
© 2012. Syeda Farhath Begum, Dr. Kahalid Mohiuddin & Ashiquee Rasool Mohammad. This is a research/review paper, distributed
under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-
nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Cloud & Distributed
Volume 12 Issue 10 Version 1.0 July 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Going Back and Forth: Efficient Multi-Deployment and Multi-
Snapshotting on Clouds
 By Syeda Farhath Begum, Dr. Kahalid Mohiuddin & Ashiquee Rasool Mohammad

 Osmania University, Hydrabad, India

Abstract - Cloud computing has changed the way people think of using resources. Especially, the
IaaS (Infrastructure as a Service) allows users to make use of unlimited resources in pay per use
fashion. Virtualization is the technology based on which the cloud service providers are able to
provide or share computational resources and data centers to users. Though this approach is
practical, it throws certain challenges in terms of designing and development of IaaS middleware.
One such challenge is the need for deploying thousands of VM instances to meet the requirements
of growing number of users. In the process another challenge is to snapshot multiple images and
persisting them towards management tasks like stopping VMs temporarily and resuming them as
and when required. The presence of data centers in different configurations enables the
simultaneous deployment and snapshotting is important. This capability should be coupled with
another feature that is the whole mechanism should be hypervisor independent. To achieve this, a
new virtual file system is proposed in this paper. This is basing on lazy transfer scheme with VM
optimization and object versioning that takes care of multi-snapshotting and multi-deployment
simultaneously and effectively. The experiments have shown that the new filing system and related
techniques have improved performance, and bandwidth utilization is reduced by 90%.

Keywords : Cloud Design, Cloud Storage Performance, Empirical Study, Multi-snapshotting,
versioning, VM images, lazy propagation, cloning, multi-deployment.

GJCST-B Classification: C.2.1

Going Back and Forth Efficient Multi-Deployment and Multi-Snapshotting on Clouds

Strictly as per the compliance and regulations of:

Going Back and Forth: Efficient Multi-
Deployment and Multi-Snapshotting on Clouds

Syeda Farhath Begum α, Dr. Kahalid Mohiuddin σ & Ashiquee Rasool Mohammad ρ

Abstract - Cloud computing has changed the way people
think of using resources. Especially, the IaaS (Infrastructure as
a Service) allows users to make use of unlimited resources in
pay per use fashion. Virtualization is the technology based on
which the cloud service providers are able to provide or share
computational resources and data centers to users. Though
this approach is practical, it throws certain challenges in terms
of designing and development of IaaS middleware. One such
challenge is the need for deploying thousands of VM
instances to meet the requirements of growing number of
users. In the process another challenge is to snapshot multiple
images and persisting them towards management tasks like
stopping VMs temporarily and resuming them as and when
required. The presence of data centers in different
configurations enables the simultaneous deployment and
snapshotting is important. This capability should be coupled
with another feature that is the whole mechanism should be
hypervisor independent. To achieve this, a new virtual file
system is proposed in this paper. This is basing on lazy
transfer scheme with VM optimization and object versioning
that takes care of multi-snapshotting and multi-deployment
simultaneously and effectively. The experiments have shown
that the new filing system and related techniques have
improved performance, and bandwidth utilization is reduced
by 90%.
Keywords : Cloud Design, Cloud Storage Performance,
Empirical Study, Multi-snapshotting, versioning, VM
images, lazy propagation, cloning, multi-deployment.

I. Introduction

owadays, the emergence of Infrastructure as a
Service (IaaS) cloud computing is a feasible
substitute to the acquisition as well as physical

resources management. With the help of IaaS, users
can be able to lease storage and time of computation
from datacenters that are very large. Leasing of
computation time can be achieved by enabling users to
deploy virtual machines (VMs) on the resources of the
datacenter. As the user possess overall control on the
configuration regarding Virtual Machines by making use
of on-demand deployments, IaaS leasing is simply
similar to purchase of hardware that is dedicated but
with no long-term commitment as well as cost. The IaaS
on-demand nature is complex to make such kind of
leases more attractive, as it allows users for expanding

Author α : Department of Computer Sci ence Osmania University,
Hydrabad, India. E-mail : farhathbegum.syeda@gmail.com
Author σ ρ : Department of Information System, King Khalid University
61411, Abha, Saudi Arabia.
E-mail σ : drkhalidmk70@gmail.com
E-mail ρ: ashique.rasool@gmail.com

or shrinking their resources with respect to their needs
of computation, by making use of external resources for
complementing their local resource base [15].

This emerging model results in new challenges
with respect to the design as well as development of
systems providing IaaS. One among frequently resulting
patterns in the operation of IaaS is the necessity for
deploying a huge number of VMs on most of the nodes
relative to a datacenter at the same instant of time,
starting from a collection of VM images that are stored
previously in a fashion that is persistent. For instance,
this pattern is occurred when the user needs the
deployment of a virtual cluster that is used to execute a
distributed application or a group of environments for
supporting a workflow. This pattern is referred as multi
deployment. Such kind of large deployment of most of
the VMs at a time can take a longer time. This problem
is in particular acute for VM images that are used in
scientific computing in which image are large in size
(from small number of gigabytes up to greater than 10
GB). A conventional deployment contains hundreds or
else thousands of such kind of images. Before starting
the instances of VM, conventional techniques of
deployment [23] broadcast the images to the nodes , a
process which could take time ranging from tens of
minutes to approximately hours, not taking into account
the time for booting the operating system alone. This
could make the time of response of the IaaS installation
very longer than that is acceptable and remove the on-
demand benefits obtained from cloud computing. Once
the instances of the Virtual Machines are being run, a
same kind of challenge is applied to snapshotting the
deployment. Most of the VM images which were
changed locally need to be transferred in a concurrent
manner for making storage stable with the reason to

N

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

1

(
DDDD

)
B

20

12
J
u
l
y

capture the VM state for using later (for instance in
check pointing or online migration to another cluster or
cloud). This pattern is referred to as multisnapshotting.
The technique of conventional snapshotting works
definitely on custom VM image file formats [9] for
storage of only incremental differences in a new file
which rely on the original VM image similar to backing
file. When taking regular snapshots for a huge number
of VMs, such kind of approaches form a huge number of
files as well as interdependencies among them, that are
difficult for managing and that get in the way with the
ease-of-use basis behind clouds. Moreover, with
emerging datacenter trends as well as tendencies for

 Along with incurring delays that are significant
and raising issues of manageability, these patterns can
also form huge network traffic which comes in the way
through the execution of applications on resources that
are leased and results in greater costs of utilization for
the user.

In this paper a virtual file system that is

distributed specifically that is optimized for patterns of
multideployment as well as multi- snapshotting. As the
patterns are considered complementary, they are
investigated in conjunction. Our proposal provides a
proper balance between performance, storage space,
and finally consumption of network traffic, while treating
snapshotting in a transparent manner and revealing
standalone and even raw image files (understood by
many hypervisors) to the outside.
The summary of our contributions are as follows:
 We present a flow of design principles which

optimize patterns of multideployment as well as
multisnapshotting and describe in which manner
our design can be integrated with the resources of
IaaS (Sections 2 and 3).

 We illustrate how to comprehend these principles of
design by building a virtual file system which
leverages distributed storage services that are
versioning-based. To clear this point, we describe
an implementation over BlobSeer, a service related
to versioning storage particularly designed for
maximum throughput under concurrency [17, 24].

Our approach is evaluated in a sequence of
experiments each of which is conducted over hundreds
of nodes that are provisioned on the Grid’5000 testbed,
by making use of synthetic traces as well as real-life
applications.

II. Related work

Multideployment which depends on complete
broadcast-dependent pre- propagation is a commonly
utilized technique [28, 23, 11]. While this technique
prevents read contention to the repository, it can incur
great overhead in network traffic as well as execution
time, as mentioned in Section 5.2. Moreover, as the VM
images are completely copied on the compute nodes
locally, multisnapshotting will not be feasible: greater
amounts of data have been duplicated unnecessarily

and can cause transfer delays that are not acceptable,
without mentioning huge space of storage and utilization
of network traffic.

For alleviating this problem, most of the
hypervisors offer support of native copy-on-write by
giving definition of formats of custom VM image file [12,
20] particularly designed for efficiently storing additional
differences. Similar to our approach, this makes base
images to be usable in the form of templates that are
read-only for multiple logical instances that store
modifications per instance. Moreover, deficiency of
standardization and also the generation of more number
of new files that are interdependent restrict the portability
as well as manageability of the snapshots of VM image
that result. Another approach that is different in nature
for instantiating a huge number of VMs from the identical
initial state has been proposed in [13]. The authors
present a latest cloud abstraction: VM FORK. Basically
this is considered as the equivalent of the fork call on
operating systems like UNIX, cloning a VM at every
instant into multiple replicas which are running on
various hosts. While this is simply equal to CLONE
followed by COMMIT in our method ,the main concern is
on reducing the time as well as traffic of the network for
spawning and running, on the fly, new remote instances
of VM that share the identical state of a VM that is
already running. Local modifications have been
assumed tobe ephemeral, and no support is provided
for storing the state persistently.

A similar one to our approach is Lithium [10], a
replication system that is fork-consistent for virtual disks.
Lithium supports instantaneous volume creation along
with lazy space allocation and creation of writable
snapshots instantaneously. Not similar to our approach
is the one which is dependent on segment trees, Lithium
is dependent on log structuring [22], that can potentially
humiliate read performance when increasing the number
of successive snapshots for the same image: the log of
incremental differences is started growing, making it
more costly for reconstructing the image.

Cluster volume managers for virtual disks like
Parallel ax [16] allow compute nodes for sharing access
to a block device that is single and globally visible,
which in a collaborative manner managed for presenting
individual virtual disk images to the Virtual Machines.
While this allows frequent snapshotting that is not
efficient like our approach, image sharing is intentionally
not encouraged so as to remove the requirement for a
distributed lock manager that is claimed for dramatically
simplifying the design. Most of the storage systems, like
Amazon S3 [5] (backed by Dynamo [8]), are particularly
designed as highly accessible key-value repositories for
infrastructures of cloud. They may be building blocks
that are valuable for block level storage volumes [1]
which host images of virtual machine; moreover, they
have not been optimized for snapshotting. The intention
of our approach is to complement existing platforms of

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

2

(
DDDD

)
Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

B

20
12

J
u
l
y

federating clouds [12], configurations have become
more and more varied. Custom image formats are not
standardized and might be used with particular
hypervisors alone that limits the ability for easily
migrating VMs among various hypervisors. Hence,
multisnapshotting should be handled in a transparent
and portable style which hides the interdependencies of
additionaldifferences and exposes VM images that are
standalone, by greater portability in various hypervisor
configurations.

cloud computing, from industry (Amazon Elastic
Compute Cloud: EC2 [4]) as well as from academia
(Nimbus [2, 12, 24], Open Nebula [3]). While the
particulars for EC2 are not available publicly, it has been
widely accepted that all of these platforms depend on
many of the techniques mentioned above. Claims for
instantiating multiple VMs in ―minutes, ‖ moreover, are
not sufficient to meet our objectives of performance; So,
our work is believed to be a welcome addition in this
circumstance.

III. Description of infrastructure and
other components

a) About Cloud Infrastructure
Clusters are used in building IaaS cloud

platforms. They are made up of hardware that makes
use of less power and reduces cost per unit and
provides high speed [4]. Many machines are
interconnected and each machine is attached a disc
storage. Virtualization technology is used in order to
share physical resources well. The machines are able to
run multiple VMs. Many nodes are dedicated for storage
that is responsible for persistence. They might be having
either distributed [5] or centralized [2] storage service.
Such storage service is responsible to store VM instance
images reliably. The manipulations of VMs include
deleting, downloading, uploading and so on.

b) State of the Application
VM deployment state has two parts namely the

state of all VM instances at any given point of time and
the state of the channels between them meant for
communications. They include sockets which have been
open, network state and virtual topology. In order to
make the sate persistent for future reuse and
maintenance, it is essential that the VM instances are to
be persisted and at the same time hundreds of VM
instances are to be created to meet increasing demands
of cloud users. However capturing the global state of
such channels is difficult [14]. To avoid this problem, the
second model is to get sum of all VM instances. This
model discards any in-transit traffic in the network and
assumes that fault tolerant network is used.

Model 3, which is simplified version of model 2
is that the VM state is represented only by the virtual
disk attached to it. It stores only minimal information
pertaining to state and such information is reused later.
It has the benefits like reduction in size and portability
across systems. Model 3 is widely used mechanism in
practice and the same is considered in this work.

c) Application Phases
Any VM may not access the whole image. Some

utilities and applications are never used. To model this
behavior the VM life cycle has been divided into three
phases namely boot phase, application phase and
shutdown phase. The boot phase reads configuration

files, launches processes that represent initial state of
VM. The application phase is in either negligible virtual
disk access that need not be persisted or data–intensive
which needs dedicated storage. The shutdown phase
generates very negligible disk access and this phase is
not there when VM instance terminates prematurely due
to some hardware failure.

IV. Our methodology and architecture

In order to optimize the process of
multisnapshotting and multideployment, a new filing
system is proposed. The following sub sections
describe it.

a) Overview of Design
The design of the proposed approach depends

on the principles like optimizing multisnapshotting,
reducing contention, optimizing VM disk access, and
aggregating storage space.

i. Aggregating local Storage
The existing approaches [5, 2, 3] are not

capable of making use of storage space available in
local hard discs of nodes. To overcome this
shortcoming, the proposed approach aggregates
storage space from local hard disks and forms a
common pool which is used in a distributed fashion. Its
advantages are high scalability and freeing memory for
reducing overhead in managing VMs.

ii. Optimizing VM access and Reducing
Contention
On demand VM image mirroring facilitates to

make use of locally available VM image for output.
However, it can get from global VM instance the
required information in the form of mirroring. It improves
performance. Moreover our approach supports
reduction of contention as the VM image is split into
number of equal sized pieces. While reading values if
any piece is not available in the local disk, it is obtained
from remote disk thus reducing contention.

iii. Optimizing Multi-Deployment and Snapshotting
When full VM image is saved every time, it

consumes lot of resources even though small changes
are made. To avoid this certain file formats can be used
to incrementally save to other virtual machine. Its
drawbacks include limitation of migration capabilities
and also the risk of ending up with so many VM
instances. By using shadowing and cloning these
problems are overcome by the proposed approach.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

3

(
DDDD

)

Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

B

20
12

J
u
l
y

Fig. 1: Shows proposed architecture

V. Proposed cloud architecture

Fig. 1 shows the architecture of the proposed
system. It has cloud middleware, compute nodes or
hypervisors, clients mirroring modules. The cloud
middleware facilitates communication to mirroring
modules and also hypervisor concurrently. COMMIT is
used to save changes permanently while CLONE is
used to make another copy. Local disks are involved to
form a distributed file system which improves the overall
performance of multisnapshotting.

VI. Implimentation details

The proposed system implementation mainly
has two modules namely distributed versioning storage

service and mirroring module. The former is meant for
improving management of repository while the latter for
trapping IO access and runs in each compute node.

a) Software Reused
Some of the components are reused in the

proposed system. For instance BlobSheer [17, 18, 19]
and FUSE are reused. The BlobSheer is meant for
working with LOB objects while the FUSE is meant for
implementing mirroring module.

As can be seen in figure 2, the fuse module is
made up of many components like hypervisor, cloud
middleware, BlobSheer etc.

Fig. 2: Fuse Model

b) The Approach
Figure 2 presents FUSE module. Its sub

modules are local modification manager and R/W
translator. The former is for tracking local content while
the latter is meant for translating original requests into
remote read and write requests. On opening VM first
time, the local disk has an empty file created in order to
mirror BLOB image. The storage has been optimized.

The local file gets closed after unmapping when VM
image is closed. For remote access of VM image
through POSIX the commands like COMMIT and
CLONE have been implemented as part of FUSE
module. COMMIT save local changes into BLOB image
permanently. CLONE is meant for cloning VM image.
Finally these are integrated with Nimbus cloud.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

4

(
DDDD

)
Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

B

20
12

J
u
l
y

VII. Evaluations

Experiments and results on multi-deployment
and multi-snapshotting are described in the following
sub sections.

a) Emperical Setup
Grid’5000 was used to perform experiments.

iNancy with 120 clusters was used. Each one is with x86

64 CPU with virtualization support, local HDD worth 250
GB and 8GB of RAM with Internet connection. KVM
0.12.5 was the hypervisor and the OS is Red Hot Linux.

b) Multideployment Performance
The following sub sections throw light into the

experimental results. The observations are done in a
multideployment pattern when a single VM is used to
have ―n‖ number of VM instances.

Fig. 3 : Segmentation of chunk details of VM image A Fig. 4 : Segmentation of chunk details of VM image A

Fig. 5:

Segmentation and chunk composition of consecutive snaps

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

5

(
DDDD

)

Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

B

20
12

J
u
l
y

i. Propogation
As given in [21, 23], it is part of cloud and has

phases like broadcasting of VM image, and launching of
VM instances concurrently. The drawback in the
propagation approach is the overhead incurred in the
initialization phase. Taktuk [7] has been used to
overcome this downside. Taktuk is a broadcasting tool
which is highly scalable. NFS server is used to store VM
images.

ii. Comparing Qcow2 Over PVFS
PVFS [6] is used to compare our work. This tool

is meant for metadata management with high
performance. For comparison it was deployed in
compute nodes. In order to initialize VM instances
qcow2[9] images are created in the compute node in
the local system while PVFS is used as backup image.
The performance is measured on average time take to
boot each instance and total network traffic.

Figure 6, 7, 8 and 9 shows the results of
comparison of other works and our approach.

Fig. 6: Performance in terms of no. of concurrent
instances

Fig. 7: Performance in terms of no. of concurrent
instances

 Fig. 8:

Performance in terms of no. of concurrent
instances

 Fig. 9:

Shows performance in terms of no. of concurrent

instances

iii. Multi-Snapshotting Performance
The performance of our approach in case of

multisnapshotting is described in this section. The
comparison is made between qcow2 over PVFS and our
approach. Fig. 10 and 11 show the performance of
multi-snapshotting of our approach and qcow2 over
PVFS. When overall performance is considered, our
approach is taking relatively less time for instance
creation and completion.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

6

(
DDDD

)
Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

B

20
12

J
u
l
y

Fig. 10:

Shows average time snapshot an instance

Fig. 11:

Shows completion time to snapshot all
instances

Fig. 12:

(a) Access pattern in terms of throughput

Fig. 12: (b) Shows operation type and operations per
second

Our approach is showing better results and it is
intended to help cloud platforms such as EC2, Nimbus
etc. We believe that our work can be used in any
existing cloud platform in order to improve its
performance in terms of managing virtual machines and
improving performance by using our techniques
pertaining to multi-snapshotting and multi-deployment.
Figure12 (c) shows time taken to finish simulation using
100 VM instances

VIII. Conclusion and future work

Since cloud computing is becoming more
popular and efficient management of VM images, like
image propagation for computing nodes and image
snapshotting for the purpose of check- pointing or
migration is difficult. The performance of these kind of
operations affects in a direct manner the usability of the
benefits provided by systems of cloud computing. This
paper presented various techniques which integrate with
middleware of the cloud for handling two patterns
efficiently. They are multideployment and multi-
snapshotting.

A lazy VM deployment scheme which fetches
content of the VM image as required by the application
that is executed inthe VM, thereby minimizing the
pressure on the storage service of VM for deployment
requests that are heavily concurrent. Moreover, we
leverage object versioning for saving local VM image
differences alone back to persistent storage when a
snap-shot is generated, yet offer the illusion that the
snapshot is a different, completely independent image.
This has two crucial benefits. First, it does the
management of updates of the hypervisor in an
independent manner, thus greatly enhancing the
portability of VM images and providing compensation
for the deficiency of standardization of the VM image
format. Second, it manages snapshotting in a
transparent manner at the level of the repository of the
VM image, simplifying to a great extent the snapshots
management. We have given the demonstration of the

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

7

(
DDDD

)

Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

Figure 12 (a), (b) and (c) show the performance
of access pattern, operation type and setting of local
and our approach. The access patterns compared are
Read, Write and Overwrite in block of 8 KB. The
operation types considered are random seeks, file
creation, and file deletion. The Fig. 12 (c) shows the time
taken to finish simulation using 100 VM instances.

B

20
12

J
u
l
y

advantages of our approach via experiments on number
of nodes by making use of benchmarks as well as
applications of real-life. When compared with simpler
approaches depending on pre-propagation, our
approach gives a best improvement in execution time as
well as resource usage: the total time for performing a
multi-deployment got reduced approximately to a factor
of 25, and the storage and bandwidth usage got
reduced by approximately 90%. When compared with
approaches which make use of copy-on-write images
(i.e., qcow2) depending on raw backing images that are
stored in a distributed file system (i.e., PVFS), a
speedup of multideployment by a factor of 2 and multi-
snapshotting performance that is comparable are
shown, each with the extra benefits of transparency as
well as portability.

Depending on these results that are supported,
we plan for exploring the multi-deployment as well as
multi-snapshotting patterns in a more extensive manner.
According to multideployment, one optimization that is
possible is to build a scheme that is perfecting
depending on last experience through the access
pattern. According to multi-snapshotting, reductions that
are interesting in time as well as storage space can be
achieved by presenting deduplication schemes. We also
intend for fully integrating the present work with Nimbus
[2] and thereby explore its advantages for more critical
applications of HPC in the real world.

References références referencias

1.

Amazon elastic block storage (ebs).
http://aws.amazon.com/ebs/.

2.

Nimbus. http://www.nimbusproject.org/.

3.

Opennebula. http://www.opennebula.org/.

4.

Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/.

5.

Amazon Simple Storage Service (S3).
http://aws.amazon.com/s3/.

6.

P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur.
Pvfs: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317–327, Atlanta, GA, 2000.
USENIX Association.

7.

B. Claudel, G. Huard, and O. Richard. Taktuk,
adaptive deployment of remote executions. In
HPDC ’09: Proceedings of the 18th ACM
International Symposium on High Performance
Distributed Computing, pages 91–100, New York,
2009. ACM.

8.

G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin,

S.

Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceedings of 21st ACM SIGOPS Symposium
on Operating Systems Principles, pages 205–220,
New York, 2007. ACM.

9. M. Gagn´e. Cooking with Linux—still searching for
the ultimate Linux distro? Linux J., 2007(161):9,
2007.

10. J. G. Hansen and E. Jul. Scalable virtual machine
storage using local disks. SIGOPS Oper. Syst. Rev.,
44:71–79, December 2010.

11. M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C.
Barb. Fast, scalable disk imaging with Frisbee. In
ATC ’03: Proceedings of the 2003 USENIX
AnnualTechnical Conference, pages 283–296, San
Antonio, TX, 2003.

12. K. Keahey, M. O. Tsugawa, A. M. Matsunaga, and J.
A. B. Fortes. Sky computing. IEEE Internet
Computing, 13(5):43–51, 2009.

13. H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,P.
Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: Rapid virtual
machine cloning for cloud computing. In EuroSys
’09: Proceedings of the 4th ACM European
Conference on Computer Systems, pages 1–12,
New York, 2009. ACM.

14. X. Liu, J. Huai, Q. Li, and T. Wo. Network state
consistency of virtual machine in live migration. In
SAC ’10: Proceedings of the 2010 ACM Symposium
on Applied Computing, pages 727–728, New York,
2010. ACM.

15. P. Marshall, K. Keahey, and T. Freeman. Elastic site:
Using clouds to elastically extend site resources. In
CCGRID ’10: Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing, CCGRID ’10, pages 43–52,
Washington,DC, USA, 2010. IEEE Computer
Society.

16. D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M.
J. Feeley, N. C. Hutchinson, and A. Warfield.
Parallax: Virtual disks for virtual machines. SIGOPS
Oper. Syst. Rev., 42(4):41–54, 2008.

17. B. Nicolae. BlobSeer: Towards E_cient Data Storage
Management for Large-Scale, Distributed Systems.
PhD thesis, University of Rennes 1, November 2010.

18. B. Nicolae, G. Antoniu, L. Boug´e, D. Moise, and A.
Carpen-Amarie. BlobSeer: Next-generation data
management for large scale infrastructures. J.
Parallel Distrib. Comput., 71:169–184, February
2011.

19. B. Nicolae, D. Moise, G. Antoniu, L. Boug´e, and M.
Dorier. Blobseer: Bringing high throughput under
heavy concurrency to Hadoop map/reduce
applications. In IPDPS ’10: Proceedings of the 24th
IEEE International Parallel and
DistributedProcessing Symposium, pages 1–12,
Atlanta, GA, 2010.

20. D. Reimer, A. Thomas, G. Ammons, T. Mummert, B.
Alpern, and V. Bala. Opening black boxes: Using
semantic information to combat virtual machine
image sprawl. In VEE ’08: Proceedings of the 4th
ACM SIGPLAN/SIGOPS International Conference on

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

8

(
DDDD

)
Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

B

20
12

J
u
l
y

Virtual Execution Environments, pages 111–120,
New York, 2008. ACM.

21. A. Rodriguez, J. Carretero, B. Bergua, and F.
Garcia. Resource selection for fast large-scale
virtual appliances propagation. In ISCC ’09:
Proceedings of 14th IEEE Symposium on
Computers and Communications, pages 824–829,
5-8 2009.

22. M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file system.
ACM Trans. Comput. Syst., 10(1):26–52, 1992.

23. R. Wartel, T. Cass, B. Moreira, E. Roche, M.
Guijarro, S. Goasguen, and U. Schwickerath. Image
distribution mechanisms in large scale cloud
providers. In CloudCom ’10: Proceedings 2nd
International Conference on Cloud Computing
Technology and Science, Indianapolis, IN, 2010.

24. K. Keahey and T. Freeman. Science clouds: Early
experiences in cloud computing for scientific
applications. In CCA’08: Proceedings of the
1stConference on Cloud Computing and it’s
Applications, 2008.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

9

(
DDDD

)

Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

B

20
12

J
u
l
y

This page is intentionally left blank

Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X

V
er
sio

n
I

10

(
DDDD

)
B

20

12
J
u
l
y

	Going Back and Forth: Efficient Multi-Deployment and Multi-Snapshotting on Clouds
	Author's

	Keywords
	I. Introduction
	II. Related work
	III. Description of infrastructure andother components
	a) About Cloud Infrastructure
	b) State of the Application
	c) Application Phases

	IV. Our methodology and architecture
	a) Overview of Design
	i. Aggregating local Storage
	ii. Optimizing VM access and ReducingContention
	iii. Optimizing Multi-Deployment and Snapshotting

	V. Proposed cloud architecture
	VI. Implimentation details
	a) Software Reused
	b) The Approach

	VII. Evaluations
	a) Emperical Setup
	b) Multideployment Performance
	i. Propogation
	ii. Comparing Qcow2 Over PVFS
	iii. Multi-Snapshotting Performance

	VIII. Conclusion and future work
	References références referencias

