
Developing an Embedded Model for Test suite prioritization1

process to optimize consistency rules for inconsistencies detection2

and model changes3

Dr. Muzammil H Mohammed1 and Sultan Aljahdali24

1 Taif University, Saudi Arabia.5

Received: 9 December 2011 Accepted: 5 January 2012 Published: 15 January 20126

7

Abstract8

Software form typically contains a lot of contradiction and uniformity checkers help engineers9

find them. Even if engineers are willing to tolerate inconsistencies, they are better off knowing10

about their existence to avoid follow-on errors and unnecessary rework. However, current11

approaches do not detect or track inconsistencies fast enough. This paper presents an12

automated approach for detecting and tracking inconsistencies in real time (while the model13

changes). Engineers only need to define consistency rules-in any language-and our approach14

automatically identifies how model changes affect these consistency rules. It does this by15

observing the behavior of consistency rules to understand how they affect the model. The16

approach is quick, correct, scalable, fully automated, and easy to use as it does not require17

any special skills from the engineers using it. We use this model to define generic18

prioritization criteria that are applicable to GUI, Web applications and Embedded Model. We19

evolve the model and use it to develop a unified theory. Within the context of this model, we20

develop and empirically evaluate several prioritization criteria and apply them to four21

stand-alone GUI and three Web-based applications, their existing test suites and mainly22

embedded systems. In this model we only run our data collection and test suite prioritization23

process on seven programs and their existing test suites. An experiment that would be more24

readily generalized would include multiple programs of different sizes and from different25

domains. We may conduct additional empirical studies with larger EDS to address this threat26

each test case has a uniform cost of running (processor time) monitoring (human time); these27

assumptions may not hold in practice. Second, we assume that each fault contributes28

uniformly to the overall cost, which again may not hold in practice.29

30

Index terms—31

1 Introduction32

here are lots of problems involving the consistency of the software during the development cycle. A lot of cost33
and investment is put forth to reduce the inconsistency in the software which brings out a consistent software.34
The main objective of our research is in this area of identifying the inconsistencies in software automatically35
using various tools and techniques. Also we have hereby focused on the automated model change identification36
which may also help in identifying the inconsistencies automatically.37

Determining the inconsistencies in software automatically will definitely help in reducing the complexity of38
software maintenance and as well as enhances the performance of the software.39

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



8 NOTE

The main focus of the proposed system of automating the consistency checking is on the UML since UML is40
the basic for any software development.41

When we track all the dynamic consistency changes and the rule inconsistencies in the UML we can almost42
very well say that the software inconsistencies are tracked down, since the software depends on the UML.43

In our proposed model of inconsistencies tracking we have laid down the emphasis on the UML rule consistency,44
UML model changes, Dynamic constraints, meta model constraints, etc.45

To identify inconsistencies in an automatable fashion we have devised and applied a view integration framework46
accompanied by a set of activities and techniques. Our view integration approach exploits the redundancy between47
views which can be seen as constraints. Our view integration framework enforces such constraints and, thereby,48
the consistency across views. In addition to constraints and consistency rules, our view integration framework49
also defines what information can be exchanged and how information can be exchanged. This is critical for50
scalability and automates ability.51

We made use of many tools those analyses the UML and the model to help us in figuring out all the52
inconsistencies and changes. The major tool is UML analyzer.53

(UML/Analyzer is a synthesis and analysis tool to support model-based software development. It implements54
a generic view integration framework which supports automated model transformation and consistency checking55
within UML object and class diagrams as well as the C2SADEL architectural description language). If there is56
a rule flow in your rule project, it reports problems on rules that are included in a rule task, and that may be57
selected at runtime.58

It only compares rules that may be in the same task. In the case of a rule task with dynamic selection filtering,59
the consistency checking mechanism takes into account the rules that are potentially selected by this task. A60
rule can be potentially selected when it cannot be established that it definitely cannot be selected.61

If there is no rule flow in your rule project, all the rules in the project may be selected.62
Consistency checking gives an indication of the consistency of your rules but cannot identify all potential63

problems. An empty Consistency checking report is therefore not a guarantee that there are no problems in the64
analyzed rules. b) Rules that are never selected Rules are reported as ”never selected” when they are not part of65
a rule task and cannot be selected at runtime. For more information, see Rule selection and Rule overriding. c)66
Rules that never apply This occurs when the conditions of the rule can never be met.67

Typically, the syntax of such rules is correct but the rules contain common logic errors. For example:68
The wrong operator is used to combine condition statements, for example and instead of or: the category of69

the customer is Gold and the category of the customer is Platinum.70
Values are inverted, for example, in the following rule: the age of the customer is between 70 and 50.71
Values in the conditions are not within the permitted range.72

2 d) Rules with range violation73

In order to reduce the risk of errors, some members can only be assigned values within a specified range. For74
example, the yearly interest rate on a loan may be limited to values between 0 and 10.75

If a rule contains an action that tries to assign a value that is not within the permitted range, Rule Studio76
displays a range violation error in the report and in the Rule Editor.77

3 e) Rules with equivalent conditions78

This occurs when two rules contain condition parts that have the same meaning and their actions are different79
although conflict.80

Rules with equivalent conditions do not necessarily represent an error situation, but they may be good81
candidates to be merged.82

4 f) Equivalent rules83

Equivalent rules are reported when both their conditions and actions are the same.84
In the following example, Rule1 and Rule2 are equivalent:85

5 C86

Although the syntax of these two rules is different, rule analysis evaluates the numeric expressions and reports87
that the rules are equivalent. You can therefore delete one of them.88

6 201289

7 Year90

8 Note91

Equivalent rules often arise between a decision table that you create and an existing rule.92

2



9 g) Redundant rules93

When two rules have the same actions, one of them becomes redundant when its conditions are included in the94
conditions of the other.95

In the following example, the Else part of Rule2 makes Rule1 redundant: Although Rule1 is correct, it is96
redundant and can therefore be deleted.97

10 Note98

Redundant rules often arise between a decision table that you create and an existing rule. h) Conflicting and99
self-conflicting rules i. Conflicting rules Rules may conflict when the actions of two different rules set a different100
value for the same business term (member). Conflicts occur in these two rules in circumstances in which the101
conditions are equivalent or cover the same values.102

11 Rule 1 if103

the loan report is approved and the amount of the loan is at least 300 000 then set the category of the borrower104
to Gold Rule 2 if the age of the latest bankruptcy of the borrower is less than 1 and the category of the borrower105
is not Platinum then set the category of the borrower to No Category Rule1 and Rule2 will conflict when the106
loan report is approved, the amount of the loan is 300000 (or more), the borrower has not had a bankruptcy in107
the last year, and the category is anything but Platinum. In these specific circumstances, the rules will set the108
category of the borrower to different values.109

Conflicting rules can be corrected by changing the conditions, deleting one of the rules, or setting different110
priorities on the rules.111

12 ii. Self-conflicting rules112

A rule is self-conflicting when two executions of a rule assign different values to the same member. For example,113
a self-conflicting rule: may apply twice on a given working memory (and ruleset parameters) will set different114
values to a common attribute For example: if the customer category is Gold then set the discount of the cart to115
the bonus points of the customer If there are two customer objects with different bonus points in the working116
memory, the rule is executed twice and a conflict occurs because the two executions of the rule set different values117
to the discount of the cart.118

13 i) Decision table conflicts119

To check decision tables, you need to enable the option Include decision tables and decision trees in the inter-rule120
checks.121

This The UML/Analyzer tool, integrated with IBM Rational Rose&8482;, fully implements this approach. It122
was used to evaluate 29 models with tens-of-thousands of model elements, evaluated on 24 types of consistency123
rules over 140,000 times. We found that the approach provided design feedback correctly and required, in average,124
less than 9ms evaluation time per model change with a worst case of less than 2 seconds at the expense of a linearly125
increasing memory need. This is a significant improvement over the state-of-theart. To identify inconsistencies126
in an automatable fashion we have devised and applied a view integration framework accompanied by a set127
of activities and techniques. Our view integration approach exploits the redundancy between views which can128
be seen as constraints. Our view integration framework enforces such constraints and, thereby, the consistency129
across views. In addition to constraints and consistency rules, our view integration framework also defines130
what information can be exchanged and how information can be exchanged. This is critical for scalability and131
automate ability. When the user invokes play, object disp invokes stream on object st. These UML consistency132
rules describe conditions that a UML model must satisfy for it to be considered a valid UML model. Fig. ??133
lists 24 such rules covering consistency, well-formedness, and best practice criteria among UML class, sequence,134
and statechart diagrams. The first four consistency rules are elaborated on for better understanding. Note that135
these consistency rules apply to UML only. For the other modeling notations, different consistency rules were136
needed, which are not described here.137

14 Figure 4 : Class Diagram138

A consistency rule may be thought of as a condition that evaluates a portion of a model to a truth value (true139
or false). For example, consistency rule 1 states that the name of a message must match an operation in the140
receiver’s class.141

If this rule is evaluated on the third message in the sequence diagram (the wait message), then the condition142
first computes operations ¼ message: receiver: base: operations, where message.receiver is the object st (this143
object is on the receiving end of the message; see arrowhead), receiver.base is the class Streamer (object st is144
an instance of class Streamer), and base. operations is {stream(),wait()} (the list of operations of the class145
Streamer). The condition then returns true because the set of operation names (operations> name) contains the146
message name wait.147

IV.148

3



19 D) MEASURING INCONSISTENCY

15 Implementation a) Inconsistencies149

We use the term inconsistency to denote any situation in which a set of descriptions does not obey some150
relationship that should hold between them. The relationship between descriptions can be expressed as a151
consistency rule against which the descriptions can be checked. In current practice, some rules may be captured152
in descriptions of the development process; others may be embedded in development tools. However, the majority153
of such rules are not captured anywhere.154

Here are three examples of consistency rules expressed in English: 1. In a dataflow diagram, if a process is155
decomposed in a separate diagram, the input flows to the parent process must be the same as the input flows to156
the child data flow diagram. 2. For a particular library system, the concept of an operations document states that157
user and borrower are synonyms. Hence, the list of user actions described in the help manuals must correspond158
to the list of borrower actions in the requirements specification.159

16 Coding should not begin until the Systems160

Requirement Specification has been signed off by the project review board. Hence, the program code repository161
should be empty until the status of the SRS is changed to ”approved.”162

Figure ?? : Manage Inconsistency In our framework, when you iterate through the consistency management163
process, you expand and refine the set of consistency rules. You will never obtain a complete set of rules covering164
all possible consistency relationships in a large project. However, the rule base acts as a repository for recording165
those rules that are known or discovered so that they can be tracked appropriately.166

Consistency rules can emerge from several sources:167
? Notation dentitions. Many notations have welldefined syntactic integrity rules. For example, in a strongly168

typed programming language, the notation requires that the use of each variable be consistent with its declaration.169
? Application domains. Many consistency rules arise from domain-specific constraints.170

17 b) Monitoring and diagnosing inconsistency171

With an explicit set of consistency rules, monitoring can be automatic and unobtrusive. If certain rules have a172
high computational overhead for checking, the monitoring need not be continuous-the descriptions can be checked173
at specific points during development, using a lazy consistency strategy.174

Our approach defines a scope for each rule, so that each edit action need be checked only against those rules175
that include in their scope the locus of the edit action.176

When you find an inconsistency, the diagnosis process begins. Diagnosis includes parts of a description have177
broken a consistency rule;178

? identifying the cause of an inconsistency, normally by tracing back from the manifestation to the cause; and179
? classifying an inconsistency.180
Classification is an especially important stage in the process of selecting a suitable handling strategy.181
Inconsistencies can be classified along a number of different dimensions, including the type of rule broken, the182

type of action that caused the inconsistency, and the impact of the inconsistency.183

18 c) Handling inconsistency184

The choice of an inconsistency-handling strategy depends on the context and the impact it has on other aspects of185
the development process. Resolving the inconsistency may be as simple as adding or deleting information from a186
software description. But it often relies on resolving fundamental conflicts or making important design decisions.187
In such cases, immediate resolution is not the best option. You can ignore, defer, circumvent, or ameliorate the188
inconsistency.189

Sometimes the effort to fix an inconsistency is significantly greater than the risk that the inconsistency will190
have any adverse consequences. In such cases, you may choose to ignore the inconsistency. Good practice dictates191
that such decisions should be revisited as a project progresses or as a system evolves.192

Deferring the decision until later may provide you with more time to elicit further information to facilitate193
resolution or to render the inconsistency unimportant. In such cases, flagging the affected parts of the descriptions194
is important.195

Sometimes software developers won’t regard a reported inconsistency as an inconsistency. This may be196
because the rule is incorrect or because the inconsistency represents an exception to the rule. In these cases, the197
inconsistency can be circumvented by modifying the rule or by disabling it for a specific context.198

Sometimes, it may be more cost-effective to ameliorate an inconsistency by taking some steps toward a199
resolution without actually resolving it.200

This approach may include adding information to the description that alleviates some adverse effects of an201
inconsistency and resolves other inconsistencies as a side effect.202

19 d) Measuring inconsistency203

For several reasons, measurement is central to effective inconsistency management. Developers often need to204
know the number and severity of inconsistencies in their descriptions, and how various changes that they make205
affect these measures. Developers may also use given a choice, which is preferred.206

4



Sometimes developers need to prioritize inconsistencies in different ways to identify inconsistencies that need207
urgent attention. They may also need to assess their progress by measuring their conformance to some predefined208
development standard or process model.209

The actions taken to handle inconsistency often depend on an assessment of the impact these actions have on210
the development project. Measuring the impact of inconsistency-handling actions is therefore a key to effective211
action in the presence of inconsistency. You also need to assess the risks involved in either leaving an inconsistency212
or handling it in a particular way.213

The 24 rules were chosen to cover the needs of our industrial partners. They cover a significant set of rules and214
we demonstrated that they were handled extremely efficiently. But it is theoretically possible to write consistency215
rules in a no scalable fashion. constraints -that is constraints that may be added, removed, or modified at will216
without losing the ability for instant, incremental consistency checking and without requiring any additional,217
manual annotations.218

20 Such dynamic. Table 1 : Rules and Description219

Constraints arise naturally in many domain specific contexts In addition to meta model constraints, this work also220
covers application specific model constraints that are written from the perspective of a concrete model at hand221
(rather than the more generic meta model). We will demonstrate that model constraints can be directly embedded222
in the model and still be instantly and incrementally evaluated together with meta model constraints based on223
the same mechanism. For dynamic constraints, any constraint language should be usable. We demonstrate224
that our approach is usable with traditional kinds of constraint languages (e.g., OCL [5]) and even standard225
programming languages (Java or C#). Furthermore, our approach is independent of the modeling language226
used. We implemented our approach for UML 1. element of constraint C1 in Fig. 3 is a UML Message (a meta227
model element). This implies that this constraint must be evaluated for every instance of a Message in a given228
model. In Fig. 3 there are three such messages. Model constraints, on the other hand, are written from the229
perspective of a model element (an instance of a meta model element). Hence, its context element is a model230
element.231

Fig. 6 shows that for every meta model constraint a number of constraint instances are instantiated (top right)232
-one for each instance of the meta model element the context element refers to. On the other hand, a model233
constraint is instantiated exactly once -for the model element it defines.234

21 Constraint Instance = <constraint, model element >235

While the context elements differ for model and meta model constraints, their instances are alike: the instances236
of meta model constraints and the instances of model constraints have model elements as their context element.237
The only difference is that a meta model constraint results in many instances whereas a model constraint results238
in exactly one instance. Since the instances of both kinds of constraints are alike, our approach treats them in the239
same manner. Consequently, the core of our approach, the model profiler with its scope elements and reevaluation240
mechanism discussed above, functions identical for both meta model constraints and model constraints as is241
illustrated in Fig. 6. The only difference is in how constraints must be instantiated. As discussed above, we242
support the definition of both meta model and model constraints in Java, C#, and OCL. These languages are243
vastly different but our approach is oblivious of these differences because it cares only about a constraint’s244
evaluation behavior and not its definition. The key to our approach is thus in the model profiling which happens245
during the evaluation of a constraint. During the evaluation, a constraint accesses model elements (and their246
fields). Next, we discuss the algorithm for handling model changes analogous to the discussion above. Thereafter,247
we discuss the algorithm for handling constraint changes which is orthogonal but similar in structure.248

22 g) Model Change249

If the model changes then all affected constraint instances must be re-evaluated. Above we discussed that our250
approach identifies all affected constraint instances through their scopes, which are determined through the model251
profiler. In addition to the model profiler, we also require a change notification mechanism to know when the252
model changes. Specifically, we are interested in the creation, deletion, and modification of model elements253
which are handled differently. Fig. 7 presents an adapted version of the algorithm for processing model changes254
published in [10]. 1) for meta model constraints, one constraint is instantiated for every model element whose type255
is equal to the type of the constraint’s context element. For example, if the meta model constraint C1 is created a256
new (Fig. 3 ) then it is instantiated three times -once for each message in Fig. 3 (<C1, getDevices>, <C1, press>,257
<C1, turnOn>) because C1 applies to UML messages as defined in its context element. 2) for model constraints,258
exactly one constraint is instantiated for the model element of the constraint’s context element. For example, if259
the model constraint C4 is defined anew (Fig. 3) then it is instantiated once for the WorkroomThermostat as260
defined in Fig. ?? (<C4, workroomThermostat>) because this constraint specifically refers to this model element261
in its context. Once instantiated, the constraints are evaluated immediately to determine their truth values and262
scopes. If a constraint is deleted then all its instances are destroyed. If a constraint is modified all its constraints263
are re-evaluated assuming the context element stays the same. If the context element is changed or the constraint264

5



26 YEAR

is changed from a meta model to a model constraint or vice versa, then the change is treated as the deletion and265
re-creation of a constraint (rather than its modification).266

23 processConstraintChange(changedDefinition)267

if changedDefinition was created for every modelElement of type/instance changedDefinition.contextElement268
constraint = new <changedDefinition, modelElement> evaluate constraint else if changedDefinition was deleted269
for every constraint of changedDefinition, destroy constraint else if condition of changedDefinition was modified270
for every constraint of changedDefinition, evaluate constraint else for every constraint of changedDefinition,271
destroy constraint for every modelElement of type/instance changedDefinition.contextElement constraint = new272
<changedDefinition, modelElement> evaluate constraint273

24 Test Results274

25 a) Computational Scalability275

We applied our instant consistency checking tool (the Model/Analyzer) to the 34 sample models and measured276
the scope sizes S size and the ACRI by considering all possible model changes. This was done through automated277
validation by systematically changing all fields of all model elements. In the following, we present empirical278
evidence that S size and ACRI are small values that do not increase with the size of the model.279

We expected some variability in Ssize because the sample models were very diverse in contents, domain, and280
size. Indeed, we measured a wide range of values between the smallest and largest Ssize (average/max), but281
found that the averages stayed constant with the size of the model. The initial, one-time cost of computing the282
truth values and scopes of a model is thus linear with the size of the model and the number of rule types OðRT283
+ M size Þ because Ssize is a small constant and constants are ignored for computational complexity.284

To validate the recurring computational cost of computing changed truth values and scopes, we next discuss285
how many CRIs must be evaluated with a single change (ACRI). Since the scope sizes were constant, it was286
expected that the ACRI would be constant also (i.e., the likelihood for CRIs to be affected by a change is directly287
proportional to the scope size). Again, we found a wide range of values for ACRI across the many diverse models288
but confirmed that the averages stayed constant with the size of the model. Fig. 10 depicts the average ACRI289
through solid dots and their98 percent maximums.290

ACRI was computed by evaluating all CRIs and then measuring in how many scopes each model element291
appeared. The figure shows that in some cases, many CRIs had to be evaluated (hundreds and more). But the292
average values reveal that most changes required few evaluations (between 3 and 11 depending on the model).293
We see that a change t o the association field of an AssociationEnd was the most expensive kind of change, with294
over 4 ms reevaluation cost, on average. A message name change (as was used several times in this paper) was295
comparatively cheap, with 0.12 ms to reevaluate, on average. First and foremost, we note that all types of model296
changes are quite reasonable to reevaluate. This implies that irrespective of how often certain types of changes297
happen, our approach performs. Well on all of them. However, not all changes are equally likely and we thus298
investigated the likelihood of these most expensive types of model changes. For 8 out of the 34 models, we had299
access to multiple model Previously, we mentioned that most changes required very little reevaluation time and300
that there were very rare outliers (0.00011 percent of changes with evaluation time >100 ms). The reason for301
this is obvious in Fig. 12, where we see that it is exponentially unlikely for CRIs to have larger scope sizes (Fig.302
12a) or for changes to affect many CRIs (Fig. 12b). We show this datum to exemplify how similar the 34 models303
are in that regard, even though these models are vastly different in size, complexity, and domain.304

26 Year305

The table shows that over 95 percent of all CRIs accessed less than 15 fields of model elements (scope elements).306
Fig. 12b depicts for all 34 models separately what percentage of changes (yaxis) affected <¼ 2; 4; 6; . . . CRIs.307
The table shows that 95 percent of all changes affected fewer than 10 CRIs (ACRI).308

The data thus far considered a constant number of consistency rules (24 consistency rules). However, the309
number of consistency rules is variable and may change from model to model or domain to domain. Clearly,310
our approach (or any approach to incremental consistency checking) is not amendable to arbitrary consistency311
rules. If a rule must investigate all model elements, then such a rule’s scope is bound to increase with the size312
of the model. However, we demonstrated on the 24 consistency rules that Rules typically are not global; they313
are, in fact, surprisingly local in their investigations. This is demonstrated in Fig. 13, which depicts the cost of314
evaluating changes for each consistency rule separately. Still, each consistency rule takes time to evaluate and315
Fig. 13 is thus an indication of the increase in evaluation cost in response to adding new consistency rules.316

We see that the 24 consistency rules took, on average, 0.004-0.21 ms to evaluate with model changes. Each317
new consistency rule thus increases the evaluation time of a change by this time (assuming that new consistency318
rules are similar to the 24 kinds of rules we evaluated). The evaluation time thus increases linearly with the319
number of consistency rules (RT#).320

It is important to note that the evaluation was based on consistency rules implemented in C#. Rules321
implemented in Java were slightly slower to evaluate but rules implemented in OCL ??38] were comparatively322

6



expensive due to the high cost of interpreting them. On the downside, our approach does require additional323
memory for storing the scopes. Fig. 14 depicts the linear relationship between the model size and this memory324
cost. It can be seen that the memory cost rises linearly. This should not be surprising given that the scope sizes325
are constant with respect to the model size but the number of CRIs increases linearly. As with the evaluation326
time, this cost also increases with the number of consistency rules (RT#). The memory cost is thus RT# +327
Ssize . For scalability, this implies a quite reasonable trade-off between the extensive performance gains over a328
linear (and thus scalable) memory cost. To put this rather abstract finding into a practical perspective, the scope329
is maintained as a simple hash table referencing the impacted CRIs in form of arrays. With the largest model330
having over 400,000 scope elements, each of which affects fewer than 10 CRIs, the memory cost is thus equivalent331
to 400,000 arrays of fewer than 10 CRIs each-quite manageable with today’s computing resources. The memory332
cost stays the same if the scope is stored persistently, in which case the recomputation of the scope upon model333
load is no longer required.334

27 ii. Usability335

One key advantage of our approach is that engineers are not limited by the modeling language or consistency336
rule language. We demonstrated this by implementing our approach on UML 1.3, UML 2.1, Matlab/Stateflow,337
and Dopler Product Line, and using a wide range of languages to describe consistency rules (from Java, C#338
to the interpreted OCL). But, most significantly, engineers do not have to understand our approach or provide339
any form of manual annotations (in addition to writing the consistency rule) to use it. These freedoms are all340
important for usability. This paper does not address how to best visualize inconsistencies graphically. Much of341
this problem has to do with human-computer interaction and future work will study this. This paper also does342
not address downstream economic benefits: For example, how does quicker (instant) detection of inconsistencies343
really benefit software engineering at large. How many p roblems are avoided, how much less does it cost to fix344
an error early on as compared to later on? These complex issues have yet to be investigated.345

However, as an anecdotal reference, it is worth pointing out that nearly all programming environments today346
support instant compilation (and thus syntax and semantic checking), which clearly benefits programmers. We347
see no reason why these benefits would not apply to modeling.348

28 VI.349

29 Conclusion350

The main issues addressed in this paper includes -identifying the inconsistencies correctly and quickly in an351
automated fashion by reducing the complexity, cost and the effort Next, to evaluate the consistency rules which352
are not necessarily to be written in special language and special annotations our approach used a form of profiling353
to observe the behavior of the consistency rules during evaluation. We demonstrated on 34 large-scale models354
that the average model change cost 1.4 ms, 98 percent of the model changes cost less than 7 ms, and that the355
worst case was below 2 seconds. It is very significant to understand that our approach maintains a separate scope356
of model elements for every application (instance) of a consistency rule. This scope is computed automatically357
during evaluation and used to determine when to reevaluate the rule. In the case of an inconsistency, this scope358
tells the engineer all of the model elements that were involved. Moreover, if an engineer should choose to ignore an359
inconsistency (i.e., not resolve it right away), an engineer may use the scopes to quickly locate all inconsistencies360
that directly relate to any part of the model of interest. This is important for living with inconsistencies but it is361
also important for not getting overwhelmed with too much feedback at once. This paper significantly identifies362
the dynamic model changes and a wide variety of consistency rules and the proposals were made for automatic363
detection and tracking of those inconsistencies and model changes that are static as well as dynamic considering364
also the cost and the efficiency factors of the automated system that is to be inbuilt as an embedded system to365
perform the task of automatic detection and embarking techniques to solve the inconsistencies and the model366
changes in any software development process by using the UML diagram as the base and UML analyzer for367
evaluation of the constraints and the results are then processed for further actions.368

30 VII.369

31 Future Work370

We cannot guarantee that all consistency rules can be evaluated instantly. The 24 rules of our study were chosen371
to cover the needs of our industrial partners. They cover a significant set of rules and we demonstrated that372
they were handled extremely efficiently. But it is theoretically possible to write consistency rules in a nonscalable373
fashion, although it must be stressed that of the hundreds of rules known to us, none fall into this category. It374
is future work to discuss how to best present inconsistency feedback visually to the engineer. Also, the efficiency375
of our approach depends, in part, on how consistency rules are written. 1376

1© 2012 Global Journals Inc. (US)

7



31 FUTURE WORK

Figure 1:

Figure 2:

8



1

Figure 3: Figure 1 :

22

Figure 4: Figure 2 : 2 )

9



31 FUTURE WORK

3

Figure 5: Figure 3 :

Figure 6:

6

Figure 7: Fig. 6

6

Figure 8: Figure 6 :

10



7

Figure 9: Figure 7 :

Figure 10:

8

Figure 11: Figure 8 :

Figure 12:

9

Figure 13: Fig. 9 :

1011

Figure 14: Fig. 10 :Fig. 11 :

Figure 15:

Figure 16:

12

Figure 17: Fig. 12 .

13

Figure 18: Fig. 13 :

11



31 FUTURE WORK

12



[Cheng et al. ()] ‘A Graphical Environment for Formally Developing Object-Oriented Software’. B H C Cheng ,377
E Y Wang , R H Bourdeau . Proc. Sixth Int’l Conf. Tools with Artificial Intelligence, (Sixth Int’l Conf. Tools378
with Artificial Intelligence) 1994. p. .379

[Lee et al. ()] ‘Algorithmic Analysis of the Impacts of Changes to Object-Oriented Software’. M Lee , A J Offutt380
, R T Alexander . Proc. 34th Int’l Conf. Technology of Object-Oriented Languages and Systems, (34th Int’l381
Conf. Technology of Object-Oriented Languages and Systems) 2000. p. .382

[Egyed ()] ‘Automated Abstraction of Class Diagrams’. A Egyed . ACM Trans. Software Eng. And Methodology383
2002. 11 p. .384

[Campbell et al. ()] ‘Automatically Detecting and Visualising Errors in UML Diagrams’. L A Campbell , B H C385
Cheng , W E Mcumber , K Stirewalt . Requirements Eng. J 2002. 7 p. .386

[Mackworth ()] ‘Consistency in Networks of Relations’. A K Mackworth . J. Artificial Intelligence 1977. 8 p. .387

[Nentwich et al. ()] ‘Consistency Management with Repair Actions’. C Nentwich , W Emmerich , A Finkelstein388
. Proc. 25th Int’l Conf. Software Eng, (25th Int’l Conf. Software Eng) 2003. p. .389

[Blanc et al. ()] ‘Detecting Model Inconsistency through Operation-Based Model Construc-tion’. X Blanc , I390
Mounier , A Mougenot , T Mens . Proc. 30th Int’l Conf. Software Eng, (30th Int’l Conf. Software Eng) 2008.391
p. .392

[Dhungana et al.] ‘DOPLER: An Adaptable Tool Suite for Product Line Engineering’. D Dhungana , R Rabiser393
, P Gru¨ Nbacher , K Lehner , C Federspiel . Proc. 11th, (11th)394

[Fickas et al. ()] S Fickas , M Feather , J Kramer . Proc. ICSE-97 Workshop Living with Inconsistency, (ICSE-97395
Workshop Living with Inconsistency) 1997.396

[Egyed ()] ‘Fixing Inconsistencies in UML Design Models’. A Egyed . Proc. 29th Int’l Conf. Software Eng, (29th397
Int’l Conf. Software Eng) 2007. p. .398

[Habermann and Notkin (1986)] ‘Gandalf: Software Development Environments’. A N Habermann , D Notkin .399
IEEE Trans. Software Eng Dec. 1986. 12 (12) p. .400

[Egyed et al. ()] ‘Generating and Evaluating Choices for Fixing Inconsistencies in UML Design Models’. A401
Egyed , E Letier , A Finkelstein , ; W Emmerich . Proc. Eighth Int’l Workshop Software Specification402
and Design, (Eighth Int’l Workshop Software Specification and Design) 2008. 1996. 16 p. . (Proc. 23rd Int’l403
Conf. Automated Software Eng.)404

[Briand et al. ()] ‘Impact Analysis and Change Management of UML Models’. L C Briand , Y Labiche , L405
O’sullivan . Proc. Int’l Conf. Software Maintenance, (Int’l Conf. Software Maintenance) 2003. p. 256.406

[Acar et al. ()] ‘Imperative Self-Adjusting Computation’. U A Acar , A Ahmed , M Blume . Proc. 35th ACM407
SIGPLAN-SIGACT Symp. Principles of Programming Languages, (35th ACM SIGPLAN-SIGACT Symp.408
Principles of Programming Languages) 2008. p. .409

[Finkelstein et al. ()] ‘Inconsistency Handling in Multi-Perspective Specifications’. A Finkelstein , D Gabbay , A410
Hunter , J Kramer , B Nuseibeh . IEEE Trans. Software Eng 1994. 20 p. .411

[Grundy et al. (1998)] ‘Inconsistency Manage-ment for Multiple-View Software Development Environments’. J412
Grundy , J Hosking , R Mugridge . IEEE Trans. Software Eng Nov. 1998. 24 (11) p. .413

[Kaplan and Kaiser ()] ‘Incremental Attribute Evaluation in Distributed Language-Based Environments’. S M414
Kaplan , G E Kaiser . Proc. Fifth Ann. Symp. Principles of Distributed Computing, (Fifth Ann. Symp.415
Principles of Distributed Computing) 1986. p. .416

[Egyed ()] ‘Instant Consistency Checking for the UML’. A Egyed . Proc. 28 th Int’l Conf. Software Eng, (28 th417
Int’l Conf. Software Eng) 2006. p. .418

[Groher et al. ()] ‘Instant Consistency Checking of Dynamic Constraints’. I Groher , A Reder , A Egyed . Proc.419
12th Int’l Conf. Fundamental Approaches to Software Eng, (12th Int’l Conf. Fundamental Approaches to420
Software Eng) 2010.421

[Int’l Software Product Line Conf ()] Int’l Software Product Line Conf, 2007. p. .422

[Egyed and Balzer ()] ‘Integrating COTS Software into Systems through Instrumentation and Reasoning’. A423
Egyed , B Balzer . Int’l J. Automated Software Eng 2006. 13 p. .424

[Belkhouche and Lemus ()] ‘Multiple View Analysis and Design’. B Belkhouche , C Lemus . Proc. Int’l425
Workshop Multiple Perspectives in Software Development, (Int’l Workshop Multiple Perspectives in Software426
Development) 1996.427

[Lindvall and Sandahl ()] ‘Practical Implications of Trace-ability’. M Lindvall , K Sandahl . J. Software-Practice428
and Experience 1996. 26 p. .429

[Forgy ()] ‘Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem’. C Forgy .430
Artificial Intelligence 1982. 19 p. .431

13



31 FUTURE WORK

[Boehm et al. ()] Software Cost Estimation with COCOMO II, B W Boehm , C Abts , A W Brown , S Chulani432
, B K Clark , E Horowitz , R Madacy , D Reifer , B Steece . 2000. Prentice Hall.433

[Balzer ()] ‘Tolerating Inconsistency’. R Balzer . Proc. 13 th Int’l Conf. Software Eng, (13 th Int’l Conf. Software434
Eng) 1991. p. .435

[Easterbrook and Nuseibeh ()] ‘Using ViewPoints for Incon-sistency Management’. S Easterbrook , B Nuseibeh436
. IEE Software Eng. J 1995. 11 p. .437

[Nentwich et al. ()] ‘xlinkit: A Consistency Checking and Smart Link Generation Service’. C Nentwich , L Capra438
, W Emmerich , A Finkelstein . ACM Trans. Internet Technology 2002. 2 p. .439

14


	1 Introduction
	2 d) Rules with range violation
	3 e) Rules with equivalent conditions
	4 f) Equivalent rules
	5 C
	6 2012
	7 Year
	8 Note
	9 g) Redundant rules
	10 Note
	11 Rule 1 if
	12 ii. Self-conflicting rules
	13 i) Decision table conflicts
	14 Figure 4 : Class Diagram
	15 Implementation a) Inconsistencies
	16 Coding should not begin until the Systems
	17 b) Monitoring and diagnosing inconsistency
	18 c) Handling inconsistency
	19 d) Measuring inconsistency
	20 Such dynamic. Table 1 : Rules and Description
	21 Constraint Instance = <constraint, model element >
	22 g) Model Change
	23 processConstraintChange(changedDefinition)
	24 Test Results
	25 a) Computational Scalability
	26 Year
	27 ii. Usability
	28 VI.
	29 Conclusion
	30 VII.
	31 Future Work

