# Global Journals ETEX JournalKaleidoscope ${ }^{\mathrm{TM}}$ 

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

# Classification of Facial Expressions based on Transitions Derived from Third Order Neighborhood LBP 

Dr. Vakulabharanam Vijaya Kumar ${ }^{1}$, Gorti Satyanaraya Murty ${ }^{2}$ and Pullela S V V S R Kumar ${ }^{3}$<br>${ }^{1}$ Anurag Group of Institutions

Received: 6 December 2013 Accepted: 1 January 2014 Published: 15 January 2014


#### Abstract

The present paper extended the LBP transitions derived from second-order neighbourhood on to third order neighbourhood LBP (TN-LBP) and derived transitions on Trapezoid patterns for facial expression classification. The TN-LBP forms four Trapezoid Patterns (TP) i.e. top left, bottom right and top right, bottom left. So far no researcher carried out work on classification problem based on transitions on third-order neighborhood LBP. The present paper derived transitions on the two reciprocal ?Trapezoids of TN-LBP (T-TN-LBP) i.e. top left vs. bottom right. Each of these Trapezoids on TN-LBP will have five pixies and each of them will have 25 i.e 32 patterns. The present paper derived transitions on two symmetric T-TN-LBP. Based on this, facial expression recognition algorithm is built. The proposed approach is compared with the existing methods.


Index terms - classification, facial expression recognition, lbp transitions, third order neighborhood lbp, trapezoid patterns.

## 1 Introduction

maging understanding is one of the most important tasks involving a classification system. Its primary purpose is to extract information from the images to allow the discrimination among different objects of interest. The classification process is usually based on grey level intensity, color, shape or texture. Image classification is of great interest in a variety of applications. Most of the image analysis problems are related to the neighborhood properties. Each pixel in a neighborhood or image is considered as a random variable, x r, which can assume values $\mathrm{xr} ?\{0,1 ? \mathrm{G}-1\}$, where G is the number of grey levels of the image. The probability $\mathrm{P}(\mathrm{x} \mathrm{r}=\mathrm{xr} \mid$ $r$ ), where r is the neighbor set for the element x r . The Fig. 1 illustrates different orders of neighborhood for a central pixel. Most of the research involved in image processing is mostly revolved around second order neighborhood only. This is because all the 8-neighboring pixels are well connected with central central pixels and the methods based on second order neighborhood are given extraordinary results in various issues. The present paper considering the difficulties and complexities involved in the third order neighborhood and derived a new, simple and efficient model for image analysis.

## 2 Derivations of Transitions on Trapezoids of tn-lbp

The proposed method evaluated transitions on "Trapezoids of Third Order Neighborhood of LBP (T-TN-LBP)" and based on this, derived various algorithms for the recognition of facial expressions. The proposed transition based T-TN-LBP consists of 7 steps as described below.

Step 1: Take facial image as Input Image (Img).

[^0]Step 4: The present research evaluated TN-LBP on each $5 \times 5$ sub image. The TN contains only 13 pixels of 25 pixels of $5 \times 5$ neighborhood as shown in Fig. 1. The TN-LBP grey level sub image is converted into binary sub image by comparing the each pixel of TN grey level sub image with the mean value of TN grey sub image. The following Equation. 1 is used for grey level to binary conversion.TN- $\mathrm{Pi}=$ ? 0 if $\mathrm{P} \mathrm{i}<\mathrm{V} 01$ if P i ? V 0 ? for $\mathrm{i}=1,2,3(\mathbf{1})$

Where V 0 is the mean of the TN sub matrix
Step 5: The present research for classification purpose considered the two reciprocal trapezoids i.e. Top Left (TL) and Bottom Right (BR) trapezoids of TN-LBP. The Fig. 2 shows TL and BR trapezoids of TN-LBP. The each trapezoid pattern consists of 5 pixels. The pixels P 1, P Step 6 : Each trapezoid of TN-LBP consists of five bit patterns. The present research computed the transitions from 0 to 1 and 1 to 0 . Generally in 5 bit patterns, 3 types of 0 to 1 and 1 to 0 transitions occur i.e. zero, two and four transitions. The proposed method, considers two and four transitions only, which accounts for $87.5 \%$ of patterns.

Step 7: Based on frequency occurrences of two and four transitions, the facial image is classified as one of the category (Neutral, Happiness, Sadness, Surprise, Anger, Disgust and Fear).

## 4 Results and Discussions

The proposed transition based T-TN-LBP method is experimented on a database contains 213 images of female facial expressions collected by Kamachi and Gyoba at Kyushu University, Japan In the proposed "Transitions based on T-TN-LBP method", the sample images are grouped into seven categories of expression (neutral, happiness, sadness, surprise, anger, disgust and fear). Each T-TN-LBP consists of 5 bit pattern. It results a total of 32 bit patterns. This forms two-zero transitions i.e. the decimal value 0 and 31 . The decimal values $5,9,10,11,13,18,20,21,22,26$ results for 0 to 1 or 1 to 0 four transitions. The rest of the binary equivalent decimal values $1,2,3,4,6,7,8,12,14,15,16,17,19,23,24,25,27,28,29,30$ results two transitions. The beauty of the proposed transitions on T-TN-LBP method is it evaluated the frequency occurrences of 2 and 4 transitions. This accounts a total of $87.5 \%$ of transitions.
The proposed method not considered the zero transitions which accounts for $12.5 \%$ of patterns. Further the proposed method evaluated the frequency occurrence of 2 and 4 transitions separately. The proposed method further evaluated sum of frequency occurrences two and four transitions of both TL and BR T-TN-LBP for the different facial expressions separately and listed in tables $1,2,3,4,5,6$ and 7 respectively. In the tables, STLT denotes sum of transitions (both 2 and 4) of Top Left Trapezoid and SBRT denotes sum of transitions (both 2 and 4) of Bottom Right Trapezoid. Further, the table also gives Total number of ( 2 and 4) transitions of both Trapezoids denoted as TBT in the above tables. Comparison of The Proposed t-tn-lbp with Other Existing Methods

Table 9 shows the classification rate for various groups of facial expression by the proposed T-TN-LBP method with other existing methods like feature-based facial expression recognition within an architecture based on a twolayer perception of Zhengyou Zhang [2], Facial expression analysis by Dela Torre et.al [3] and Facial Expression Recognition Based on Distinct LBP and GLCM by Gorti SatyanarayanaMurthy et.al [4]. These methods are implemented on Kamachi and Gyoba [5] at Kyushu University-data set and compared with the proposed method. From table 9, it is clearly evident that, the proposed method exhibits a high classification rate than the existing methods. The graphical representation of this is also shown in Fig. 5.

$$
12
$$

[^1]

Figure 1: Figure 1 :


Figure 2: Step 2 :


Figure 3: Figure 2 :


Figure 4:


Figure 5: Figure 3 :


Figure 6: Figure 4 :


Figure 7: Figure 5 :

|  |  | P 1 |  |  |
| :---: | :--- | :--- | :--- | :--- |
|  |  | P 4 |  |  |
| P 5 | P 6 | P 3 |  | P 9 |
|  | P 10 | P 7 | P 12 |  |

Figure 8:

1


Figure 9: Table 1:

| 2014 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year |  |  |  |  |  |  |  |  |
|  |  | Transiti | on Top-L <br> T-TN- <br> LBP |  | Transitio | on Botto <br> T-TN- <br> LBP | -Right | TBT |
| S.No | Image Name | 2 | 4 | STLT | 2 | 4 | SBRT |  |
| ( 12 | KA.DI1.42 KA.DI2.43 | 831788 | 158186 | 989974 | 770784 | 163175 | 933959 |  |
| D |  |  |  |  |  |  |  |  |
| D |  |  |  |  |  |  |  |  |
| D |  |  |  |  |  |  |  |  |
| D |  |  |  |  |  |  |  |  |
| ) |  |  |  |  |  |  |  |  |
| F |  |  |  |  |  |  |  |  |
| 3 | KA.DI3.44 | 795 | 150 | 945 | 795 | 175 | 970 |  |
| 4 | KL.DI1.170 | 820 | 167 | 987 | 749 | 203 | 952 |  |
| 5 | KL.DI2.171 | 807 | 184 | 991 | 735 | 192 | 927 |  |
| 6 | KL.DI3.172 | 742 | 178 | 920 | 785 | 173 | 958 |  |
| 7 | KL.DI4.173 | 758 | 148 | 906 | 775 | 186 | 961 |  |
| 8 | KM.DI1.20 | 822 | 169 | 991 | 756 | 171 | 927 |  |
| 9 | KM.DI3.22 | 820 | 150 | 970 | 745 | 184 | 929 |  |
| 10 | KR.DI1.86 | 819 | 171 | 990 | 763 | 145 | 908 |  |
| 11 | KR.DI2.87 | 843 | 166 | 1009 | 726 | 172 | 898 |  |
| 12 | KR.DI3.88 | 792 | 156 | 948 | 778 | 179 | 957 |  |
| 13 | MK.DI1.128 | 833 | 144 | 977 | 794 | 151 | 945 |  |
| 14 | MK.DI2.129 | 837 | 132 | 969 | 789 | 163 | 952 |  |
| 15 | MK.DI3.130 | 806 | 160 | 966 | 764 | 183 | 947 |  |
| 16 | NA.DI1. 214 | 798 | 182 | 980 | 767 | 186 | 953 |  |
| 17 | NA.DI2.215 | 834 | 168 | 1002 | 765 | 160 | 925 |  |
| 18 | NA.DI3.216 | 834 | 164 | 998 | 773 | 167 | 940 |  |
| 19 | NM.DI1.107 | 818 | 180 | 998 | 726 | 170 | 896 |  |
| 20 | NM.DI3.109 | 821 | 177 | 998 | 737 | 189 | 926 |  |
| 21 | TM.DI1.193 | 754 | 215 | 969 | 753 | 212 | 965 |  |

Figure 10: Table 2 :


Figure 11: Table 3 :

4

| S.No Image Name |  | Transitions on Top-Left T-TN-LBP |  |  | Transitions on Bottom-Right T-TN -LBP |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 4 | STLT | 2 | 4 | SBRT | TBT |
| Year | KA.HA1.29 | 847 | 207 | 1054 | 865 | 220 | 1085 | 2139 |
| 2 | KA.HA2.30 | 847 | 193 | 1040 | 857 | 204 | 1061 | 2101 |
| 3 | KA.HA3.31 | 823 | 210 | 1033 | 887 | 193 | 1080 | 2113 |
| 4 | KA.HA4.32 | 832 | 221 | 1053 | 874 | 211 | 1085 | 2138 |
| 5 | KL.HA1.158 | 809 | 251 | 1060 | 878 | 208 | 1086 | 2146 |
| 6 | KL.HA2.159 | 844 | 208 | 1052 | 864 | 209 | 1073 | 2125 |
| 7 | KL.HA3.160 | 839 | 204 | 1043 | 859 | 209 | 1068 | 2111 |
| 8 | KM.HA1.4 | 839 | 217 | 1056 | 829 | 201 | 1030 | 2086 |
| 9 | KM.HA2.5 | 849 | 185 | 1034 | 865 | 177 | 1042 | 2076 |
| 10 | KM.HA3.6 | 782 | 238 | 1020 | 810 | 232 | 1042 | 2062 |
| 11 | KM.HA4.7 | 831 | 215 | 1046 | 842 | 198 | 1040 | 2086 |
| D 12 | KR.HA1.74 | 823 | 217 | 1040 | 893 | 211 | 1104 | 2144 |
| D |  |  |  |  |  |  |  |  |
| D |  |  |  |  |  |  |  |  |
| D |  |  |  |  |  |  |  |  |
| ) |  |  |  |  |  |  |  |  |
| F |  |  |  |  |  |  |  |  |
| ( 13 | KR.HA2.75 | 831 | 204 | 1035 | 879 | 210 | 1089 | 2124 |
| 14 | KR.HA3.76 | 819 | 199 | 1018 | 864 | 203 | 1067 | 2085 |
| 15 | MK.HA2.117 | 827 | 211 | 1038 | 855 | 200 | 1055 | 2093 |
| 16 | MK.HA3.118 | 831 | 185 | 1016 | 847 | 188 | 1035 | 2051 |
| 17 | NA.HA1.202 | 835 | 208 | 1043 | 835 | 199 | 1034 | 2077 |
| 18 | NA.HA2.203 | 833 | 205 | 1038 | 859 | 208 | 1067 | 2105 |
| 19 | NA.HA3.204 | 863 | 196 | 1059 | 832 | 186 | 1018 | 2077 |
| 20 | NM.HA1.95 | 836 | 211 | 1047 | 851 | 215 | 1066 | 2113 |
| 21 | NM.HA2.96 | 842 | 202 | 1044 | 869 | 197 | 1066 | 2110 |
| 22 | NM.HA3.97 | 857 | 186 | 1043 | 858 | 201 | 1059 | 2102 |
| 23 | TM.HA1.180 | 826 | 208 | 1034 | 852 | 232 | 1084 | 2118 |
| 24 | TM.HA2.181 | 817 | 236 | 1053 | 826 | 262 | 1088 | 2141 |
| 25 | TM.HA3.182 | 823 | 223 | 1046 | 848 | 238 | 1086 | 2132 |
| 26 | UY.HA1.137 | 846 | 222 | 1068 | 860 | 213 | 1073 | 2141 |
| 27 | UY.HA2.138 | 861 | 212 | 1073 | 840 | 228 | 1068 | 2141 |
| 28 | UY.HA3.139 | 824 | 213 | 1037 | 871 | 200 | 1071 | 2108 |
| 29 | YM.HA1.52 | 833 | 220 | 1053 | 864 | 206 | 1070 | 2123 |
| 30 | YM.HA2.53 | 826 | 214 | 1040 | 845 | 216 | 1061 | 2101 |

Figure 12: Table 4 :

|  |  | Transitions on Top-Left T-TN-LBP |  |  | Transitions on Bottom-Right T-TN-LBP |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S.N | mage Name | 2 | 4 | STLT | 2 | 4 | SBRT | TBT |
| 1 | KA.NE1.26 | 871 | 214 | 1085 | 876 | 227 | 1103 | 2188 |
| 2 | KA.NE2.27 | 868 | 195 | 1063 | 898 | 211 | 1109 | 2172 |
| 3 | KA.NE3.28 | 863 | 199 | 1062 | 892 | 223 | 1115 | 2177 |
| 4 | KL.NE1.155 | 861 | 227 | 1088 | 864 | 222 | 1086 | 2174 |
| 5 | KL.NE2.156 | 871 | 220 | 1091 | 857 | 233 | 1090 | 2181 |
| 6 | KL.NE3.157 | 873 | 226 | 1099 | 887 | 220 | 1107 | 2206 |
| 7 | KM.NE1.1 | 844 | 221 | 1065 | 898 | 195 | 1093 | 2158 |
| 8 | KM.NE2.2 | 843 | 242 | 1085 | 861 | 215 | 1076 | 2161 |
| 9 | KM.NE3.3 | 877 | 208 | 1085 | 866 | 225 | 1091 | 2176 |
| 10 | KR.NE1.71 | 858 | 207 | 1065 | 872 | 223 | 1095 | 2160 |
| 11 | KR.NE2.72 | 862 | 224 | 1086 | 876 | 217 | 1093 | 2179 |
| 12 | KR.NE3.73 | 871 | 233 | 1104 | 878 | 211 | 1089 | 2193 |
| 13 | MK.NE1.113 | 894 | 185 | 1079 | 854 | 219 | 1073 | 2152 |
| 14 | MK.NE2.114 | 886 | 203 | 1089 | 870 | 221 | 1091 | 2180 |
| 15 | MK.NE3.115 | 861 | 201 | 1062 | 926 | 173 | 1099 | 2161 |
| 16 | NA.NE1.199 | 888 | 214 | 1102 | 856 | 202 | 1058 | 2160 |
| 17 | NA.NE2.200 | 873 | 237 | 1110 | 857 | 233 | 1090 | 2200 |
| 18 | NA.NE3.201 | 900 | 188 | 1088 | 886 | 204 | 1090 | 2178 |
| 19 | NM.NE1.92 | 860 | 191 | 1051 | 878 | 230 | 1108 | 2159 |
| 20 | NM.NE2.93 | 876 | 202 | 1078 | 878 | 213 | 1091 | 2169 |
| 21 | NM.NE3.94 | 930 | 210 | 1140 | 856 | 205 | 1061 | 2201 |
| 22 | TM.NE1.177 | 855 | 228 | 1083 | 865 | 237 | 1102 | 2185 |
| 23 | TM.NE2.178 | 849 | 245 | 1094 | 833 | 289 | 1122 | 2216 |
| 24 | TM.NE3.179 | 834 | 239 | 1073 | 882 | 240 | 1122 | 2195 |
| 25 | UY.NE1.134 | 873 | 204 | 1077 | 879 | 213 | 1092 | 2169 |
| 26 | UY.NE2.135 | 874 | 214 | 1088 | 854 | 231 | 1085 | 2173 |
| 27 | UY.NE3.136 | 881 | 210 | 1091 | 873 | 212 | 1085 | 2176 |
| 28 | YM.NE1.49 | 851 | 215 | 1066 | 904 | 194 | 1098 | 2164 |
| 29 | YM.NE2.50 | 888 | 186 | 1074 | 872 | 212 | 1084 | 2158 |
| 30 | YM.NE3.51 | 887 | 214 | 1101 | 863 | 223 | 1086 | 2187 |

Figure 13: Table 5 :

6

Transitions on Top-Left T-TN-LBP
S.No Image 2

Name

Transitions on Bottom-Right T-TN-LBP
4 STLT2
4 SBRTTBT


Figure 15: Table 7 :

9

| Image Dataset | Architecture based <br> on a two-layer per- <br> ception | Facial <br> expression <br> analysis | GLCM <br> on DLBP <br> of <br> Method | Proposed <br> Method |
| :--- | :--- | :--- | :--- | :--- |
| Kamachi and Gyoba <br> at Kyushu University, <br> Japan-data set | 80.29 | 91.79 | 96.67 | 100 |
| LBP) |  |  |  |  |

Figure 16: Table 9 :

## . 1 Conclusions

The present paper derived new direction for various problems of image processing by deriving LBP on the third order neighborhood. The third order neighborhood consists of 12 pixels excluding centre pixel. This may lead to huge number of patters i.e. 212 . The U-LBP on third order neighborhood leads to a negligible percentage of patterns. To overcome this, the present paper proposed transitions on T-TN-LBP. The T-TN-LBP considered $87.5 \%$ of transitions thus overcoming the disadvantage of U-LBP of third order neighborhood. The STLT, SBRT and TBT results of Table ?? clearly indicates an average facial expression classification result of $58 \%, 66 \%$ and $100 \%$ respectively.
[Lyons et al. (1998)] 'Coding facial expressions with gabor wavelets'. M Lyons, S Akamatsu, M Kamachi, J Gyoba . Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, (the Third IEEE International Conference on Automatic Face and Gesture RecognitionNara, Japan) Apr. 1998.
[Dela Torre and Cohn] 'Facial expression analysis'. F F Dela Torre, J F Cohn . Guide to Visual Analysis of Humans: Looking at People, . B Th, A Moeslund, V Hilton, L Kruger, Sigal (ed.) p. .
[Satyanarayanamurty et al. ()] 'Facial Expression Recognition Based on Features Derived From the Distinct LBP and GLCM'. Gorti Satyanarayanamurty, Sasikiran , V Dr, Vijaya, Kumar . International Journal on Image, Graphics and Signal Processing 2014. 2 p. .
[Zhang ()] 'Feature-Based Facial Expression Recognition: Sensitivity Analysis and Experiments with a MultiLayer Perception'. Zhe Zhengyou Zhang . International Journal of pattern recognition and Artificial Intelligence 1999. 13 (6) p. .


[^0]:    3 II.
    Step 3 : Crop the grey scale image.

[^1]:    ${ }^{1}$ © 2014 Global Journals Inc. (US)
    ${ }^{2} \odot 2014$ Global Journals Inc. (US) Global Journal of Computer Science and Technology

