Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

Feature-Level Multi-Focus Image Fusion Using Neural Network and Image Enhancement

Shaik Abdul Rahim¹, Dr. G. Mamatha² and Cyril Prasanna Raj³

¹ J.N.T University-Anantapur-India.

Received: 6 February 2012 Accepted: 4 March 2012 Published: 15 March 2012

7 Abstract

3

5

Image Processing applications have grown vastly in real world. Commonly due to limited 8 depth of optical field lenses, it becomes inconceivable to obtain an image where all the objects 9 are in focus. Image fusion deals with creating an image where all the objects are in focus. 10 After image fusion, it plays an important role to perform other tasks of image processing such 11 as image enhancement, image segmentation, and edge detection. This paper describes an 12 application of Neural Network (NN), a novel feature-level multifocus image fusion technique 13 has been implemented, which fuses multi-focus image using classification. The image is 14 divided into blocks. The block feature vectors are fed to feed forward NN. The trained NN is 15 then used to fuse any pair of multi-focus images. The implemented technique used in this 16 paper is more efficient. The comparisons of the different existing approaches along with the 17 implementing method by calculating different parameters like PSNR, RMSE. 18

19

20 Index terms— Multi-focus image fusion, feed forward neural network, image Enhancement.

²¹ 1 Introduction

mage fusion utilises information obtained from a multi-focus images of the same scene. Image processing is one 22 of form of signal processing for which the input is an image and the output of image processing may be either an 23 image or a set of characteristics related to the image. For the most of the image processing techniques, images 24 25 of two dimensional signals is treated as input and standard image processing techniques are applied to it. The 26 process of image fusion is performed for multi-focus and multi-sensor images of the same scene. In multifocus images, the physical objects in the scene which are closer to the camera are in focus and the far physical object 27 gets blurred. Adverse to it, when the far physical objects are focussed then the closer objects get blurred in 28 the image. A hierarchical idea of image fusion has been implemented for combining significant information from 29 multiple images into single image. The process of image fusion can be accomplished either in transformed domain 30 or spatial domain. In spatial domain operations are performed on the pixel values. In transformed domain the 31 images are first transformed into multiple levels of resolutions. 32 Information fusion can be performed at any level of the image information representation corresponding to 33 other forms of information fusion, image fusion is usually performed at one of the three different processing levels 34

they are Pixel, Feature and Decision Level [5]. The pixel level image fusion is also known as signal level image fusion which represents fusion at the lowest processing level, that is operations such as maximum or mean(average) are applied to the pixel values of the source images to generate the fused image. Feature level image fusion is also known as object level image fusion where fused features and object labels and information that have already extracted from individual input images. Decision level is also known as symbol level, the objects in the input image are first detected and then the suitable fusion algorithm the fused image is generated. In the field of

Image Processing, image fusion has received a significant importance for medical imaging, military applications,
forensic, remote sensing.

A number of image fusion techniques have been exhibited in the literature. In addition of simple pixel level image fusion techniques. We find the complex techniques such as Laplacian Pyramid [2], Morphological pyramid 45 [6], fusion based on PCA [3], Discrete wavelet Transform (DWT) [1]. These fusion techniques have different

46 advantages and disadvantages such as liner wavelets during image decomposition the fused image doesn't preserve 47 the original data. Likewise due to low-pass filtering of wavelets, the edges in the image becomes smooth and 46 honce the contrast in fused image is decreased.

48 hence the contrast in fused image is decreased.

In this paper, we have implemented a method for multi-focus image fusion. The implemented method is discussed in section II. In section III, the quantitative measures used to evaluate the performance of the implemented method are described. Section IV covers the experiments details and section V concludes the study.

52 **2** II.

53 3 Implementing method

Different images are acquired from the Image Processing websites. From the acquired images consider one image, for that image generate two source images from original image that is one is left focused and right blurred other one right focused and left blurred. Every image is divided into blocks. The block size plays a significant role in differentiating the blurred 2) Spatial Frequency: Spatial frequency measure the activity level in an image, it used to calculate the frequency changes along rows and columns of the image. Spatial frequency is measured using equation (??).

59 equati 60 (2)

61

Where and Here X is the image and p^*q is the image size. A large value of spatial frequency describes the

large information level in the image and therefore it measures the clearness of the image.
3) Variance: Variance is used to measure the extent of focus in an image block. It is calculated using equation

64 (??)(3)

⁶⁹ 4 Where and

Here p and q represent the dimensions of the image block. A high value of energy of gradient shows greater
 amount of focus in the image block.

5) Edge Information: The edge pixels can be found in the image block by using canny edge detector. It returns 1 if the current pixel belongs to some edge in the image otherwise it returns 0. The edge feature is just

74 the number of edge pixels contained within the image block.

⁷⁵ 5 c) Artificial Neural Networks

Many Neural Network models have been implemented for tackling a diverse range of problems*, including pattern 76 classification. The fusion we examine here can be considered as classification problem. Here we have considered 77 78 a NN applications model, namely the PNN (Probabilistic Neural Network). The basic idea underlying NN is to overlap localized receptive fields of the hidden units to create arbitrarily complex nonlinear ties. The normal 79 architecture consists of one hidden layer and one output layer. Each hidden unit corresponding to a kernel or 80 basis function of the input vector x, and is usually of the Gaussian form. The basic architecture of feed forward 81 NN is shown below Here, c is the position of the hidden unit and is a user-defined width that controls is spread. 82 For PNN a hidden unit is positioned at every training data point. 83

⁸⁴ 6 d) Neural Network Algorithm

The algorithm first decomposes the source images into blocks. Given two of these blocks (one from each source 85 image), a neural network is trained to determine which one is clearer. Fusion then proceeds by selecting the 86 clearer block in constructing the final image. The fusion result of DWT is shift dependent. The use of image 87 blocks on the other hand, avoids this problem even if there is object movement or misregistration in the source 88 images, each object will still be in better focus in one of the source images. In detail, stepwise working of the 89 implemented method is given under. 1) LFi is the left-focused and RFi is the rightfocused versions of the ith 90 image in the dataset in section(II-A). 2) Divide the versions LFi and RFi of every image in the dataset into 91 k number blocks of the size M*N. 3) Create the features file for all LFij and RFij according to the features 92 93 discussed in section (II-B). Here j=1,2,3...k. For all i, there are two sets of features values for every block j named 94 as FSLFij and FSRFij each of which contains five feature values. Subtract the features values of block j of RFi 95 and include this pattern in feature file. Normalise the feature value between [0 1]. 4) Assign the class value to 96 every block j of ith image. If block j is visible in LFi then assign it class value 1 otherwise give it a class value -1. In case of class value -1, block j is visible in RFi. 5) Train a neural network to determine whether LFi or RFi 97 is clearer. Identify the clearness of all the blocks of any pair multi-focus images to be fused. 6) Fuse the given 98 pair of multi-focus images block by block according to the classification results of the neural network. Such that 99 Output of NN for block J If>0, select J from left-focused Image If<0, select j from right-focused Image The block 100

101 diagram of the implemented method is shown in figure (2).

102 **7** III.

103 8 Quantitative measures

There are different quantitative measures which are used to evaluate the performance of the fusion techniques. These are PSNR (Peak Signal to noise ratio), RMSE (root mean square error), Entropy, Correlation Coefficient,

106 MAE (mean absolute error). Here R, F are the reference and fused images respectively.p*q is the image size.

¹⁰⁷ 9 c) Entropy

113 Here is the normalized histogram of fused image and L is the number of gray levels.

114 10 d) Correlation Coefficient

The correlation coefficient matrix represents the normalized measure of the strength of linear relationship between variables.

117 Where is a data value at time step t, k is the lag.

118 **11 e) MAE**

119 It is used to calculate the mean absolute error between reference image and fused image.

120 Where the predicted is fused image and is the true value fused image.

121 **12 Experiments and results**

127 Texture Calculations:

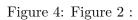
128 V.

129 13 Conclusion

In this implemented technique, a feature level focus image fusion has been implemented in this paper. In this method we have trained the feed forward neural network with the block features of pairs of multi-focus images. A feature set including SF, CV, edges, variance, and EG is used to define clarity of the image block. The trained neural network was then used to fuse any pair of multi-focus images. Experimentation results show that the implemented technique performs better than the existing techniques. The fusion result of Discrete Wavelet Transform is shift dependent. The use of image block, on the other hand avoids the problem of shift dependent.

 $^{^1 \}odot$ 2012 Global Journals Inc. (US)

Figure 1: F



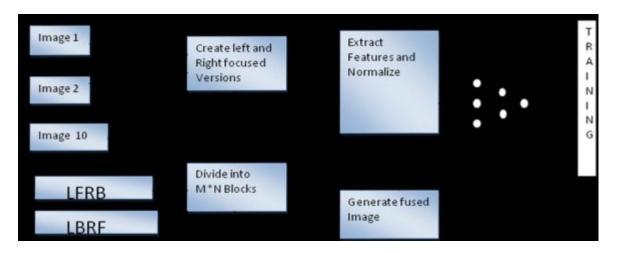
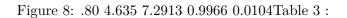

Figure 2: Figure 1 :

Figure 3:

1

[Note: © 2012 Global Journals Inc. (US) Global Journal of Computer Science and Technology Volume XII Issue X Version I 18]


Figure 6: Table 1 :

$\mathbf{2}$

21 D D D D) (

Figure 7: Table 2 :

3

13 CONCLUSION

- 137 [Toet ()] 'Image fusion by a ratio of low pass pyramid'. A Toet . Recognition Letters 1989. 9 (4) p. .
- [Li and Knok] Multi-focus image fusion using artificial neural networks, Shutao Li , James J Knok . 23 p. . (in
 pattern Recognition letters)
- [Li et al. ()] 'Multi-sensor image fusion using the wavelet transform'. H Li , S Manjunath , S K Mitra . Graphical
 Models and Image processing, 1995. 57 p. .
- [Pajares and Manuel De La ()] Gonzalo Pajares , Jesus Manuel De La , Cruz . A wavelet-based Image Fusion
 Tutorial" in pattern Recognition, 2004. 37 p. .
- [Naidu (2008)] 'Pixel-level Image Fusion using Wavelets and Principal Component Analysis'. V P S Naidu , JR
 Defence Science Journal May 2008. 58 (3) p. .
- 146 [Zheng et al.] Yufeng Zheng , Edward A Essock , Bruce C Hansen . An Advanced Image Fusion Algorithm Based
- 147 on Wavelet Transform-Incorporation with,