
© 2012. Nidhi Arora Navneet Singh & Parneet Kaur. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 12 Issue 8 Version 1.0 April 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Performance Comparison of BNP Scheduling Algorithms in
Homogeneous Environment

 By Nidhi Arora Navneet Singh & Parneet Kaur
 Maharishi Markandeshwar University

Abstract - Static Scheduling is the mapping of a program to the resources of a parallel system in
order to minimize the execution time. This paper presents static scheduling algorithms that schedule
an edge-weighted directed acyclic graph (DAG) to a set of homogeneous processors. The aim is to
evaluate and compare the performance of different algorithms and select the best algorithm amongst
them. Various BNP algorithms are analyzed and classified into four groups - Highest Level First
Estimated Time (HLFET), Dynamic Level Scheduling (DLS), Modified Critical Path (MCP) and Earliest
Time First (ETF). Based upon their performance considering various factors, best algorithm is
determined.

Keywords : DAG, Task graphs, Parallel Processing, List Scheduling, Multiprocessor, Speed up.

GJCST Classification: D.4.8

Performance Comparison of BNP Scheduling Algorithms in Homogeneous Environment

Strictly as per the compliance and regulations of:

Performance Comparison of BNP Scheduling
Algorithms in Homogeneous Environment

Nidhi Arora α, Navneet Singh σ & Parneet Kaur ρ

Abstract - Static Scheduling is the mapping of a program to
the resources of a parallel system in order to minimize the
execution time. This paper presents static scheduling
algorithms that schedule an edge-weighted directed acyclic
graph (DAG) to a set of homogeneous processors. The aim is
to evaluate and compare the performance of different
algorithms and select the best algorithm amongst them.
Various BNP algorithms are analyzed and classified into four
groups - Highest Level First Estimated Time (HLFET), Dynamic
Level Scheduling (DLS), Modified Critical Path (MCP) and
Earliest Time First (ETF). Based upon their performance
considering various factors, best algorithm is determined.
Keywords : DAG, Task graphs, Parallel Processing, List
Scheduling, Multiprocessor, Speed up.

I. Introduction

arallel processing is the simultaneous use of more
than one processor to execute a program in order
to get faster results. Given an directed acyclic

graph (DAG), also called task graph, in which the nodes
represent the tasks and edges represent the
communication costs as well as the dependencies
among the tasks. The problem deals with the
scheduling of the tasks onto a set of homogenous
processors to minimize the completion time. DAG is
generic model of a parallel program consisting of a set
of processes. Each process is an indivisible unit of
execution, expressed by node. A node has one or more
inputs and can have one or more output to various
nodes.

The paper is organized as follows. In the next
section, we describe the generic DAG model and its
suitability to different situations. In section 3, basic
scheduling attributes are being discussed. Classification
of BNP scheduling algorithms is given in section 4.
Section 5, presents a performance comparison of
various BNP scheduling algorithms and results are
derived. Last section concludes the paper and presents
the scope of this work in future.

II. Dag model

The DAG [Kaur et al, 2011][Ahmad and
Kwok,1998] is generic model of a parallel program

Author

α

:

Department of Computer Science and Engineering M.M.U,

Mullana (Ambala) India.

E-mail : er.nidhi152@gmail.com

Author

σ

:

Department of Information Technology Adesh Institute of

Engineering & Tech Faridkot-Punjab.

Author

ρ

:

Department of Computer Science and Engineering Adesh

Institute of Engineering & Tech Faridkot-Punjab.

consisting of a set of processes among which there are
dependencies. Each process is an indivisible unit of
execution, expressed by node. A node has one or more
inputs and can have one or more output to various
nodes. When all inputs are available, the node is
triggered to execute. After its execution, it generates its
output. In this model, a set of nodes { n1 , n2 , n3 ……….
n n } are connected by a set of directed edges, which
are represented by (n i , n j) where n i is called the Parent
node and n j is called the child node. A node without
parent is called an Entry node and a node without child
called an Exit node. The weight of a node, denoted by
w (n i), represents the process execution time of a
process. Since each edge corresponds to a message
transfer from one process to another, the
communication time, denoted by c (n i , n j) is equal to
the message transmission time from node n i to n j . Thus
c (n i , n j) becomes zero when and are scheduled
to the same processor because intraprocessor
communication time is negligible compared with the
interprocessor communication time. The node and edge
weights are usually obtained by estimations. Some
variations in the generic DAG model are described
below:

Accurate Model [Kaur et al, 2011]: In an
accurate model, the weight of a node includes the
computation time, the time to receive messages before
the computation, and the time to send messages after
the computation. The weight of an edge is a function of
the distance between the source and destination nodes,
and therefore, depends on the node allocation and
network topology. It also depends on network
contention which can be difficult to model. When two
nodes are assigned to a single processor, the edge
weight becomes zero, so as the message receiving time
and sending time.

Approximate Model 1 [Kaur et al, 2011]: In this
model, the edge weight is approximated by a constant,
independent of the message transmission distance and
network contention. A completely connected network
without contention fits this model.

Approximate Model 2 [Kaur et al, 2011]: In this
model, the message receiving time and sending time
are ignored in addition to approximating the edge
weight by a constant. These approximate models are
best suited to the following situations; (i) the grain-size
of the process is much larger than the message

P

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

V
ol
um

e
X
II

 I
ss
ue

 V
III

V
er
sio

n
I

49

20

12
A
pr

il

 n jn i

receiving time and sending time; (ii) communication is
handled by some dedicated hardware so that the
processor spends insignificant amount of time on
communication; (iii) the message transmission time
varies little with the message transmission distance,
e.g., in a wormhole or circuit switching network; and (iv)
the network is not heavily loaded. In general, the
approximate models can be used for medium to large
granularity, since the larger the process grain-size, the
less the communication, and consequently the network
is not heavily loaded. The second reason for using the
approximate models is that both the node and edge
weights are obtained by estimation, which is hardly
accurate. Thus, an accurate model is useless when the
weights of nodes and edges are not accurate.

III. List scheduling

Most scheduling algorithms are based on list
scheduling technique [Kwok and Ahmad, 1999]. List
scheduling is a class of scheduling heuristics in which
the nodes are assigned priorities and placed in a list
arranged in a descending order of priority. The node
with higher priority will be examined for scheduling
before a node with a lower priority. If more than one
node has the same priority, ties are broken using some
method. List scheduling consists of two phases:
1. Task prioritizing phase: - In this phase the priority of

each node in DAG is computed and assigned.
2. Processor selection:-Each task is assigned

processor with minimum execution time.

The two main attributes [Hagras and Janeek,
2003] for assigning priority are the t-level (top level) and
b-level (bottom level).

Top level : The t-level of a node n i is the length
of the longest path from an entry node to n i (excluding n

i). Here, the length of a path is the sum of all the node
and edge weights along the path. The t-level is
computed recursively by traversing the DAG downward
starting from the entry node n entry .

t-level (n i) = max (t-level (n m) + w m + c m , i)

where n m is predecessors of n i , w m stands for
computational cost, c m , i stands for communication
cost and t-level (n entry) = 0. The t-level of n i highly
correlates with n i ’s earliest start time, denoted by EST
(n i) , which is determined after n i is scheduled to a
processor.

Bottom level: The b-level of a node n i is the
length of the longest path from node n i to an exit node.
The b-level is computed recursively by traversing the
DAG upward starting from the exit node n exit .

b-level (n i) = w i + max(b-level (n m) + c m , i)

where n m is successor of n i , w m stands for
computational cost, c m , i stands for communication
cost and b-level (n exit) = w (n exit).

The b-level of a node is bounded by the length
of the critical path. A critical path (CP) of a DAG, is the
longest path from an entry node to an exit node.

Static b-level: Some BNP scheduling algorithms
do not consider the edge weights in computing the b-
level. In that case, b-level does not change throughout
the scheduling process, therefore it is called static b-
level or static level (SL).

SL(n i) = w i + max (SL(n m))

where n m is successor of n i and SL(n exit) = w (n exit)

ALAP start time: The ALAP (As-Late-As-
Possible) start time of a node is measure of how far the
node’s start time can be delayed without increasing the
schedule length. It is also known as latest start time
(LST).

LST(n i) = min(LST(n m) - c m , i) - w i

where is successor of n i , w m stands for
computational cost, c m , i stands for communication
cost and LST(n exit) = EST(n exit).

Dynamic Level: It is the difference of Static level
and Earliest Start Time.

Some algorithms assign higher priority to a
node with smaller t-level while some algorithms assign
higher priority to a node with larger b-level. A priority
table is designed for all the nodes in DAG.

IV. Classification of bnp scheduling
algorithms

BNP refers to Bounded Number of Processor
(BNP) Scheduling Algorithms [Hagras and Janeek,
2003][Kaur et al, 2011]. These algorithms schedule the
DAG to a bounded number of processors directly. The
processors are assumed to be fully connected. BNP
scheduling algorithms are based on the list scheduling
technique in which nodes are assigned some priorities.
To study these algorithms, homogeneous environment
is considered in which processors having same
configuration are used for execution. BNP class of
algorithms is categorized into two categories:

Static Algorithms: These algorithms use list
scheduling approach. Therefore in static algorithms
once the task prioritization phase is finished then and
only then the processor selection phase begins.
Following are static scheduling algorithms.

Highest Level First with Estimated Times
(HLFET) algorithm [Kwok and Ahmad, 1999]: It is one of
the simplest list scheduling algorithms that uses static
b-level as node priority and ignores the communication
costs on the edges. Following steps describe the HLFET
algorithm in detail:
1. Calculate the static b-level of each node.
2. Make a ready list in descending order of static b-

level. The ready list contains only the entry nodes
initially. Ties are broken randomly.

Performance Comparison of Bnp Scheduling Algorithms in Homogeneous Environment
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

V
ol
um

e
X
II

 I
ss
ue

 V
III

V
er
sio

n
I

50

© 2012 Global Journals Inc. (US)

20

12
A
pr

il

n m

Repeat.
3. Schedule the first node in the ready list to a

processor that allows the earliest execution, using
the non-insertion approach.

4. Update the ready list by inserting the nodes that are
now ready.

Until all nodes are scheduled.

Modified Critical Path (MCP) algorithm [Kwok
and Ahmad, 1999]: This algorithm uses an attribute
called ALAP time of a node as a priority. The ALAP time
of a node is computed by first computing the length of
CP and then subtracting the b-level of the node from it.
Therefore, the ALAP times of the nodes on the CP are
just their t-levels. Following steps describe the
algorithm.
1. Compute the ALAP time of each node.
2. For each node, create a list which consists of the

ALAP times of the node itself and all its children in a
descending order.

3. Sort these lists in an ascending order. Create a
node list according to this order.

Repeat.
4. Schedule the first node in the node list to a

processor that allows the earliest execution, using
the insertion approach.

5. Remove the node from the node list.
Until the node list is empty.

Dynamic Algorithms: These algorithms also use
list scheduling approach. In Dynamic algorithms both
the task prioritization phase and processor selection
phase goes on side by side. Following are dynamic
scheduling algorithms.

The Earliest Time First (ETF) algorithm [Kwok
and Ahmad,1999]: It computes, at each step, the
earliest start times for all ready nodes and then selects
the one with the smallest start time, which is computed
by examining the start time of the node on all
processors exhaustively. The algorithm is described
below.
1. Compute the static b-level of each node.
2. Initially, the pool of ready nodes include only the

entry nodes.
Repeat.
3. Calculate the earliest start time on each processor

for each node in the ready pool. Pick the node-
processor pair that gives the earliest time using the
non insertion approach. Ties are broken by
selecting the node with a higher static b-level.
Schedule the node to the corresponding processor.

4. Add the newly ready nodes to the ready node pool.
Until all nodes are scheduled.

Dynamic Level Scheduling (DLS) algorithm
[Kwok and Ahmad, 1999]: This algorithm uses as node
priority an attribute called dynamic level (DL) which is
the difference between the static b-level of a node and

its earliest start time on a processor. The stepwise
description of the algorithm is given below.
1. Calculate the b-level of each node.
2. Initially, the ready node pool includes only the entry

nodes.
Repeat.
3. Calculate the earliest start time for every node on

each processor. Hence, compute the DL of every
node processor pair by subtracting the earliest start
time from the node’s static b-level.

4. Select the node processor pair that gives the largest
DL. Schedule the node to the corresponding
processor.

5. Add the newly ready nodes to the ready pool.
Until all nodes are scheduled.

V. Performance comparison and
results

The performance is the most important factor in
every algorithm [Kaur et al, 2011] [Hagras and Janeek,
2003]. In this section, we present performance
comparison of above discussed BNP scheduling
algorithm. The performance comparison is based upon
various comparison metrics discussed below.

Makespan: Makespan is defined as the
completion time of the algorithm. It is calculated by
measuring the finishing time of the exit task by the
algorithm.

Speed Up: The Speed Up value is computed by
dividing the sequential execution time by the parallel
execution time.

Scheduled length ratio (SLR): It is defined as
the ratio of the Makespan of the algorithm to Critical
path values of the DAG.

Processor Utilization: It means that how
processors are being utilized by different processes. It is
good when maximum number processors are utilized.

Above metrices are compared for 10 nodes, 15
nodes, 20 nodes and 25 nodes in homogeneous
environment and results are shown graphically.

Case 1 : In first case, results are shown for 10
nodes and 5 processors. Makespan and SLR is same
for HLFET, MCP and ETF, but DLS algorithm shows
highest makespan value and lowest speed up value.
All processors are best utilized in case of HLFET and
MCP.

Performance Comparison of Bnp Scheduling Algorithms in Homogeneous Environment

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

V
ol
um

e
X
II

 I
ss
ue

 V
III

V
er
sio

n
I

51

20

12
A
pr

il

Figure 1:

Makespan values for 10 nodes

Figure 2

:

SLR and SpeedUp for 10 nodes

Figure 3 : Processor Utilization for 10 nodes

Figure 4

:

Figure 5 : SLR and SpeedUp for 15 nodes Figure 6 : Processor Utilization for 15 nodes

Performance Comparison of Bnp Scheduling Algorithms in Homogeneous Environment
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

V
ol
um

e
X
II

 I
ss
ue

 V
III

V
er
sio

n
I

52

© 2012 Global Journals Inc. (US)

20

12
A
pr

il

Makespan for 15 nodes

Case 2: In this case, results are compared for
15 nodes and 5 processors. Makespan is less for MCP
and increases in order from HLFET, DLS and ETF. Same
results are obtained for SLR values, but processor
utilization is best for HLFET and ETF. Speedup is good
in case of MCP and HLFET.

Case 3: Here 20 nodes are considered.
Makespan time and SLR is less and processor utilization
is good in case of DLS. HLFET and DLS shows higher
value of Speedup.

 Figure 7

:

Makespan for 20 nodes

Figure 8

:

SLR and SpeedUp for 20 nodes

Figure 9

:

Processor Utilization for 20 nodes

Figure 10

:

akespan for 25 nodes

Performance Comparison of Bnp Scheduling Algorithms in Homogeneous Environment

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

V
ol
um

e
X
II

 I
ss
ue

 V
III

V
er
sio

n
I

53

20

12
A
pr

il

M

 Figure 11:

SLR and SpeedUp for 25 nodes

Figure 12

:

Processor Utilization for 25 nodes

Case 4: In case of 25 nodes, Makespan time is
less for HLFET, same applies for SLR. Processor
utilization and Speedup is best in case of HLFET
algorithm.

VI. Conclusion and future scope

Makespan of MCP and ETF showed large
increase in value while increasing the tasks from 20 to
25 compared to other algorithms. The average
processor utilization remained same for HLFET and
MCP algorithms with 10 tasks. MCP utilized processor
efficiently than HLFET with 15 tasks. With 20 and 25
tasks, HLFET proved to be better than other algorithms.
The SLR remained almost the same for HLFET, MCP
and ETF with 10 tasks. It is maximum in case of DLS for
10 tasks. With 15 tasks MCP shows the lowest value. As
the tasks are increased HLFET shows the lesser value in
case of 20 and 25 tasks. Same is the case with Speed
Up. With 10 tasks speedup of HLFET, MCP and DLS
algorithms is same. As the tasks increase from 20 to 25,
Speed Up value of HLFET hikes. It can be concluded
from the above results, that HLFET is one of the efficient
algorithms, considering the data gathered using the
scenarios and the performance calculated from them.
The thesis has vast future scope. A lot of work can be
done considering more case scenarios. Heterogeneous
environment can be considered, in which multiple
processors having different configuration are used. The
comparison of these algorithms can be done for any

References références referencias

1.

Parneet Kaur, Dheerendra Singh, Gurvinder Singh
and Navneet Singh “Analysis, Comparison and

Performance Evaluation of BNP Scheduling
Algorithms in Parallel Processing” International
Journal of Information Technology and Knowledge
Management, Volume 4, No. 1, pp. 279-284,
January-June 2011

2. Ishfaq Ahmad, Yu-Kwong Kwok “Performance
Comparison of Algorithm for Static Scheduling of
DAG to multiprocessor” citeseerx.ist.psu.edu/view
doc/download?doi=10.1.1.42.8979...pdf.

3. Ishfaq Ahmad, Yu-Kwong Kwok “Benchmarking and
comparison of the Task Graph Scheduling
algorithms” pp1063-7133,IEEE 1998.

4. Ishfaq Ahmad and Min-You Wu “Analysis,
Evaluation and Comparison Of algorithm for
Scheduling Task Graph on Parallel Processor” pp
1087-4087, IEEE 1996.

5. T.Hagras, J.Janeek “Static Vs. Dynamic List-
scheduling Performance Comparison” Acta
Polytechnica Vol. 43 No. 6/2003.

6. Dror G. Feitelson and Larry Rudolph “Parallel Job
Scheduling: Issues and Approaches” www.cse. Hc
mut.edu.vn/~ptvu/ppds/ParallelJobScheduling.pdf

7. Min You Wu “On parallelization of Static Scheduling
Algorithm” IEEE, vol 23, pp 517 – 528, Aug 1997.

8. Shyiyuan Jin, Guy Schiavone, Damla Turgut “A
performance study of multiprocessor task
scheduling algorithm” vol 43, Page 77-97, Issue1
(Jan -2008).

9. Thomas L. Casavant “A taxonomy of Scheduling in
General-Purpose Distributed Computing Systems”
IEEE Transactions on Software Engineering, vol. 14,
no. 2, February 1988.

10. T.L Adam, K.Chandy and J. Dickson “ A
Comparison of List scheduling for Parallel

Performance Comparison of Bnp Scheduling Algorithms in Homogeneous Environment
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

V
ol
um

e
X
II

 I
ss
ue

 V
III

V
er
sio

n
I

54

© 2012 Global Journals Inc. (US)

20

12
A
pr

il

Processing Systems” Communications of the ACM,
Vol. 17, no.12, pp 685-690, Dec 1974.

number of processors in different environments.

11.

Yu-Kwong Kwok and Isfaq Ahmad “Static
Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors” ACM Computing
Surveys, Vol.31, No.4, December 1999

12.

Eryk Laskowski “Fast Scheduling and Partitioning
algorithm in the multiprocessor system with
Redundant Communication Resources”

www.

springerlink.com/content/0np00wu1r0c7te8m/fulltext
.pdf.

13.

Igor Grudenic “Scheduling Algorithm and Support
Tools for parallel System”

www.fer.hr/_

download/repository/Grudenickvalifikacijski.pdf

14.

S.V Sudha and K.Tjanushkodi “An Approach for
parallel job Scheduling Using supple Algorithm”
Asian Journal of Information Technology, Volume: 7,
Issue: 9, Page No.: 403-407, 2008.

15.

Jing-Chiou Liou, Micheal A.Palis “A Comparison of
General Approaches to Multiprocessor Scheduling”
IEEE, pp 152 –

156,15 April 1997.

Performance Comparison of Bnp Scheduling Algorithms in Homogeneous Environment

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

V
ol
um

e
X
II

 I
ss
ue

 V
III

V
er
sio

n
I

55

20

12
A
pr

il

This page is intentionally left blank

Performance Comparison of Bnp Scheduling Algorithms in Homogeneous Environment
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

V
ol
um

e
X
II

 I
ss
ue

 V
III

V
er
sio

n
I

56

20
12

A
pr

il

© 2012 Global Journals Inc. (US)

	Performance Comparison of BNP Scheduling Algorithms inHomogeneous Environment
	Author's

	Keywords
	I. Introduction
	II. Dag model
	III. List scheduling
	IV. Classification of bnp schedulingalgorithms
	V. Performance comparison andresults
	VI. Conclusion and future scope
	References références referencias

