
© 2012. Sai Bharath Kadati, K. K. Baseer, A. Rama Mohan Reddy & CH. Gowthami. This is a research/review paper, distributed under
the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/),
permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 11 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Naive Based Approach for Mapping Two ADL Models
 By Sai Bharath Kadati, K. K. Baseer, A. Rama Mohan Reddy & CH. Gowthami

 JNIAS/JNTUA, University, Hyderabad. SVEC, Tirupati, and A.P., India

Abstract - In software engineering, we have identified and described the model correspondence
problem. To Describe system architecture and artifacts uses models and diagrams. Models contains
series of versions. To understand how versions correspondence are difficult. So, we designed a
framework based on Search and Ammolite algorithms, which can cardinally finds the
correspondence software models. Models are represented as graphs whose nodes have attributes
(name, edge, label, connections). For a given diagram pair, it performs different individual matches
such as pair-wise match, Split-Merge Match and Drop match and then combine all matches together
to design a ADL model. Every ADL Model has its correspondence score for rating quality candidates.
To find best Correspondence among the given ADL models uses Search and Ammolite Algorithms.

Keywords : Decision, Design Artifacts, Elements, Reasoning Principles, Semantic Information,
Syntactic Information, Visual Information.

GJCST-C Classification : D.2.11

A Naive Based Approach for Mapping Two ADL Models

Strictly as per the compliance and regulations of:

A Naive Based Approach for Mapping Two ADL
Models

Abstract - In software engineering, we have identified and
described the model correspondence problem. To Describe
system architecture and artifacts uses models and diagrams.
Models contains series of versions. To understand how
versions correspondence are difficult. So, we designed a
framework based on Search and Ammolite algorithms, which
can cardinally finds the correspondence software models.
Models are represented as graphs whose nodes have
attributes (name, edge, label, connections). For a given
diagram pair, it performs different individual matches such as
pair-wise match, Split-Merge Match and Drop match and then
combine all matches together to design a ADL model. Every
ADL Model has its correspondence score for rating quality
candidates. To find best Correspondence among the given
ADL models uses Search and Ammolite Algorithms.
Keywords : Decision, Design Artifacts, Elements,
Reasoning Principles, Semantic Information, Syntactic
Information, Visual Information.

I. Introduction

n Architecture is defined as building for humans,
and being an architect is having the spirit to build
for humans. A framework is a collection of classes

and applications, libraries of SDKs and APIs to help the
different components all work together. In engineering
discipline an essential part of quality is control of
change. That dictates the need to review and
understand changes prior to accept them. Models and
Diagrams are a primary design artifacts in this
environment, this means being able to compare
diagrams to identify correspondence and discrepancies
between them. In large-scale IT system development
techniques have long existed for comparing textual
artifacts, somewhat less work has been reported
concerning comparisons of the diagrams and model
that are common. The main problem of this paper is to
correspondence between a pair of diagrams (a
mapping between elements of one diagram and
elements of the other) and introduce a Bayesian
approach to solve the problem. The application which

Author

α :

Bachelor of Technology in Computer Science and

Engineering and Department of Information Technology, SVEC,
Tirupati, and A.P., India.

are in the central to modern IT systems development
process includes structured representation of
requirements, business process workflows, system
overviews, architectural specifications of systems,
network topologies, object designs, state transition
diagrams, and control and data flow representation of
code.

a) Scenarios
The system development life cycle has several

application to find correspondence between models. A
series of successive revisions of a model from design
activity. There is a need to review and understand the
nature of revisions as part of accepting them, rejecting
them or merging them with other concurrent revisions
and to identify correspondences and discrepancies is
central to such activities. Model variants correspond is
crucial for integration. Different collaboration may
experiment with different paths of evolution of a model,
resulting in a number of transient variants, with the intent
that those branches deemed successful will be
integrated back into a main stream. The use of multiple
views of the architecture of the system by using many
development approaches and methodologies[6]. The
model we propose is made up of five main views [7].

Fig. 1:

The 4+1 View Model

•

The logical

view,

which is the object model of the

design (when an object-oriented design method is
used),

•

The process view, which captures the concurrency
and synchronization aspects of the design,

A

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

47

(
DDDD

)
C

20

12

Sai Bharath Kadati α, K. K. Baseer σ, A. Rama Mohan Reddy ρ & CH. GowthamiѠ

Author σ : Assistant Professor in department of Information
Technology, JNIAS/JNTUA, University, Hyderabad. SVEC, Tirupati,
and A.P., India.
Author ρ : Professor & HOD of Computer Science and Engineering, Sri
Venkateswara University, Tirupati, A.P., India.
Author Ѡ : B. Tech Computer Science and Engineering from JNTUK,
Kakinada, Anantapur, India.

Y
e
a
r

http://cplus.about.com/od/introductiontoprogramming/g/classdefn.htm�
http://cplus.about.com/od/glossar1/g/applicationdefn.htm�
http://cplus.about.com/od/glossar1/g/sdkdefinition.htm�
http://cplus.about.com/od/introductiontoprogramming/g/apidefn.htm�

• The physical view, which describes the mapping(s)
of the software onto the hardware and reflects its
distributed aspect,

• The development view, which describes the static
organization of the software in its development
environment.

Traceability is the another important
requirement for maintaining quality [10], [5]. Traceability
between software artifact, such as requirements, design
elements, code, test cases and defect reports. At finer
level of granularity, traceability provides the ability to
navigate between the elements of different artifacts such
as individual software components, hardware nodes,
requirements, non-functional requirements, and
architectural decisions that reflects the design rationale
for the system. The larger asset of reuse is the
incorporation of reference architecture from a repository
into a solution design.

b) Contribution of the Paper
In Present days, determining correspondences

between models is a tedious, error-prone, time-
consuming, manual process. The main goal is to
achieve an automated means of determining the
correspondences, similar to techniques for automated
comparison of textual artifacts. This requires us to
answer several questions:
• How do we represent models?
• Which features of models must be represented?
• What algorithms should be used to find

correspondences?
In this paper, provide answers to these questions.

II. Diagram features

We focus mainly on the problem of finding
correspondences in the domain of IT architecture
operational models [2], although the paper techniques
have proven effective for other kinds of IT architecture
models as well. Operational models are used by IBM
Global Services architects as part of a development
methodology for customized IT solutions. An operational
model also includes model elements reflecting the key
decisions constituting the rationale for the solution
design.

The main features of an operational model
diagram

can be abstracted to elements found in many

other kinds of diagrams:

•

Labeled nodes.

System components can be
represented as textual or pictorial in a diagram. For
example, an attribute may indicate whether the node
is internal or external to the solution in an
operational model diagram.

•

Edges.

A edge represents a relationship or
association and it can indicate communication
paths connection between nodes. Bandwidth,

Technology, Security etc., are the attributes of the
edge.

• Containers. A node that which contains other nodes
is simply called Container. For example, In
operational model diagram, a server may contain
multiple software components or a region may
contain multiple servers. Containers may be nested,
current prototype only considers the nesting of
servers within regions when correspondences.

• Groups.[8] Nodes are grouped together
semantically. For instance, in operational models,
servers located in the same building may be
grouped within a common region. Like nodes,
groups have labels and relationship. For example,
regions have an adjacency relationship that
indicates a connection.

Regions are discussed in greater detail below.
 The information represented by system
diagrams can be broadly classified into three types: 1)
syntactic information (e.g., nodes, labels, containment,
and edges), 2) semantic information (e.g., types,
defined semantic attributes), and 3) visual information
(e.g., position, shape, and color of diagram elements).
Leveraging all of these kinds of information is one of the
major challenges of diagram matching.

III. Model correspondence problem

The model correspondence problem is the
problem of finding the “best” correspondence between
the elements of two diagrams.

a) Semantics and Domain-Specific Knowledge as a
Basis

The first issue is how to define “best.” It may
seem appealing to define “best” as the correspondence
that preserves a specific semantic relationship between
the two diagrams, but this definition would be difficult to
apply in practice, for several reasons.

First, there are many possible semantic
relationships between diagrams and it is hard to decide
which applies. For example, in one case, we may have a
diagram pair(𝐸𝐸,𝐸𝐸′), where 𝐸𝐸′ is a revision of 𝐸𝐸, with the
semantic relation “is a revision of.” In another case, 𝐸𝐸
may be a conceptual description of a system and 𝐷𝐷′ a
physical description, with the semantic relation
“realizes.”

Second, even if the semantic relationship is
known, defining it in precise detail would be difficult, and
even a precise definition may not have sufficient
information to find the best correspondence.

Third, many diagrams found in practice have no
formal semantics: They use informal notions of “boxes”
and “lines” to convey context-specific architectural
notions.

Either way, we conjecture that generic matching
techniques can go a long way in finding

© 2012 Global Journals Inc. (US)

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

48

(
DDDD

)
C

20

12
Y
e
a
r

correspondences between diagrams without having to
incorporate knowledge of these kinds of semantic
relationships or even knowledge of any of the deeper
semantics of the various types of diagram.

b) Reasoning Principles for Recovering Traceability

Human experts can often identify good
correspondences after careful examination of a pair of
diagrams. Human experts did this by manually finding
the best correspondences for some diagram pairs, and
recording the reasoning principles used to find the
correspondences

The following principles of reasoning about
diagram pairs correspondences:
• Most decisions are made using evidence about

which nodes from one diagram match which nodes
from the other diagram.

• Every feature of the nodes in the diagrams can be
important evidence, including text, connection and
containment relationships, and geometric and
pictorial attributes.

 HLV

(High-Level View) LLV(Low-Level View)

Fig. 2 : Simple Example Diagram Pair

•

Evidence takes the form of having similar or
dissimilar features. For example, if two nodes have
the same label, this is strong evidence that they
match. If two nodes are at totally different positions
in their respective diagrams, that is evidence that
they do not match.

•

For a node pair (n,

n’) sometimes there is some

evidence that n and n’ match and other evidence
that n and n’ do not match. Practitioners will use
their experience to weigh the relative significance of
the different pieces of evidence and decide whether
or not n and n’ match.

•

The correspondence can be filled in by identifying
one-to-one matches using evidence about node
pairs. Other kinds of evidence help suggest non-
one-to-one matches when necessary. For example,
if diagram D has a node n labeled “Firewall and
Access Control” and D’ has node n’1 labeled
“Firewall” and n’2 labeled “Access Control,” the
labels suggest that n matches to both n’1 and n’2. If
n’1 and n’2 are both within the same container, this

is further evidence that they may match to the same
node in D.

IV.
 Solution overview

An overview of our solution, and it serves as a
road map to Bayesian correspondence, which gives the
mathematical and gives a mathematical description an
algorithm.

Our algorithm as Automated Matching of
Models (AMMO). We explain the main ideas of the
AMMO algorithm by tracing its behavior on a simple
example diagram pair, HLV and LLV, as shown in Fig. 2.
This diagram pair is highly simplified for presentation
purposes, but it does exhibit some of the difficulties
found in production models, such as non-obvious node
matches and matches that are not one-to-one

The tags B1;

B2; . . . ;

Q1;

Q2; . . .;

L1;

L2; . . . ;

W1;

W2; . . . are only for ease of reference in this
discussion and are not part of the actual node labels.
Also, note that regions, such as “L2: Application Zone,”
contain nodes, such as “B2: Application Services” and

L1: Client Zone

L2: Application Zone

 L3: Data Zone

W1: Client Zone

W2: Application Zone

 W3: Data Zone

B1: Client

B2: Application
Services

B3: Search
Services

B4: Data Services
Services

Q3: Earthwind Firewall

Q2: Firefox TC

Q1: Mapplet RCP

Q5: QFind Cluster

Q4 : Sealink
HTTPD

Q6: SQL Database
Server

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

49

(
DDDD

)
C

20

12
Y
e
a
r

“B3: Search Services.” Further note that the label of a
node is not qualified by the label of the region that
contains it.

a) Feature Similarity
 Our algorithm begins by computing a number
of similarity values for each possible node pair
consisting of a node from one diagram and a node from
the other diagram, i.e., (𝑥𝑥, 𝑥𝑥′) ∈ 𝐻𝐻𝐻𝐻𝐻𝐻 × 𝐻𝐻𝐻𝐻𝐻𝐻. A similarity
value is computed for each feature from a
predetermined set of features. For example, nodes with
similar labels often match, so one of the features we
work with is the textual label of a node, and one of the
similarities we compute for a node pair is its label
similarity—a value between 0 and 1 reflecting the string
similarity between the node labels. A similarity value can
be regarded as a “raw similarity score” for a particular
feature for a node pair.

Table 1: Pair-wise Label Similarity for Fig. 2

Q1

Q2

Q3

Q4

Q5

Q6

B1

0.118

0.125

0.083

0.211

0.316

0.095

B2

0.385

0.240

0.061

0.143

0.143

0.200

B3

0.190

0.200

0.286

0.348

0.174

0.240

B4

0.316

0.111

0.231

0.095

0.095

0.435

b)

Match Probability from Feature Similarity

A similarity value in itself does not indicate
whether pair of nodes match; that is, it is unclear
whether a particular similarity is low or high with respect
to the population. To transform a raw score consisting of
a feature similarity value into a probability that a pair of
nodes match. Given a probability distribution of the
similarity values, based on similarities observed for
matching and non-matching pairs in training data,
Bayesian inference will convert the similarity of (𝑥𝑥, 𝑥𝑥′)

into the probability

that (𝑥𝑥, 𝑥𝑥′)

match. From Table 1 to

Table 2 the probabilities resulting from Bayesian
inference given the similarities. One can see that the
probability of node B4 matching to Q6 is much higher
than the probability of B4 matching to any other node.
One can also see that B2 is approximately twice as likely
to match to Q1 as it is to match to any other node.
Finally, one can see that the probabilities of B1 and B3
matching to any of the nodes in the second diagram are
approximately equal, indicating that the label feature is
inadequate in determining matches for these nodes.

Table 2 :

Pairwise Match probabilities based on Label
Similarity

Q1

Q2

Q3

Q4

Q5

Q6

B1

0.100

0.100

0.104

0.108

0.155

0.102

B2

0.225

0.116

0.108

0.108

0.100

0.105

B3

0.104

0.105

0.135

0.182

0.102

0.116

B4

0.155

0.101

0.113

0.102

0.102

0.308

c) Multiple Evidencer
For some nodes, such as B1, label similarity

does not help much in finding a match. In general, one
evidencer is not usually enough to find the best match
for a node. Thus, AMMO algorithm employs several
evidencers. For example, it is noted previously that B2
appeared to correspond to Q1 based on label
probabilities. However, a human expert would know
intuitively that B2 should correspond to Q4, because
both appear to be in similar positions in the two
diagrams. For multiple evidencers need a mechanism
for combining one kind of evidence with another. AMMO
combines evidence using Bayesian inference on a joint
probability distribution over all of the kinds of evidence.
The results of combining the label and position
evidence. Note that B2 now matches to Q4 with
probability five times greater than any other node. Note
as well that the possibilities concerning matches for
other nodes have been narrowed down considerably.

Table 3 : Probabilities based on Position similarity

 Q1 Q2 Q3 Q4 Q5 Q6
B1 0.728 0.844 0.255 0.003 0.009 0.000
B2 0.010 0.001 0.313 0.913 0.022 0.407
B3 0.002 0.015 0.275 0.022 0.917 0.238
B4 0.000 0.000 0.087 0.659 0.033 0.741

d) Simple Evidencer and Complex Evidencer
The evidencers combining obtained by both the

label and position evidencers yielded a very probable
match for B2. Beyond this, there is additional evidence
that makes this match even more probable. B4, which is
a neighbor of B2, matches Q6, which is a neighbor of
Q4—having matching neighbors is additional evidence
that B2 matches Q4. Our implementation includes a
“connection evidencer” that provides such evidence.
Evidencers such as the label or position evidencers
simple evidencers because they use only information
about the given pair of nodes. In contrast, call
evidencers like the connection evidencer complex
evidencers because they use more than just information
about a given pair of nodes to compute the similarity for
that pair of nodes—they also use information about
other pairs of nodes (in this case: neighboring nodes)
that have already been determined to match.

Table 4 : Probabilities based on Both Label and Position
Similarity

 Q1 Q2 Q3 Q4 Q5 Q6
B1 0.230 0.375 0.038 0.000 0.002 0.000
B2 0.003 0.000 0.053 0.561 0.003 0.075
B3 0.000 0.002 0.056 0.005 0.555 0.039
B4 0.000 0.000 0.012 0.181 0.00 0.560

e) Splits and Merges
HLV has four nodes and LLV has six, clearly not

every node of LLV can participate in a one-to-one
match. It is possible that a node from one diagram

© 2012 Global Journals Inc. (US)

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

50

(
DDDD

)
C

20

12
Y
e
a
r

matches no nodes from the other diagram. Another
possibility is that a node from one diagram matches a
combination of nodes from the other diagram. Splits
(one-to-many matches) and merges (many-to-one
matches) are common in practice. Experts identify splits
and merges by combining several pieces of evidence.

For example, an expert might note the following
characteristics of HLV and LLV:
o C1 is close in position to each of P1, P2, and P3.
o P1, P2, and P3 are interconnected.
o The combination of P1, P2, and P3 taken together

has connections to P4 and to P5, and these
connections appear to match the connections from
C1 to C2 and to C3.

These characteristics, when taken together,
indicate that C1 is likely to have split into P1, P2, and P3,
i.e., that C1 matches P1, P2, and P3.

f) Drops
It is also possible that a node in one diagram

does not match any node in the other diagram. The
probability that a node is dropped as the drop
probability, denoted as P_DROP. This probability is
determined empirically based on training data.

g) Correspondence Score
 The entire correspondence between the two
diagrams from individuals matches between nodes. A
Naïve approach to find “best” correspondence between
two diagrams would be to include the node pairs with
the highest pair probabilities. Table 5 below shows the
results of combining all evidence about pairs for above
example.

Table 3.6 : Pair-wise Match Probabilities based on all
evidence

 P1 P2 P3 P4 P5 P6
C1 104.4 189.6 5.371 0.000 0.001 0.000
C2 0.415 0.019 30.82 787.0 2.787 0.037
C3 0.082 0.642 79.93 5.572 783.0 0.019
C4 0.000 0.000 1.021 0.100 0.002 786.3

If only to consider the pair probabilities shown in
Table 5 determine the “best” correspondence to be
Corr1 = {(B1, Q2), (B2, Q4), (B3, Q5), (B4, Q6)}.
However, this approach fails to yield the optimal
correspondence for several reasons. First, although it
might result in dropped nodes (when none of the
chosen pairs involve a given node), it does not take into
consideration the probability of those drops. For
example, correspondence Corr1 does not include a
match for Q1, and thus, Q1 is a dropped node (as we
have defined that above). However, if the probability of a
node being dropped is extremely low, it might have
been better for Corr1 to include a split (as that was
defined above) involving Q1, resulting in a
correspondence which is more likely overall. Second,
although it might result in splits and merges (when more

than one of the chosen pairs involves a given node), this
approach does not take into account the probability of
these splits and merges. Third, greedily choosing the
best pairs, one after the other, does not take into
account the fact that choosing a particular pair match
can raise or lower the probability of other pair matches,
due to complex evidencers such as the connection
evidencer.

h) Complexity
 A correspondence using only simple node pair
evidencers such as label and position, and restrict
ourselves to correspondences in which all node
matches are one-to-one, then need to find the maximum
score correspondence using a polynomial-time
algorithm based on maximum-weight bipartite matching.
Using complex evidencers and allowing
correspondences that are not one-to-one, the problem
of identifying the maximum score correspondence is
NP-hard.

V. Bayesian correspondence model

a) Correspondences and Matches
 Let 𝐸𝐸 and 𝐸𝐸′ be diagrams whose nodes are sets
𝑁𝑁 and 𝑁𝑁′ , respectively. Our core notion is the diagram
correspondence, which equates sets of nodes in 𝑁𝑁 with
sets of nodes in 𝑁𝑁′ , but also allows nodes to be left out.
Formally, Q is a 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of a set 𝑈𝑈 iff 𝑃𝑃 =
{𝑝𝑝1,𝑝𝑝2, . . }, where each 𝑝𝑝𝑝𝑝 ⊆ 𝑈𝑈 and 𝑝𝑝𝑝𝑝 ∩ 𝑝𝑝𝑗𝑗 = ∅ ; for all
𝑝𝑝 ≠ 𝑗𝑗. A diagram correspondence for nodes 𝑁𝑁 and 𝑁𝑁′ of
two diagrams is a tuple 𝐶𝐶 = (𝑆𝑆, 𝑆𝑆′ , 𝑓𝑓), where

𝑆𝑆 is a partial partition of 𝑁𝑁;
𝑆𝑆′ is a partial partition of 𝑁𝑁′ ;
𝑓𝑓 ∶ 𝑆𝑆 → 𝑆𝑆′ is one to one:

b) Evidencers
 Evidencers provide the basis for determining
the probability that a pair of nodes match, based on one
kind of evidence. Informally, an evidencer consists of
three parts: 1) a definition of a node feature (e.g., a
node’s label), 2) a function that measures the similarity
of two nodes based on that feature, and 3) a probability
distribution of node pair similarity values in cases where
the two nodes match, and a probability distribution of
node pair similarity values in cases where the two nodes
do not match.

Formally, an evidencer consists of a similarity
function 𝑒𝑒𝑝𝑝 and probability functions 𝑝𝑝𝑝𝑝 and 𝑏𝑏𝑝𝑝 .

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

51

(
DDDD

)
C

20

12

The similarity function is a function𝑒𝑖(𝑥, 𝑥 ′),
where (𝑥, 𝑥 ′) is a node pair from (𝐸,𝐸′), where 𝐸′ is a
diagram derived from E by an unspecified procedure 𝒟.
We model 𝒟 by asserting that 𝑒𝑖(𝑥, 𝑥 ′) is a random
variable. The range of 𝑒𝑖 is arbitrary: The set of values
used to measure similarity can be chosen to suit the
evidencer. For example, the label evidence similarity
function 𝑒𝑙 𝑥, 𝑥 ′ = 𝑡𝑒𝑥𝑡𝑠𝑖𝑚(𝑙𝑎𝑏𝑒𝑙 𝑥 , 𝑙𝑎𝑏𝑒𝑙 𝑥) returns
a real number in the interval [0,1] (𝑡𝑒𝑥𝑡𝑠𝑖𝑚 is a function

Y
e
a
r

© 2012 Global Journals Inc. (US)

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

52

(
DDDD

)
C

20

12

that returns a similarity value for two strings: our
prototype used a function implemented in the Python
standard libraries).

c) Correspondence Probability
 In order to use the evidence to find the best
correspondence, model the best correspondence as a
random variable 𝑐 that can take any diagram
correspondence as its value. Estimation of the best
correspondence is the one that has the highest
probability given in the evidence.

𝑐 = arg max
𝑐

𝑃(𝑐|𝑒).

d) Singular Correspondence Probability Model
 The singular correspondence probability model
defines the probability of a singular correspondence
conditional on the observed evidence.

Let (𝑆, 𝑆′ , 𝑓) be a singular correspondence for
diagrams containing nodes n and n0. We will use 𝒩(𝑆)
to refer to the set of nodes in the partial partition 𝑆.We
use the notation (𝑥,𝜙) to mean that the node 𝑥 in the
first diagram does not match any node in the second
diagram, and similarly for (𝜙, 𝑥 ′). Then,

𝑝𝑎𝑖𝑟𝑠 𝑐 ≡ 𝑥, 𝑓 𝑥 𝑥 ∈ 𝒩 𝑆

 ∪ 𝑥,𝜙 𝑥 ∈ 𝑁\𝒩 𝑆
 ∪ 𝜙, 𝑥 ′ |𝑥 ′ ∈ 𝑁′\𝒩 𝑆

Conditional independence allows us to define
the correspondence probability as the product of the
probability of the pairs:

𝑃 𝑐 𝑒 = 𝑃(𝑥, 𝑥 ′ |𝑒 𝑥, 𝑥 ′)

(𝑥 ,𝑥 ′)∈𝑝𝑎𝑖𝑟𝑠 (𝑐)

One-to-none match probability. We assume
simply that a node maps to nothing with fixed probability
𝑃 𝑥,∅ = 𝑃 ∅, 𝑥 = 𝑦0. Choose the numerical value
of 𝑦0 based on the empirical frequency of one-to-none
pairs observed in training data. It may improve accuracy
to develop a model of the probability that n maps to
nothing based on the features of 𝑥. However, in this
paper have not implemented such models.
One-to-one match probability model. By adopting a
Bayesian model of the probability that one node
matches another conditional on the evidence:

𝑃 𝑥, 𝑥 ′ |𝑒(𝑥, 𝑥 ′) =
𝑃 𝑥, 𝑥 ′ 𝑃(𝑒(𝑥, 𝑥 ′)| 𝑥, 𝑥 ′)

𝑃(𝑒 𝑥, 𝑥 ′)

Because 𝑥, 𝑥 ′ and 𝑥, 𝑥 ′ are mutually
exclusive events and exhaustive of the space of all
possible outcomes with respect to (𝑥, 𝑥 ′), the
denominator can be rewritten using a standard
normalization technique to get:

𝑃 𝑥, 𝑥 ′ |𝑒(𝑥, 𝑥 ′) =

𝑃 𝑥, 𝑥 ′ 𝑃(𝑒(𝑥, 𝑥 ′)| 𝑥, 𝑥 ′)

𝑃 𝑥, 𝑥 ′ ∙ 𝑃 𝑒 𝑥, 𝑥 ′ 𝑥, 𝑥 ′ + 𝑃(𝑥, 𝑥 ′) ∙ 𝑃(𝑒(𝑥, 𝑥 ′)| 𝑥, 𝑥 ′)

Assuming that 𝑒𝑖 is independent of 𝑒𝑗 for all 𝑖 ≠ 𝑗,

𝑃 𝑒 𝑥, 𝑥 ′ 𝑥, 𝑥 ′ = 𝑃(𝑒𝑖(𝑥, 𝑥 ′)| 𝑥, 𝑥 ′)

𝑖

(and similarly for 𝑥, 𝑥 ′), so rewrite once more to get:

𝑃 𝑥, 𝑥 ′ |𝑒(𝑥, 𝑥 ′) =
𝑝(1)

𝑝 1 + 𝑝(0)
,

Where

𝑝 1 = 𝑃 𝑥, 𝑥 ′ 𝑃 𝑒𝑖 𝑥, 𝑥 ′ 𝑥, 𝑥 ′

𝑖

𝑝 0 = 𝑃 𝑥, 𝑥 ′ 𝑃 𝑒𝑖 𝑥, 𝑥 ′ 𝑥, 𝑥 ′

𝑖

The factors 𝑃 𝑒𝑖 𝑥, 𝑥 ′ 𝑥, 𝑥 ′ and

𝑃 𝑒𝑖 𝑥, 𝑥 ′ 𝑥, 𝑥 ′ are the values that are computed by
the probability functions 𝑎𝑖 and 𝑏𝑖 defined earlier for
evidencers.

The factor 𝑃 𝑥, 𝑥 ′ is referred to as a prior. 𝑎𝑖
and 𝑏𝑖 the prior by decomposing the match event into
simpler events, and then, applying commonly used
principles of prior selection. First, In this paper notice
that the event 𝑥, 𝑥 ′ decomposes into two events: 𝐸, the
event that 𝑥 matches to some node (i.e., 𝑥 is not
dropped), and 𝐹, the event that 𝑥 matches specifically
to 𝑥 ′ . Thus, 𝑃 𝑥, 𝑥 ′ = 𝑃 𝐸 𝑃(𝐹|𝐸). For 𝑃(𝐸), we use
a simple empirical prior: 𝑃 𝐸 ≡ 1 − 𝑦0, where 𝑦0 is the
Probability that a node is dropped, as observed in
training. For 𝑃(𝐹|𝐸), we use an indifference prior:
Knowing only that 𝑥 matches to some node in 𝑁′ , we
assume that all nodes are equally likely, so 𝑃 𝐹 𝐸 =
1/|𝑁′ |. This gives us our complete prior: 𝑃 𝑥, 𝑥 ′ =
(1 − 𝑦0)/|𝑁′ |.

e) Split-Merge Correspondence Probability Model
 The split-merge correspondence probability
model is like the singular correspondence probability
model, except that paper deal with pairs of sets of
nodes rather than pairs of individual nodes decompose
a split-merge correspondence 𝑐 = (𝑆, 𝑆′ , 𝑓) into set
pairs as follows:

𝑠𝑝𝑎𝑖𝑟𝑠 𝑐 ≡ 𝑠, 𝑓 𝑠 |𝑠 ∈ 𝑆

 ∪ 𝑥 ,∅ |𝑥 ∈ 𝑁\𝒩(𝑆)

 ∪ ∅, {𝑥 ′} |𝑥′ ∈ 𝑁′\𝒩(𝑆′) ,

One-to-many match probability model. For the
one-to many case can use a Bayesian model similar to
that for the one-to-one case:

𝑃 𝑠, 𝑠′ |𝑒(𝑠, 𝑠′) =
𝑃 𝑠, 𝑠′ 𝑃(𝑒(𝑠, 𝑠′)| 𝑠, 𝑠′)

𝑃(𝑒(𝑠, 𝑠′)
,

and proceed similarly to the one-to-one case,
ultimately arriving at the need to compute factors
𝑃(𝑒𝑤(𝑠, 𝑠′)| 𝑠, 𝑠′)

and 𝑃(𝑒𝑤(𝑠, 𝑠′)| 𝑠, 𝑠′)

, where the 𝑒𝑤

are similar to the 𝑒𝑖

of the one-to-one case, except that

Y
e
a
r

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

53

(
DDDD

)
C

20

12

they deal with sets rather than individual nodes. As well,
this need to compute a prior 𝑃 𝑠, 𝑠′ .
 Several issues in computing the factor
𝑃(𝑒𝑤(𝑥, 𝑥1

′ , 𝑥2
′)| 𝑥, 𝑥1

′ , 𝑥2
′), which is the probability

according to one kind of evidence (𝑒𝑤) that the node
𝑥 matches the set consisting of nodes 𝑥1

′ and 𝑥2
′ , i.e.,

that “𝑥 splits into 𝑥1
′ and 𝑥2

′ ”, or conversely that “𝑥1
′ and

𝑥2
′ merge into 𝑥.”

One way that we address these two issues is to
define a new kind of evidence based on the evidence
about the merge node matching each of the split nodes
individually. That is, consider evidence about pairs of
nodes, each pair consisting of the merge node and one
of the split nodes.
It define

𝑃 𝑒𝑤 𝑥, 𝑥1
′ , 𝑥2

′ ,… , 𝑥𝑘
′ 𝑥, 𝑥1

′ , 𝑥2
′ ,… , 𝑥𝑘

′

≡ 𝑃 𝑒𝑖 𝑥, 𝑥𝑗
′ 𝑥, 𝑥𝑗

′ ,

Where
 𝑗 = 𝑎𝑟𝑔 min𝑙=1…𝑘(𝑒𝑖 𝑥, 𝑥𝑙

′),

This define the prior for the one-to-many case
as follows: We notice that the event 𝑥, 𝑥1

′ ,… , 𝑥𝑘
′

decomposes into two events: 𝐺, the event that 𝑥
matches a set of 𝑘 nodes, and the event 𝐻 that 𝑛
matches specifically to 𝑥1

′ ,… , 𝑥𝑘
′ . Thus,

𝑃 𝑥, 𝑥1
′ ,… , 𝑥𝑘

′ = 𝑃 𝐺 |𝑃(𝐻|𝐺). For 𝑃(𝐺), we use the
fixed empirical prior, 𝑚𝑘 , the observed probability that a
node 𝑥 will match exactly 𝑘 nodes. For 𝑃(𝐻|𝐺), we use
an indifference prior: Knowing only that n matches to a
set of 𝑘 nodes in 𝑁′ , we assume that any of the 𝑘 nodes
is equally likely. This yield:

𝑃 𝑥, 𝑥1
′ ,… , 𝑥𝑘

′ =
𝑦𝑘

 |𝑁′ |
𝑘

.

f) The Maximization Problem
 The previous sections showed how to compute
𝑃(𝑐|𝑒) for a given correspondence 𝑐 and evidence 𝑒. To
complete the algorithm, one should describe how to find
the 𝑐 with maximal 𝑃(𝑐|𝑒).

Computing the score of such correspondences
using only simple evidencers can be done in polynomial
time (ideally constant time per node pair, quadratic
overall). To find the maximum probability
correspondence in this case, construct a graph which
has as its nodes the union of the nodes in the two
diagrams, 𝑁 ∪ 𝑁 ′ . Place an edge from every node 𝑛 in
𝑁 to every node 𝑛′ in 𝑁′ with edge weight 𝑤 𝑥, 𝑥 ′ =
𝑃(𝑥, 𝑥 ′ |𝑒 𝑥, 𝑥 ′). Now find the maximum probability
correspondence in polynomial time using maximum-
weight bipartite matching [4].

i. Greedy Search

The simplest search algorithm is greedy search.
In greedy search, we keep track of only one piece of
information, the current state. On each step, we examine
all states reachable by a single transition from the
current state, and move to the state with the greatest

probability. And there is no backtracking—In this paper,
only consider transitions that add a node pair to the
correspondence, not those that remove a pair. If there is
no next state with greater probability than the current
state, the search stops.

Fig. 3 : Greedy Search

Fig. 3 gives a high-level description of the
greedy search algorithm for our problem. We assume
that, before this algorithm is called, for any nodes 𝑛 and
𝑛′ in the two diagrams, we have already computed
𝑝(𝑛,𝑛′ |𝑒 𝑛,𝑛′), the probability that they match, based
upon the various simple evidencers.

ii. Complexity Analysis
 Let’s assume that the total number of nodes in
the diagrams is 𝑂(𝑁). Then, the naive implementation of
the greedy search algorithm has complexity 𝑂(𝑁4). The
outer while loop will be executed at most 𝑂(𝑁) times
since each iteration removes at least one node of the
diagrams from future consideration. The for loop is
executed 𝑂(𝑁2), as there are at most 𝑁2 pairs to
consider. the naïve implementation, computing
Score(newCorr) at line “*” costs 𝑂(𝑁) time due to the
connection evidencer, which requires 𝑃 𝑦,𝑦′ |𝑒(𝑦,𝑦′)
to be recomputed for each pair hm;m0i in the
correspondence. The connection evidencer will return
different values for the probability of 𝑦,𝑦′ . Hence, the
total complexity of the algorithm is 𝑂(𝑁4).

GreedySearch:

BestCorr : = emptyCorrespondence
/* Initialize the best correspondence to one in which no node
has a corresponding match in the order diagram */
BestScore: = Score (BestCorr)
FoundBetter: = True
While foundBetter do
 FoundBetter: = False

BestFoundSoFar: = BestCorr
BestScoreSoFar: = BestScore
for each pair <n,n’> that can be added to BestCorr

do
 newCorr := addPairToCorr(BestCorr,<n,n’>)
 newScore := Score(newCorr)
 if newScore > bestScoreSoFar then
 BestFoundSoFar: = newCorr
 BestScoreSoFar: = newScore
 FoundBetter : = TRUE
 end if
end for
if foundBetter then
 BestCorr: = bestFoundSoFar
 BestScore : = bestScoreSoFar
end if

end while
return (BestCorr, BestScore)
end GreedySearch

Y
e
a
r

© 2012 Global Journals Inc. (US)

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

54

(
DDDD

)
C

20

12

HLV (High-Level View) LLV (Low-Level View)

Fig. 4 : Connection matching on the example

iii. Incremental Algorithm
 It is possible to implement the Score() function
so that it takes time proportional to the number of
neighbors of the added nodes—probability is only
recomputed for pairs that might possibly be affected by
a newly added pair. Assuming bounded degree graphs,
this incremental version takes complexity 𝑂(𝑁3).

 It Describes the set of evidencers that was
designed and implemented as part of prototype
implementation of the AMMO algorithm. The prototype
evidencers can calculate

a) Simple Evidencer
 Label Evidencer measures the similarity
between text labels of a node pair. Python standard
library function difflib.Sequence- Matcher.ratio().
 Region Evidencer, A region may have a name, a
set of neighboring regions, and a set of nodes that are
located within it.
 Type Evidencer. Some diagrams have nodes
typed as being hardware components or infrastructure
software components or application software
components (or EJBs or ManagedComponents), while
other diagrams have nodes typed as being actors or
information flows or use cases or systems.
 Position Evidencer Similarity values returned by
position evidencer and expect the euclidean distance
between matching nodes to be small.

b) Complex Evidencer
 A complex evidencer to be an evidence which
requires information from more than just the node pair

for which it is finding a similarity value. In addition to that
node pair, it also takes as input a partial
correspondence between the two diagrams.

Connection evidencer.

The Connection
evidencer is based on the connections, or edges, that
each node has to its immediate neighbors.

Fig.3 illustrates connection similarity
computation for the pair (B2, Q4) in our sample diagram
pair. In this figure, the solid curved line indicates that at
this point in the search, the match 𝐵4,𝑄6

is already

part of the correspondence. The dotted curved line
indicates that we are considering the node pair (B2, Q4).
By virtue of the facts that B2 has two neighbors (B1 and
B4), Q4 has two neighbors (Q3 and Q6), and one of
B2’s two neighbors (B4) matches one of Q4’s two
neighbors (Q6), as indicated by the dashed line, the

connection similarity for (B2, Q4) is 𝑎𝑣𝑔
1

2
,

1

2
 = 0.5.

Ultimately, connections turn out to be strong evidence
that B2 and Q4 match.

c)

Split Evidencer

A Split-Merge Model which defined the
probability of a split-merge correspondence conditional
on the observed evidence. Recall that a split-merge
correspondence is one containing split-merge
matches—matches between one node and a set of
nodes. Further, recall that, to evaluate the probability of
such correspondences, two types of evidencers are
used: simple (pair) evidencers and split evidencers. The
simple evidencers that were implemented as part of our
prototype, and this section describes the split
evidencers of our prototype.

R1: Client Zone

R2: Application Zone

R3: Data Zone

Z1: Client Zone

Z2: Application Zone

 Z3: Data Zone

C1: Client

C2: Application

Services

C3: Search

Services

C4: Data Services

Services

P3: Earthwind Firewall

P2: Firefox TC P1: Mapplet RCP

P5: QFind Cluster P4 : Sealink HTTPD

P6: SQL Database

Server

Y
e
a
r

Fig. 5 : Ammo-Lite

a) Algorithm Description
 It uses the probabilities of the pairs to determine
the order in which pairs should be added to the
correspondence. This is done as follows:

As in the case of AMMO, the first thing that the
algorithm does is to precompute probabilities of all
possible node pairs, using the simple evidencers. It then
creates a sorted list Potential Pairs, which contains the
node pairs sorted in descending order by probability.

The main loop of AMMO-LITE goes through
Potential-Pairs, adding the highest probability pair (the
one at the head of the list) to the correspondence,
provided that it is permissible to add that pair. It is not
permissible to add a pair. It is not permissible to add a

AMMO-LITE

Use simple evidencers to precompute and store

probabilities of all pairs < n, m >

PotentialPairs := list of all pairs < n, m > in descending

order of probability

Corr := emptyCorrespondence

Done = False

While PotentialPairs is not Empty and

 Prob(first(PotentialPairs)) > threshold do

 <n, m> := removeFirst (PotentialPairs)

 if <n, m> can be added to Corr then

 must_re_sort := False

 Corr := addPairToCorr(Corr, <n, m>)

 for each pair <<nn, mm> in PotentialPairs do

 if nn == n or mm == m then

 use split evs to update the probability of <nn, mm>

 must_re_sort : = True

 else if nn is neighbor of n and

 mm is a neighbor of m then

 use connect ev to update the probability of <<nn,mm>

 must_re_sort : = True

 end if

 end for

 if must_re_sort then

 PotentialPairs : = re-sort(PotentialPairs)

 end if

 end if

end while

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

55

(
DDDD

)
C

20

12

The motivation for creating special-purpose split
evidencers arose out of the observation that split-merge
correspondences exhibited different characteristics than
singular correspondences and that these characteristics
were not taken into account by the simple evidencers.

Label Sim evidencer. The similarity determined
by the Label Sim evidencer is the minimum similarity
among the labels of the nodes.

Label Intersect evidencer. The similarity
determined by the Label Intersect evidencer is the
similarity between the label of 𝑥 and the longest suffix or
prefix commonto the labels of the 𝑥𝑖

′ nodes.
Label Concat evidencer. The Label Concat

Evidencer similarity function uses the Label Evidencer
similarity function to obtain the similarity between the
label of 𝑥 and the concatenation of the labels of the 𝑥𝑖

′

nodes.
Inner Connect evidencer. This is a discrete

measure of similarity based on whether or not all of the
𝑥𝑖
′ nodes are connected to each other.

Outer Connect evidencer. This is a continuous
measure of connection similarity between 𝑥 and the
cluster of 𝑥𝑖

′ nodes taken as a whole.

Although the greedy search algorithm
described performed well for diagrams with dozens of
nodes, it was not practical for diagrams with hundreds
of nodes. the major scalability problem with AMMO is
that every time it has to decide which node pair to add
next, it must compute an exact probability for each
possible correspondence that would result from adding
one more node pair. Our incremental version of greedy
search helps avoid some of this recomputation, but not
enough to be practical for larger-scale diagrams. To
solve this problem, we designed a new algorithm,
AMMO-LITE, which approximates AMMO’s behavior but
uses a simpler search that is driven by pair probabilities
rather than correspondence probabilities. This approach
avoids repeated calculation of correspondence
probabilities and, in practice, achieves much better
performance with only a small loss of precision.

Y
e
a
r

pair to the correspondence if that would result in a
many-to-many match. Each time a new pair 〈𝑥𝑥,𝑦𝑦〉 is
added to the correspondence, the algorithm goes
through the list again, in order to determine if the
precomputed probability of any remaining pair 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉
has been affected. The probability of pair 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 in
PotentialPairs will be affected in two different
circumstances:
• If 𝑥𝑥𝑥𝑥 or 𝑦𝑦𝑦𝑦 is one of the nodes in the pair we just

added, then adding 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 would result in a
split/merge. Thus, we change the precomputed
probability stored for 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 to be the probability of
the split/merge that would result from adding
〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 to the correspondence.

• If 𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑦𝑦 are neighbors of 𝑥𝑥 and 𝑦𝑦, respectively,
then adding 〈𝑥𝑥,𝑦𝑦〉 to the correspondence will affect
the connectivity similarity of 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉. Thus,
𝑃𝑃(〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉) must be recomputed, this time using the
connection evidencer as well as the simple
evidencers.

After going through PotentialPairs, if any
probabilities have been recomputed, the list is resorted.
The algorithm then continues with another iteration of
the main loop to add another pair to the
correspondence. The algorithm terminates when either
the list is empty or the probability of the pair at the head
of the list is less than some threshold value. This value is
determined by experimentation with training data, and
can be easily changed. In our implementation, this
threshold is 𝑡𝑡0, the empirically determined probability
that a node does not correspond to any node in the
other diagram.

b) Complexity Analysis
 Let the total number of nodes in a diagram be
𝑂𝑂(𝑁𝑁), as in the analysis of AMMO. Depending on the
value of threshold, the outer while loop could be
executed 𝑂𝑂(𝑁𝑁2) times, once for every possible node
pair. However, the outer if statement (immediately within
the while loop) will only be true 𝑂𝑂(𝑁𝑁) times since each
pair added must add at least one new node to the
correspondence, due to the many-to-many restriction,
and hence, add at most 𝑂𝑂(𝑁𝑁) pairs. Thus, the nested for
loop will be reached on only 𝑂𝑂(𝑁𝑁) iterations of the while
loop. Each time the for loop is reached, it will execute
𝑂𝑂(|𝑃𝑃𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡|) = 𝑂𝑂(𝑁𝑁2) iterations. The resulting
total complexity is 𝑂𝑂(𝑁𝑁3). Similarly, like the nested for
loop, the statement resort(PotentialPairs) will be reached
at most 𝑂𝑂(𝑁𝑁) times. Sorting being 𝑂𝑂(𝑁𝑁𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁), each sort
of the 𝑂𝑂(𝑁𝑁2) items in PotentialPairs will have complexity
𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). Thus, the resulting total complexity of the
algorithm due to all sorting is 𝑂𝑂(𝑁𝑁3𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). That
dominates the 𝑂𝑂(𝑁𝑁3) of the nested for loop, and
therefore, the overall worst-case total complexity of the
AMMO-LITE algorithm is 𝑂𝑂(𝑁𝑁3𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁).

Table 7 : Experiment Results:
Average Algorithm Recall, Precision and Runtime

(in Seconds)

Algorithm Recall % Precision % Time
Baseline

(non-Bayesian)
75 70 3

AMMO
(all evidencers)

82 85 82

AMMO-LITE
(all evidencers)

80 84 3

To see why AMMO-LITE performs better than
AMMO in practice, consider the following: In AMMO-
LITE, each timewe add a pair 〈𝑥𝑥,𝑦𝑦〉 and make a pass
through the list PotentialPairs. Although this list can be
𝑂𝑂(𝑁𝑁2), it is a “quick” pass over the list—most of the
pairs are just skipped. “Real” computation only takes
place if 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 meets certain criteria in which case, we
recompute its associated probability. So, in practice, our
performance is better than 𝑂𝑂(𝑁𝑁3𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁) would suggest.
 In fact, employing a priority queue along with an
incremental approach to updating pair probabilities, and
assuming a bounded-degree graph, we could achieve
an overall total complexity of 𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁) as follows: This
can implement PotentialPairs as a priority queue in
which pairs are ordered according to their probability,
there by obviating the need for separate explicit sorts.
Initially, we construct PotentialPairs by inserting all of the
𝑂𝑂(𝑁𝑁2) pairs into it. With a priority queue implementation
for which insert, get_max, and delete are 𝑂𝑂(𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁), the
complexity of constructing PotentialPairs is 𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁).
In that way, we avoid having to reexamine all of the
𝑂𝑂(𝑁𝑁2) remaining pairs in PotentialPairs. Assuming
bounded-degree graphs, with the number of neighbors
of a pair 〈𝑥𝑥,𝑦𝑦〉 being bounded by a constant 𝑘𝑘, the
number of pairs whose probability must be recomputed
due to connectivity is 𝑘𝑘. Whenever we recomputed the
probability of a pair and delete it from Potential-Pairs
and reinsert it with its new probability (or we could
simply do a change_priority operation). With delete and
insert being 𝑂𝑂(𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁), the total complexity due to
recomputing probabilities of neighbors of all of the 𝑂𝑂(𝑁𝑁)
added pairs is 𝑂𝑂(𝑁𝑁 ∗ 𝑘𝑘 ∗ 𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁) = 𝑂𝑂(𝑁𝑁𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). Similarly,
when a pair 〈𝑥𝑥,𝑦𝑦〉 is added to the correspondence, the
number of pairs 〈𝑥𝑥𝑥𝑥.𝑦𝑦𝑦𝑦〉 whose probability must be
recomputed because they would now result in splits or
merges is at most 𝑂𝑂(𝑁𝑁) because there are at most
𝑂𝑂(𝑁𝑁) pairs for which 𝑥𝑥 = 𝑥𝑥𝑥𝑥 or 𝑦𝑦 = 𝑦𝑦𝑦𝑦. Hence, the total
complexity due to recomputing probabilities due to split/
merge considerations is 𝑂𝑂(𝑁𝑁 ∗ 𝑁𝑁 ∗ 𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁) = 𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁).
Thus, the overall total complexity of the algorithm would
be 𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁).

c) AMMO-LITE Experiments
 Table 7 compares the results of running AMMO-
LITE against those obtained by running AMMO and

© 2012 Global Journals Inc. (US)

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

56

(
DDDD

)
C

20

12
Y
e
a
r

Baseline. The results include accuracy as well as the
runtime (in seconds) required by each algorithm.

Table 8 : Experimental Results: AMMO-LITE versus
AMMO Runtimes (in seconds) for Various Diagram Sizes

Pair Nodes Edges AMMO-
LITE

AMMO Ratio

Pair 1 9 13 0.83 2.74 3.3
Pair 2 12 12 0.96 3.68 3.8
Pair 3 15 24 2.63 12.19 4.6
Pair 4 22 41 5.11 41.49 8.1
Pair 5 35 31 11.30 98.66 8.7
Pair 6 41 68 15.51 257.27 16.6
Pair 7 637 968 6175.00 - -

The values in the table were obtained by
averaging the Recall, Precision, and Time metrics for
each algorithm across all of our model pairs.
 The AMMO-LITE algorithm did not do quite as
well as AMMO in terms of both Recall and Precision, but
it still did significantly better than the non-Bayesian
approach. Furthermore, if one examines the cases
where AMMO-LITE did poorly in comparison to AMMO,
most of these cases involved complex correspondences
with a number of challenging matches and multiple
split/merges.

VIII. Results

Fig. 6 : (a). Mapping between two ADL Models

Fig. 6 : (b). Mapping between two ADL Models

Fig. 7 : (a). Mapping the objects between two ADL
Models

Fig. 7 : (b). Mapping the objects between two ADL
Models

IX. Conclusion

We have identified and described the model
correspondence problem, an important problem in
software engineering. We have designed a Bayesian
framework that supports the reasoning needed to solve
the model correspondence problem. And we have
implemented and tested a matching algorithm based on
our framework, finding that it achieved high accuracy on
a set of test diagram pairs. We believe that this work
holds great promise for the future.

References références referencias

1. Garland and R. Anthony, Large-Scale Software
Architecture. John Wiley and Sons, 2003.

2. R. Youngs, D. Redmond-Pyle, P. Spaas, and E.
Kahan, “A Standard for Architecture Description,”
IBM Systems J., vol. 38, no. 1, pp. 32-50, 1999.

3. Z. Xing and E. Stroulia, “Umldiff: An Algorithm for
Object-Oriented Design Differencing,” Proc. 20th
IEEE/ACM Int’l Conf. Automated Software Eng., pp.
54-65, 2005.

4. D.E. Tarjan, Data Structures and Network
Algorithms. SIAM, Nov. 1983.

5. B. Ramesh and M. Jarke, “Towards a Reference
Model for Requirements Traceability,” IEEE Trans.
Software Eng., vol. 27, no. 1, pp. 58-93, Jan. 2001.

6. Jossic, M.D.D. Fabro, J.-P. Lerat, J. Bezivin, and F.
Jouault, “Model Integration with Model Weaving: A

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

57

(
DDDD

)
C

20

12
Y
e
a
r

Case Study in System Architecture,” Proc. Int’l Conf.
Systems Eng. and Modeling, pp. 79-84, 2007.

7. P. Kruchten, “Architectural Blueprints-The 4 + 1
View Model of Software Architecture,” IEEE
Software, vol. 12, no. 6, pp. 42-50, Nov. 1995.

8. D. Mandelin, D. Kimelman, and D.M. Yellin, “A
Bayesian Approach to Diagram Matching with
Application to Architectural Models,” Proc. 28th Int’l
Conf. Software Eng., May 2006.

9. N. Rozanski and E. Woods, Software Systems
Architecture: Working with Stakeholders Using
Viewpoints and Perspectives. Addison- Wesley,
2005.

10. G. Antoniol, G. Canfora, G. Casazza, and A.D.
Lucia, “Maintaining Traceability Links during Object-
Oriented Software Evolution,” Software-Practice and
Experience, vol. 31, pp. 331-355, 2001.

11. Handbook on Architectures of Information Systems,
pp. 669- 692. Springer, 2006.

12. IBM Insurance Application Architecture-Executive
Summary,http://www.03.ibm.com/industries/insuran
ce/us/detail/solution/P669447B27619A15.html,
2009.

13. TM Forum-Information Framework (SID).
http://www.tmforum.org/InformationFramework/168
4/home.html, 2009.

14. NGOSS Shared Information/Data Model,
http://en.wikipedia.org/wiki/NGOSS_Shared_Inform
ation/Data_Model, 2009.

15. WebSVN-Diplomarbeit,http://surprise.wh-stuttgart.
de/websvn/log.php?repname=diplomarbeit**path
=%2Ftrunk%2Fdesign%2FMiddlewareUML.xmi**re
v=87**sc=1**isdir=0, 2009.

16. S. Abrams, B. Bloom, P. Keyser, D. Kimelman, E.
Nelson, W. Neuberger, T. Roth, I. Simmonds, S.
Tang, and J. Vlissides, “Architectural Thinking and
Modeling with AWB: The Architects Workbench,”
IBM Systems J., vol. 45, no. 3, pp. 481-500, 2006.

© 2012 Global Journals Inc. (US)

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
I
 V

er
sio

n
I

58

(
DDDD

)
C

20

12
Y
e
a
r

	A Naive Based Approach for Mapping Two ADL Models
	Author's
	Keywords
	I. Introduction
	a) Scenarios
	b) Contribution of the Paper

	II. Diagram features
	III. Model correspondence problem
	a) Semantics and Domain-Specific Knowledge as aBasis
	b) Reasoning Principles for Recovering Traceability

	IV. Solution overview
	a) Feature Similarity
	b) Match Probability from Feature Similarity
	c) Multiple Evidencer
	d) Simple Evidencer and Complex Evidencer
	e) Splits and Merges
	f) Drops
	g) Correspondence Score
	h) Complexity

	V. Bayesian correspondence model
	a) Correspondences and Matches
	b) Evidencers
	c) Correspondence Probability
	d) Singular Correspondence Probability Model
	e) Split-Merge Correspondence Probability Model
	f) The Maximization Problem
	i. Greedy Search
	ii. Complexity Analysis
	iii. Incremental Algorithm

	VI. Prototype Evidencer
	a) Simple Evidencer
	b) Complex Evidencer
	c) Split Evidencer

	VII. Ammo-Lite: Improving Performance And Scability
	a) Algorithm Description
	b) Complexity Analysis
	c) AMMO-LITE Experiments

	VIII. Results
	IX. Conclusion
	References références referencias

