a node-and edge-weighted directed acyclic graph (DAG) [2] [3]. The Directed30
Acyclic Graph is a generic model of a parallel program consisting of a set of processes. The nodes represent the31
application process and the edges represent the data dependencies among these processes.32

This paper surveys various scheduling algorithms that schedule an edge-weighted directed acyclic graph (DAG),33
which is also called a task graph, to a set of homogeneous processors. We examine four classes of algorithms:34
Bounded Number of Processors (BNP) scheduling algorithms, Unlimited Number of Clusters (UNC) scheduling35
algorithms, and Arbitrary Processor Network (APN) & Task Duplication Based (TDB) scheduling algorithms.36
Performance comparisons are made for the BNP algorithms. We provide qualitative analyses by measuring the37
performance of these four BNP scheduling algorithms under useful scheduling parameters: makespan, speed up,38
processor utilization, and scheduled length ratio.39

The rest of this paper is organized as follows. In the next section, we describe the generic DAG model and40
discuss its variations & techniques. A classification of scheduling algorithms is presented in Section 3.The four41
BNP scheduling algorithms are discussed in Section 4.The performance results and comparisons are presented in42
Section 5, Section 6 concludes the paper. Section 7 suggest about future scope of research.43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



5 B) BASIC TECHNIQUES IN DAG SCHEDULING

2 II.44

3 Task scheduling problem & model used45

This section presents the application model used for task scheduling. The number of processors could be limited46
or unlimited. The homogeneous computing environment model is used for the surveyed algorithms. We first47
introduce the directed acyclic graph (DAG) model of a parallel program. This is followed by a discussion about48
some basic techniques used in most scheduling algorithms & homogeneous computing environment.49

4 a) The DAG Model50

The Directed Acyclic Graph [2][3] is a generic model of a parallel program consisting of a set of processes among51
which there are dependencies. The DAG model that we use within this analysis is presented below in Fig. 1 A52
task without any parent is called an entry task and a task without any child is called an exit task. A node cannot53
start execution before it gathers all of the messages from its parent nodes. The communication cost between two54
tasks assigned to the same processor is assumed to be zero. If node ni is scheduled to some processor, then ST(ni55
) and FT(ni)denote the start-time and finish-time of ni, respectively.After all the nodes have been scheduled, the56
schedule length is defined as maxi{FT(ni)}across all processors. The node-and edge-weights are usually obtained57
by estimation. Some variations in the generic DAG model are:-Accurate model [2][3]-In an accurate model, the58
weight of a node includes the computation time, the time to receive messages before the computation, and the59
time to send messages after the computation. The weight of an edge is a function of the distance between the60
source and the destination nodes. It also depends on network topology and contention which can be difficult to61
model. When two nodes are assigned to a single processor, the edge weight becomes zero. Approximate model 162
[2][3] -Here the edge weight is approximated by a constant. A completely connected network without contention63
fits this model. Approximate model 2 [2][3]-In this model, the message receiving time and sending time are64
ignored in addition to approximating the edge weight by a constant.65

An accurate model is useless when the weights of nodes and edges are not accurate. As the node and66
edge weights are obtained by estimation, which is hardly accurate, the approximate models are used. The67
approximate models can be used for medium to large granularity, since the larger the process grain-size, the less68
the communication, and consequently the network is not heavily loaded.69

Preemptive scheduling: The preemptive scheduling is prioritized. The highest priority process should always70
be the process that is currently utilized.71

Non-Preemptive scheduling: When a process enters the state of running, the state of that process is not deleted72
from the scheduler until it finishes its service time.73

The homogeneous computing environment model is a set P of p identical processors connected in a fully74
connected graph [4]. It is also assumed that:75

Any processor can execute the task and communicate with other processors at the same time.76
Once a processor has started task execution, it continues without interruption, and on completing the execution77

it sends immediately the output data to all children tasks in parallel.78

5 b) Basic Techniques in DAG Scheduling79

Most scheduling algorithms are based on list scheduling. The basic idea of list scheduling is to assign priorities80
to the nodes of DAG, then place the nodes in a list called ready list according to the priority levels and then81
lastly map the nodes onto the processors in the order of priority. A higher priority node will be examined first82
for scheduling before a node with a lower priority. In case any two or more nodes have the same priority, then83
the ties are needed to be break using some useful method. There are various ways to determine the priorities of84
nodes such as HLF (Highest level First), LP (Longest Path), LPT (Longest Processing Time) and CP (Critical85
Path).Frequently used attributes for assigning priority are [2][4] [5]:t-level: t-level(Top Level) of the node ni86
in DAG is the length of the longest path from entry node to ni (excluding ni) i.e. the sum of all the nodes87
computational costs and edges weights along the path.88

b-level: The b-level (Bottom Level)of a node ni is the length of the longest path from node ni to an exit node89
. The b-level is computed recursively by traversing the DAG upward starting from the exit node.90

Static level: Some scheduling algorithms do not consider the edge weights in computing the b-level known as91
static b-level. or static level.92

ALAP time: The ALAP (As-Late-As-Possible) start time of a node is measure of how far the node’s start93
time can be delayed without increasing the schedule length. It is also known as latest start time (LST).94

CP (Critical Path):It is the length of the longest path from entry node to the exit node A DAG can have more95
than one CP. b-level of a node is bounded by the length of a critical path.96

EST (Earliest Starting Time): Procedure for computing the t-levels can also be used to compute the EST of97
nodes. The other name for EST is ASAP (As-Soon-As-Possible) start-time.98

A DAG -G = (V, E, w, c) -that represents the application to be scheduled99

2



6 Bnp scheduling algorithms100

In this section, we discuss four basic BNP scheduling algorithms: HLFET, ISH, MCP, and ETF. All these101
algorithms are for a limited number of homogeneous processors. The major characteristics of these algorithms102
are summarized in Table 1 [6]. In table, p denotes the number of processors given.103

7 Performance Results and Comparison104

In this section, we present the performance results and comparisons of the 4 BNP scheduling algorithms discussed105
above. The comparisons are based upon the following four comparison metrics [2][4]: 1. Makespan: Makespan is106
defined as the completion time of the algorithm. It is calculated by measuring the finishing time of the exit task107
by the algorithm. 2. Speed Up: The Speed Up value is computed by dividing the sequential execution time by108
the parallel execution time.109

1) Calculate the static b-level of each node.110
2) Make a ready list in a descending order of static b-level. Initially, the ready list contains only the entry111

nodes. Ties are broken randomly. Repeat 3) Schedule the first node in the ready list to a processor that allows112
the earliest execution, using the non-insertion approach. 4) Update the ready list by inserting the nodes that are113
now ready. Until all nodes are scheduled.114

8 1) Calculate the static b-level of each node.115

2) Make a ready list in a descending order of static b-level. Initially, the ready list contains only the entry nodes.116
Ties are broken randomly. Repeat 3) Schedule the first node in the ready list to the processor that allows the117
earliest execution, using the non-insertion algorithm. 4) If scheduling of this node causes an idle time slot, then118
find as many nodes as possible from the ready list that can be scheduled to the idle time slot but cannot be119
scheduled earlier on other processors. 5) Update the ready list by inserting the nodes that are now ready. Until120
all nodes are scheduled 1) Compute the ALAP time of each node.121

2) For each node, create a list which consists of the ALAP times of the node itself and all its children in a122
descending order. 3) Sort these lists in an ascending lexicographical order. Create a node list according to this123
order. Repeat 4) Schedule the first node in the node list to a processor that allows the earliest execution, using124
the insertion approach. 5) Remove the node from the node list. Until the node list is empty.125

9 1) Compute the static b-level of each node.126

2) Initially, the pool of ready nodes includes only the entry nodes. Repeat 3) Calculate the earliest start-time127
on each processor for each node in the ready pool. Pick the node-processor pair that gives the earliest time128
using the non-insertion approach. Ties are broken by selecting the node with a higher static b-level. Schedule129
the node to the corresponding processor. 4) Add the newly ready nodes to the ready node pool. Until all nodes130
are scheduled. So it can be concluded that for small number of tasks (35) MCP is the best algorithm but, with131
increasing number of tasks (50 & 65) ISH is one of the efficient algorithm, considering the data gathered using132
the scenarios and the performance calculated from them.133

Future Scope: A lot of work can be done considering more case scenarios:134
The number of tasks can be changed to create test case scenarios. Heterogeneous environment can be135

considered. 1136

1© 2012 Global Journals Inc. (US)Global Journal of Computer Science and Technology

3



9 1) COMPUTE THE STATIC B-LEVEL OF EACH NODE.

1

Figure 1: Fig. 1 :

Figure 2: V

2

Figure 3: Fig. 2 :

3

Figure 4: Fig. 3 :

4



455

Figure 5: Fig. 4 : 5 .Fig. 5 :

3

Figure 6: 3 .

5



9 1) COMPUTE THE STATIC B-LEVEL OF EACH NODE.

6

Figure 7: Fig. 6 :

89

Figure 8: Fig. 8 :Fig. 9 :

6



101112

Figure 9: Fig. 10 :Fig. 11 :Fig. 12 :

14

Figure 10: Fig. 14 :

151718

Figure 11: Fig. 15 :Fig. 17 :Fig. 18 :

7



9 1) COMPUTE THE STATIC B-LEVEL OF EACH NODE.

1920

Figure 12: Fig. 19 :Fig. 20 :

Figure 13: Both

8



1

Algorithm Proposed by[year] Priority List Type Greedy
HLFET Adam et al. [1974] SL Static Yes
ISH Kruatrachue & Lewis [1987] SL Static Yes
MCP Wu & Gajski [1990] ALAP Static Yes
ETF Hwang et al. [1989] SL Static Yes

[Note: a) The HLFET (Highest Level First with Estimated Times) Algorithm[12]: It is one of the simplest
scheduling algorithms. The algorithm is briefly described below in Fig.2.]

Figure 14: Table 1 :

9



9 1) COMPUTE THE STATIC B-LEVEL OF EACH NODE.

350
300

Speed Up 200
250

HLFET

Average 100
150

MCP ETF

50 ISH
0

35 50
Num-
ber
Of
Task
Nodes

65 2012

Fig. 21 : Graph representing Speedup of Algorithms Year
When the tasks are 35, The MCP algorithm yields
highest Speedup value and ISH gives lowest
speedup.
VI. Conclusion and Future Scope

After Comparative analysis following results
were derived:

D D D D ) A
(
With 35 task nodes, the MCP algorithm gives
lowest
SLR value with ISH algorithm giving highest
SLR
value.
With 50 tasks, the ISH shows the lowest SLR
value
and HLFET gives highest SLR value.
With 65 tasks, the ISH has the lesser SLR values
and ETF gives highest value.
d) Average Speedup: Higher the value of
Speedup,
more efficient is the algorithm. Fig. 21 shows
the
Speedup of the all 4 algorithms with various
nodes
cases.

Figure 15:

10



[Parallelism and Scalability ()] , Parallelism , Programmability Scalability . 1993. NY: Mc Graw Hill.137

[Adam et al. (1974)] ‘A Comparison of List Scheduling for Parallel Processing Systems’. T L Adam , K Chandy138
, J Dickson . Communications of the ACM Dec.1974. 17 (12) p. .139

[Sharma et al. (2012)] ‘A STUDY OF BNP PARALLEL TASK SCHEDULING ALGORITHMS METRIC’S140
FOR DISTRIBUTED DATABASE SYSTEM’. Manik Sharma , Dr , Gurdev Singh , Harsimran Kaur .141
International Journal of Distributed and Parallel Systems (IJDPS) January 2012. 3 (1) .142

[Hwang] Advanced Computer Architecture, K Hwang .143

[Lenstra and Kan (1981)] ‘An Introduction to multiprocessor Scheduling Algorithm’. J K Lenstra , A H G Kan144
. Questi March 1981. 5.145

[Kaur et al.] ‘Analysis Comparison and Performance Evaluation of BNP Scheduling Algorithm in parallel146
Processing’. Parneet Kaur , Dheerandra Singh , Gurvinder Singh . International journal of Knowledge147
engineering148

[Ahmad et al. ()] Analysis, Evaluation, and Comparison of Algorithms for Scheduling Task Graphs on Parallel149
Processors, Ishfaq Ahmad , Yu-Kwong Kwok , Min-You Wu . 1996. IEEE. p. .150

[Kwok and Ahmed ()] ‘Benchmarking the Task Graph Scheduling Algorithms’. Y Kwok , I Ahmed . Proc.151
IPPS/SPDP, (IPPS/SPDP) 1998.152

[Droro et al.] G Droro , Larry Feitelson , Uwe Rudolph , Kenneth C Schwiegelshohn , Parkson Sevcik , Wong .153
Theory and Practice in Parallel Job Scheduling,154

[Barney] Introduction to Parallel Computing, Blaise Barney . Lawrence Livermore National Laboratory155

[Ahmad et al.] Performance Comparison of Algorithms for Static scheduling of DAG to Multi-processors, Ishfaq156
Ahmad , Yu-Kwong Kwok , Min-You Wu . http://citeseerx.ist.psu.edu/viewdoc/download?157
doi=10.1.1.42.8979&rep=rep1&type=pdf158

[Kwok and Ahmad (1999)] ‘Static Scheduling Algorithm for Allocating Directed Task Graph to multiprocessors’.159
Yu-Kwong Kwok , Ishfaq Ahmad . ACM Computing Surveys December 1999. 31 (4) .160

[Hagras and Janecek ()] ‘Static versus Dynamic List-Scheduling Performance Comparison’. T Hagras , J Janecek161
. Acta Polytechnica 2003. 43 (6) .162

11

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.8979&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.8979&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.8979&rep=rep1&type=pdf

	1 Introduction
	2 II.
	3 Task scheduling problem & model used
	4 a) The DAG Model
	5 b) Basic Techniques in DAG Scheduling
	6 Bnp scheduling algorithms
	7 Performance Results and Comparison
	8 1) Calculate the static b-level of each node.
	9 1) Compute the static b-level of each node.

