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Abstract - In software engineering, we have identified and 
described the model correspondence problem. To Describe 
system architecture and artifacts uses models and diagrams. 
Models contains series of versions. To understand how 
versions correspondence are difficult. So, we designed a 
framework based on Search and Ammolite algorithms, which 
can cardinally finds the correspondence software models. 
Models are represented as graphs whose nodes have 
attributes (name, edge, label, connections). For a given 
diagram pair, it performs different individual matches such as 
pair-wise match, Split-Merge Match and  Drop match and then 
combine all matches together to design a ADL model. Every 
ADL Model has its correspondence score for rating quality 
candidates. To find best Correspondence among the given 
ADL models uses Search and Ammolite Algorithms. 
Keywords : Decision, Design Artifacts, Elements, 
Reasoning Principles, Semantic Information, Syntactic 
Information, Visual Information. 

I. Introduction 

n Architecture is defined as building for humans, 
and being an architect is having the spirit to build 
for humans. A framework is a collection of classes 

and applications, libraries of SDKs and APIs to help the 
different components all work together. In engineering 
discipline an essential part of quality is control of 
change. That dictates the need to review and 
understand changes prior to accept them. Models and 
Diagrams are a primary design artifacts in this 
environment, this means being able to compare 
diagrams to identify correspondence and discrepancies 
between them. In large-scale IT system development 
techniques have long existed for comparing textual 
artifacts, somewhat less work has been reported 
concerning comparisons of the diagrams and model 
that are common. The main problem of this paper is to 
correspondence between a pair of diagrams (a 
mapping between elements of one diagram and 
elements of the other) and introduce a Bayesian 
approach to  solve  the  problem.  The application which  
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are in the  central  to  modern  IT  systems  development 
process includes structured representation of 
requirements, business process workflows, system 
overviews, architectural specifications of systems, 
network topologies, object designs, state transition 
diagrams, and control and data flow representation of 
code. 

a) Scenarios 
The system development life cycle has several 

application to find correspondence between models. A 
series of successive revisions of a model from design 
activity. There is a need to review and understand the 
nature of revisions as part of accepting them, rejecting 
them or merging them with other concurrent revisions 
and to identify correspondences and discrepancies is 
central to such activities. Model variants correspond is 
crucial for integration. Different collaboration may 
experiment with different paths of evolution of a model, 
resulting in a number of transient variants, with the intent 
that those branches deemed successful will be 
integrated back into a main stream. The use of multiple 
views of the architecture of the system by using many 
development approaches and methodologies[6]. The 
model we propose is made up of five main views [7]. 

 

Fig. 1:

 

The 4+1 View Model

 

•

 

The logical

 

view,
 
which is the object model of the 

design (when an object-oriented design method is 
used),

 

•

 

The process view, which captures the concurrency 
and synchronization aspects of the design,
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• The physical view, which describes the mapping(s) 
of the software onto the hardware and reflects its 
distributed aspect, 

• The development view, which describes the static 
organization of the software in its development 
environment. 

Traceability is the another important 
requirement for maintaining quality [10], [5]. Traceability 
between software artifact, such as requirements, design 
elements, code, test cases and defect reports. At finer 
level of granularity, traceability provides the ability to 
navigate between the elements of different artifacts such 
as individual software components, hardware nodes, 
requirements, non-functional requirements, and 
architectural decisions that reflects the design rationale 
for the system. The larger asset of reuse is the 
incorporation of reference architecture from a repository 
into a solution design. 

b) Contribution of the Paper 
In Present days, determining correspondences 

between models is a tedious, error-prone, time-
consuming, manual process. The main goal is to 
achieve an automated means of determining the 
correspondences, similar to techniques for automated 
comparison of textual artifacts. This requires us to 
answer several questions:  
• How do we represent models?  
• Which features of models must be represented?  
• What algorithms should be used to find 

correspondences?  
In this paper, provide answers to these questions. 

II. Diagram features 

We focus mainly on the problem of finding 
correspondences in the domain of IT architecture 
operational models [2], although the paper techniques 
have proven effective for other kinds of IT architecture 
models as well. Operational models are used by IBM 
Global Services architects as part of a development 
methodology for customized IT solutions. An operational 
model also includes model elements reflecting the key 
decisions constituting the rationale for the solution 
design. 

The main features of an operational model 
diagram

 
can be abstracted to elements found in many 

other kinds of diagrams:
 

•
 

Labeled nodes.
 

System components can be 
represented as textual or pictorial in a diagram. For 
example, an attribute may indicate whether the node 
is internal or external to the solution in an 
operational model diagram.

 

•
 

Edges.
 

A edge represents a relationship or 
association and it can indicate communication 
paths connection between nodes. Bandwidth, 

Technology, Security etc., are the attributes of the 
edge. 

• Containers. A node that which contains other nodes 
is simply called Container. For example, In 
operational model diagram, a server may contain 
multiple software components or a region may 
contain multiple servers. Containers may be nested, 
current prototype only considers the nesting of 
servers within regions when correspondences.  

• Groups.[8] Nodes are grouped together 
semantically. For instance, in operational models, 
servers located in the same building may be 
grouped within a common region. Like nodes, 
groups have labels and relationship. For example, 
regions have an adjacency relationship that 
indicates a connection. 

Regions are discussed in greater detail below. 
  The information represented by system 
diagrams can be broadly classified into three types: 1) 
syntactic information (e.g., nodes, labels, containment, 
and edges), 2) semantic information (e.g., types, 
defined semantic attributes), and 3) visual information 
(e.g., position, shape, and color of diagram elements). 
Leveraging all of these kinds of information is one of the 
major challenges of diagram matching. 

III. Model correspondence problem 

The model correspondence problem is the 
problem of finding the “best” correspondence between 
the elements of two diagrams. 

a) Semantics and Domain-Specific Knowledge as a 
Basis 

The first issue is how to define “best.” It may 
seem appealing to define “best” as the correspondence 
that preserves a specific semantic relationship between 
the two diagrams, but this definition would be difficult to 
apply in practice, for several reasons. 

First, there are many possible semantic 
relationships between diagrams and it is hard to decide 
which applies. For example, in one case, we may have a 
diagram pair(𝐸𝐸,𝐸𝐸′), where 𝐸𝐸′  is a revision of 𝐸𝐸, with the 
semantic relation “is a revision of.” In another case, 𝐸𝐸 
may be a conceptual description of a system and 𝐷𝐷′  a 
physical description, with the semantic relation 
“realizes.”  

Second, even if the semantic relationship is 
known, defining it in precise detail would be difficult, and 
even a precise definition may not have sufficient 
information to find the best correspondence. 

Third, many diagrams found in practice have no 
formal semantics: They use informal notions of “boxes” 
and “lines” to convey context-specific architectural 
notions. 

Either way, we conjecture that generic matching 
techniques can go a long way in finding 
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correspondences between diagrams without having to 
incorporate knowledge of these kinds of semantic 
relationships or even knowledge of any of the deeper 
semantics of the various types of diagram. 

b) Reasoning Principles for Recovering Traceability 

Human experts can often identify good 
correspondences after careful examination of a pair of 
diagrams. Human experts did this by manually finding 
the best correspondences for some diagram pairs, and 
recording the reasoning principles used to find the 
correspondences 

The following principles of reasoning about 
diagram pairs correspondences: 
• Most decisions are made using evidence about 

which nodes from one diagram match which nodes 
from the other diagram. 

• Every feature of the nodes in the diagrams can be 
important evidence, including text, connection and 
containment relationships, and geometric and 
pictorial attributes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             HLV
 

(High-Level View)              LLV(Low-Level View)
 

Fig. 2 :  Simple Example Diagram Pair 

•
 

Evidence takes the form of having similar or 
dissimilar features. For example, if two nodes have 
the same label, this is strong evidence that they 
match. If two nodes are at totally different positions 
in their respective diagrams, that is evidence that 
they do not match.

 

•
 

For a node pair (n,
 
n’) sometimes there is some 

evidence that n and n’ match and other evidence 
that n and n’ do not match. Practitioners will use 
their experience to weigh the relative significance of 
the different pieces of evidence and decide whether 
or not n and n’ match.

 

•
 

The correspondence can be filled in by identifying 
one-to-one matches using evidence about node 
pairs. Other kinds of evidence help suggest non-
one-to-one matches when necessary. For example, 
if diagram D has a node n labeled “Firewall and 
Access Control” and D’ has node n’1 labeled 
“Firewall” and n’2 labeled “Access Control,” the 
labels suggest that n matches to both n’1 and n’2. If 
n’1 and n’2 are both within the same container, this 

is further evidence that they may match to the same 
node in D.

 

IV.
 Solution overview

 

An overview of our solution, and it serves as a 
road map to Bayesian correspondence, which gives the 
mathematical and gives a mathematical description an 
algorithm. 

 

Our algorithm as Automated Matching of 
Models (AMMO). We explain the main ideas of the 
AMMO algorithm by tracing its behavior on a simple 
example diagram pair, HLV and LLV, as shown in Fig. 2. 
This diagram pair is highly simplified for presentation 
purposes, but it does exhibit some of the difficulties 
found in production models, such as non-obvious node 
matches and matches that are not one-to-one

 

The tags B1;
 
B2; . . . ;

 
Q1;

 
Q2; . . .;

 
L1;

 
L2; . . . ; 

W1;
 

W2; . . . are only for ease of reference in this 
discussion and are not part of the actual node labels. 
Also, note that regions, such as “L2: Application Zone,” 
contain nodes, such as “B2: Application Services” and 

L1: Client Zone 
 
 
 
 

L2: Application Zone 
 
 
 
 
 
 
 
 

   L3: Data Zone 

W1: Client Zone 
 
 
 
 

W2: Application Zone 
 
 
 
 
 
 
 
 

   W3: Data Zone 

B1: Client
 

B2: Application 
Services 

B3: Search 
Services 

B4: Data Services 
Services 

Q3: Earthwind Firewall
 

Q2: Firefox TC
 

Q1: Mapplet RCP
 

Q5: QFind Cluster
 

Q4 : Sealink 
HTTPD

 

Q6: SQL Database 
Server 
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“B3: Search Services.” Further note that the label of a 
node is not qualified by the label of the region that 
contains it. 

a) Feature Similarity 
  Our algorithm begins by computing a number 
of similarity values for each possible node pair 
consisting of a node from one diagram and a node from 
the other diagram, i.e., (𝑥𝑥, 𝑥𝑥′) ∈ 𝐻𝐻𝐻𝐻𝐻𝐻 × 𝐻𝐻𝐻𝐻𝐻𝐻. A similarity 
value is computed for each feature from a 
predetermined set of features. For example, nodes with 
similar labels often match, so one of the features we 
work with is the textual label of a node, and one of the 
similarities we compute for a node pair is its label 
similarity—a value between 0 and 1 reflecting the string 
similarity between the node labels. A similarity value can 
be regarded as a “raw similarity score” for a particular 
feature for a node pair. 

Table 1: Pair-wise Label Similarity for Fig. 2 

 
Q1

 
Q2

 
Q3

 
Q4

 
Q5

 
Q6

 

B1
 

0.118
 

0.125
 

0.083
 

0.211
 

0.316
 

0.095
 

B2
 

0.385
 

0.240
 

0.061
 

0.143
 

0.143
 

0.200
 

B3
 

0.190
 

0.200
 

0.286
 

0.348
 

0.174
 

0.240
 

B4
 

0.316
 

0.111
 

0.231
 

0.095
 

0.095
 

0.435
 

b)
 

Match Probability from Feature Similarity
 

A similarity value in itself does not indicate 
whether pair of nodes match; that is, it is unclear 
whether a particular similarity is low or high with respect 
to the population. To transform a raw score consisting of 
a feature similarity value into a probability that a pair of 
nodes match. Given a probability distribution of the 
similarity values, based on similarities observed for 
matching and non-matching pairs in training data, 
Bayesian inference will convert the similarity of (𝑥𝑥, 𝑥𝑥′)

 

into the probability
 
that (𝑥𝑥, 𝑥𝑥′)

 
match. From Table 1 to 

Table 2 the probabilities resulting from Bayesian 
inference given the similarities. One can see that the 
probability of node B4 matching to Q6 is much higher 
than the probability of B4 matching to any other node. 
One can also see that B2 is approximately twice as likely 
to match to Q1 as it is to match to any other node. 
Finally, one can see that the probabilities of B1 and B3 
matching to any of the nodes in the second diagram are 
approximately equal, indicating that the label feature is 
inadequate in determining matches for these nodes.

 

Table 2 :

 

Pairwise Match probabilities based on Label 
Similarity

 

 

Q1

 

Q2

 

Q3

 

Q4

 

Q5

 

Q6

 

B1

 

0.100

 

0.100

 

0.104

 

0.108

 

0.155

 

0.102

 

B2

 

0.225

 

0.116

 

0.108

 

0.108

 

0.100

 

0.105

 

B3

 

0.104

 

0.105

 

0.135

 

0.182

 

0.102

 

0.116

 

B4

 

0.155

 

0.101

 

0.113

 

0.102

 

0.102

 

0.308

 

 

 

c) Multiple Evidencer 
For some nodes, such as B1, label similarity 

does not help much in finding a match. In general, one 
evidencer is not usually enough to find the best match 
for a node. Thus, AMMO algorithm employs several 
evidencers. For example, it is noted previously that B2 
appeared to correspond to Q1 based on label 
probabilities. However, a human expert would know 
intuitively that B2 should correspond to Q4, because 
both appear to be in similar positions in the two 
diagrams. For multiple evidencers need a mechanism 
for combining one kind of evidence with another. AMMO 
combines evidence using Bayesian inference on a joint 
probability distribution over all of the kinds of evidence. 
The results of combining the label and position 
evidence. Note that B2 now matches to Q4 with 
probability five times greater than any other node. Note 
as well that the possibilities concerning matches for 
other nodes have been narrowed down considerably. 

Table 3 : Probabilities based on Position similarity 

 Q1 Q2 Q3 Q4 Q5 Q6 
B1 0.728 0.844 0.255 0.003 0.009 0.000 
B2 0.010 0.001 0.313 0.913 0.022 0.407 
B3 0.002 0.015 0.275 0.022 0.917 0.238 
B4 0.000 0.000 0.087 0.659 0.033 0.741 

d) Simple Evidencer and Complex Evidencer 
The evidencers combining obtained by both the 

label and position evidencers yielded a very probable 
match for B2. Beyond this, there is additional evidence 
that makes this match even more probable. B4, which is 
a neighbor of B2, matches Q6, which is a neighbor of 
Q4—having matching neighbors is additional evidence 
that B2 matches Q4. Our implementation includes a 
“connection evidencer” that provides such evidence. 
Evidencers such as the label or position evidencers 
simple evidencers because they use only information 
about the given pair of nodes. In contrast, call 
evidencers like the connection evidencer complex 
evidencers because they use more than just information 
about a given pair of nodes to compute the similarity for 
that pair of nodes—they also use information about 
other pairs of nodes (in this case: neighboring nodes) 
that have already been determined to match. 

Table 4 : Probabilities based on Both Label and Position 
Similarity 

 Q1 Q2 Q3 Q4 Q5 Q6 
B1 0.230 0.375 0.038 0.000 0.002 0.000 
B2 0.003 0.000 0.053 0.561 0.003 0.075 
B3 0.000 0.002 0.056 0.005 0.555 0.039 
B4 0.000 0.000 0.012 0.181 0.00 0.560 

e) Splits and Merges 
HLV has four nodes and LLV has six, clearly not 

every node of LLV can participate in a one-to-one 
match. It is possible that a node from one diagram 
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matches no nodes from the other diagram. Another 
possibility is that a node from one diagram matches a 
combination of nodes from the other diagram. Splits 
(one-to-many matches) and merges (many-to-one 
matches) are common in practice. Experts identify splits 
and merges by combining several pieces of evidence. 

For example, an expert might note the following 
characteristics of HLV and LLV: 
o C1 is close in position to each of P1, P2, and P3. 
o P1, P2, and P3 are interconnected. 
o The combination of P1, P2, and P3 taken together 

has connections to P4 and to P5, and these 
connections appear to match the connections from 
C1 to C2 and to C3. 

These characteristics, when taken together, 
indicate that C1 is likely to have split into P1, P2, and P3, 
i.e., that C1 matches P1, P2, and P3. 

f) Drops 
It is also possible that a node in one diagram 

does not match any node in the other diagram. The 
probability that a node is dropped as the drop 
probability, denoted as P_DROP. This probability is 
determined empirically based on training data. 

g) Correspondence Score 
  The entire correspondence between the two 
diagrams from individuals matches between nodes. A 
Naïve approach to find “best” correspondence between 
two diagrams would be to include the node pairs with 
the highest pair probabilities. Table 5 below shows the 
results of combining all evidence about pairs for above 
example. 

Table 3.6 :  Pair-wise Match Probabilities based on all 
evidence 

 P1 P2 P3 P4 P5 P6 
C1 104.4 189.6 5.371 0.000 0.001 0.000 
C2 0.415 0.019 30.82 787.0 2.787 0.037 
C3 0.082 0.642 79.93 5.572 783.0 0.019 
C4 0.000 0.000 1.021 0.100 0.002 786.3 

If only to consider the pair probabilities shown in 
Table 5 determine the “best” correspondence to be 
Corr1 = {(B1, Q2), (B2, Q4), (B3, Q5), (B4, Q6)}. 
However, this approach fails to yield the optimal 
correspondence for several reasons. First, although it 
might result in dropped nodes (when none of the 
chosen pairs involve a given node), it does not take into 
consideration the probability of those drops. For 
example, correspondence Corr1 does not include a 
match for Q1, and thus, Q1 is a dropped node (as we 
have defined that above). However, if the probability of a 
node being dropped is extremely low, it might have 
been better for Corr1 to include a split (as that was 
defined above) involving Q1, resulting in a 
correspondence which is more likely overall. Second, 
although it might result in splits and merges (when more 

than one of the chosen pairs involves a given node), this 
approach does not take into account the probability of 
these splits and merges. Third, greedily choosing the 
best pairs, one after the other, does not take into 
account the fact that choosing a particular pair match 
can raise or lower the probability of other pair matches, 
due to complex evidencers such as the connection 
evidencer.  

h) Complexity 
  A correspondence using only simple node pair 
evidencers such as label and position, and restrict 
ourselves to correspondences in which all node 
matches are one-to-one, then need to find the maximum 
score correspondence using a polynomial-time 
algorithm based on maximum-weight bipartite matching. 
Using complex evidencers and allowing 
correspondences that are not one-to-one, the problem 
of identifying the maximum score correspondence is 
NP-hard. 

V. Bayesian correspondence model 

a) Correspondences and Matches 
  Let 𝐸𝐸 and 𝐸𝐸′ be diagrams whose nodes are sets 
𝑁𝑁 and 𝑁𝑁′ , respectively. Our core notion is the diagram 
correspondence, which equates sets of nodes in 𝑁𝑁 with 
sets of nodes in 𝑁𝑁′ , but also allows nodes to be left out. 
Formally, Q is a 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of a set 𝑈𝑈 iff 𝑃𝑃 =
{𝑝𝑝1,𝑝𝑝2, . . }, where each 𝑝𝑝𝑝𝑝 ⊆ 𝑈𝑈 and 𝑝𝑝𝑝𝑝 ∩ 𝑝𝑝𝑗𝑗 = ∅ ; for all 
𝑝𝑝 ≠ 𝑗𝑗. A diagram correspondence for nodes 𝑁𝑁 and 𝑁𝑁′  of 
two diagrams is a tuple 𝐶𝐶 = (𝑆𝑆, 𝑆𝑆′ , 𝑓𝑓), where 

𝑆𝑆 is a partial partition of 𝑁𝑁; 
𝑆𝑆′  is a partial partition of 𝑁𝑁′ ; 
𝑓𝑓 ∶ 𝑆𝑆 → 𝑆𝑆′   is one to one: 

b) Evidencers 
  Evidencers provide the basis for determining 
the probability that a pair of nodes match, based on one 
kind of evidence. Informally, an evidencer consists of 
three parts: 1) a definition of a node feature (e.g., a 
node’s label), 2) a function that measures the similarity 
of two nodes based on that feature, and 3) a probability 
distribution of node pair similarity values in cases where 
the two nodes match, and a probability distribution of 
node pair similarity values in cases where the two nodes 
do not match. 

Formally, an evidencer consists of a similarity 
function 𝑒𝑒𝑝𝑝  and probability functions 𝑝𝑝𝑝𝑝  and 𝑏𝑏𝑝𝑝 . 
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The similarity function is a function𝑒𝑖(𝑥, 𝑥 ′), 
where (𝑥, 𝑥 ′) is a node pair from (𝐸,𝐸′), where 𝐸′ is a 
diagram derived from E by an unspecified procedure 𝒟. 
We model 𝒟 by asserting that 𝑒𝑖(𝑥, 𝑥 ′) is a random 
variable. The range of 𝑒𝑖 is arbitrary: The set of values 
used to measure similarity can be chosen to suit the 
evidencer. For example, the label evidence similarity 
function 𝑒𝑙 𝑥, 𝑥 ′ = 𝑡𝑒𝑥𝑡𝑠𝑖𝑚(𝑙𝑎𝑏𝑒𝑙 𝑥 , 𝑙𝑎𝑏𝑒𝑙 𝑥 ) returns 
a real number in the interval [0,1] (𝑡𝑒𝑥𝑡𝑠𝑖𝑚 is a function 
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that returns a similarity value for two strings: our 
prototype used a function implemented in the Python 
standard libraries). 

c)  Correspondence Probability 
 In order to use the evidence to find the best 
correspondence, model the best correspondence as a 
random variable 𝑐 that can take any diagram 
correspondence as its value. Estimation of the best 
correspondence is the one that has the highest 
probability given in the evidence. 

𝑐 = arg max
𝑐

𝑃(𝑐|𝑒). 

d) Singular Correspondence Probability Model 
 The singular correspondence probability model 
defines the probability of a singular correspondence 
conditional on the observed evidence. 

Let (𝑆, 𝑆′ , 𝑓) be a singular correspondence for 
diagrams containing nodes n and n0. We will use 𝒩(𝑆) 
to refer to the set of nodes in the partial partition 𝑆.We 
use the notation (𝑥,𝜙) to mean that the node 𝑥 in the 
first diagram does not match any node in the second 
diagram, and similarly for (𝜙, 𝑥 ′). Then, 

𝑝𝑎𝑖𝑟𝑠 𝑐 ≡   𝑥, 𝑓 𝑥   𝑥 ∈ 𝒩 𝑆   

                         ∪   𝑥,𝜙  𝑥 ∈ 𝑁\𝒩 𝑆   
                             ∪   𝜙, 𝑥 ′ |𝑥 ′ ∈ 𝑁′\𝒩 𝑆   

Conditional independence allows us to define 
the correspondence probability as the product of the 
probability of the pairs: 

𝑃 𝑐 𝑒 =  𝑃( 𝑥, 𝑥 ′  |𝑒 𝑥, 𝑥 ′ )

(𝑥 ,𝑥 ′ )∈𝑝𝑎𝑖𝑟𝑠 (𝑐)

 

One-to-none match probability. We assume 
simply that a node maps to nothing with fixed probability 
𝑃  𝑥,∅  = 𝑃  ∅, 𝑥  = 𝑦0. Choose the numerical value 
of 𝑦0 based on the empirical frequency of one-to-none 
pairs observed in training data. It may improve accuracy 
to develop a model of the probability that n maps to 
nothing based on the features of 𝑥. However, in this 
paper have not implemented such models. 
One-to-one match probability model. By adopting a 
Bayesian model of the probability that one node 
matches another conditional on the evidence: 

𝑃  𝑥, 𝑥 ′  |𝑒(𝑥, 𝑥 ′) =
𝑃  𝑥, 𝑥 ′   𝑃(𝑒(𝑥, 𝑥 ′)| 𝑥, 𝑥 ′  )

𝑃(𝑒 𝑥, 𝑥 ′ )
 

Because  𝑥, 𝑥 ′   and  𝑥, 𝑥 ′   are mutually 
exclusive events and exhaustive of the space of all 
possible outcomes with respect to (𝑥, 𝑥 ′), the 
denominator can be rewritten using a standard 
normalization technique to get: 

𝑃  𝑥, 𝑥 ′  |𝑒(𝑥, 𝑥 ′) =
 

𝑃  𝑥, 𝑥 ′   𝑃(𝑒(𝑥, 𝑥 ′)| 𝑥, 𝑥 ′  )

𝑃  𝑥, 𝑥 ′   ∙ 𝑃 𝑒 𝑥, 𝑥 ′   𝑥, 𝑥 ′   + 𝑃( 𝑥, 𝑥 ′  ) ∙ 𝑃(𝑒(𝑥, 𝑥 ′)| 𝑥, 𝑥 ′  )

 

Assuming that 𝑒𝑖  is independent of 𝑒𝑗  for all 𝑖 ≠ 𝑗, 

𝑃 𝑒 𝑥, 𝑥 ′   𝑥, 𝑥 ′   =  𝑃(𝑒𝑖(𝑥, 𝑥 ′)| 𝑥, 𝑥 ′  )

𝑖

 

(and similarly for  𝑥, 𝑥 ′ ), so rewrite once more to get: 

𝑃  𝑥, 𝑥 ′  |𝑒(𝑥, 𝑥 ′) =
𝑝(1)

𝑝 1 + 𝑝(0)
, 

Where 

𝑝 1 = 𝑃  𝑥, 𝑥 ′    𝑃 𝑒𝑖 𝑥, 𝑥 ′   𝑥, 𝑥 ′   

𝑖

 

𝑝 0 = 𝑃  𝑥, 𝑥 ′    𝑃 𝑒𝑖 𝑥, 𝑥 ′   𝑥, 𝑥 ′   

𝑖

 

 
The factors 𝑃 𝑒𝑖 𝑥, 𝑥 ′   𝑥, 𝑥 ′         and 

𝑃 𝑒𝑖 𝑥, 𝑥 ′   𝑥, 𝑥 ′    are the values that are computed by 
the probability functions 𝑎𝑖  and 𝑏𝑖  defined earlier for 
evidencers. 

The factor 𝑃  𝑥, 𝑥 ′    is referred to as a prior. 𝑎𝑖  
and 𝑏𝑖  the prior by decomposing the match event into 
simpler events, and then, applying commonly used 
principles of prior selection. First, In this paper notice 
that the event  𝑥, 𝑥 ′   decomposes into two events: 𝐸, the 
event that 𝑥 matches to some node (i.e., 𝑥 is not 
dropped), and 𝐹, the event that 𝑥 matches specifically 
to 𝑥 ′ . Thus, 𝑃  𝑥, 𝑥 ′   = 𝑃 𝐸 𝑃(𝐹|𝐸). For 𝑃(𝐸), we use 
a simple empirical prior: 𝑃 𝐸 ≡ 1 − 𝑦0, where 𝑦0 is the 
Probability that a node is dropped, as observed in 
training. For 𝑃(𝐹|𝐸), we use an indifference prior: 
Knowing only that 𝑥 matches to some node in 𝑁′ , we 
assume that all nodes are equally likely, so 𝑃 𝐹 𝐸 =
1/|𝑁′ |. This gives us our complete prior: 𝑃  𝑥, 𝑥 ′   =
(1 − 𝑦0)/|𝑁′ |. 

e) Split-Merge Correspondence Probability Model 
 The split-merge correspondence probability 
model is like the singular correspondence probability 
model, except that paper deal with pairs of sets of 
nodes rather than pairs of individual nodes decompose 
a split-merge correspondence 𝑐 = (𝑆, 𝑆′ , 𝑓) into set 
pairs as follows: 

𝑠𝑝𝑎𝑖𝑟𝑠 𝑐 ≡   𝑠, 𝑓 𝑠  |𝑠 ∈ 𝑆 
 

                                      ∪    𝑥 ,∅ |𝑥 ∈ 𝑁\𝒩(𝑆) 
 

                                         ∪   ∅, {𝑥 ′} |𝑥′ ∈ 𝑁′\𝒩(𝑆′) ,
 

One-to-many match probability model. For the 
one-to many case can use a Bayesian model similar to 
that for the one-to-one case: 

𝑃  𝑠, 𝑠′  |𝑒(𝑠, 𝑠′) =
𝑃  𝑠, 𝑠′   𝑃(𝑒(𝑠, 𝑠′)| 𝑠, 𝑠′  )

𝑃(𝑒(𝑠, 𝑠′)
,

 

and proceed similarly to the one-to-one case, 
ultimately arriving at the need to compute factors 
𝑃(𝑒𝑤(𝑠, 𝑠′)| 𝑠, 𝑠′  )

 

and 𝑃(𝑒𝑤(𝑠, 𝑠′)| 𝑠, 𝑠′  )

 

, where the 𝑒𝑤

 

are similar to the 𝑒𝑖

 

of the one-to-one case, except that 
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they deal with sets rather than individual nodes. As well, 
this need to compute a prior 𝑃  𝑠, 𝑠′   . 
  Several issues in computing the factor 
𝑃(𝑒𝑤(𝑥,  𝑥1

′ , 𝑥2
′  )| 𝑥,  𝑥1

′ , 𝑥2
′   ), which is the probability 

according to one kind of evidence (𝑒𝑤) that the node 
𝑥 matches the set consisting of nodes 𝑥1

′  and 𝑥2
′ , i.e., 

that “𝑥 splits into 𝑥1
′  and 𝑥2

′ ”, or conversely that “𝑥1
′  and 

𝑥2
′   merge into 𝑥.” 

One way that we address these two issues is to 
define a new kind of evidence based on the evidence 
about the merge node matching each of the split nodes 
individually. That is, consider evidence about pairs of 
nodes, each pair consisting of the merge node and one 
of the split nodes. 
It define 

𝑃 𝑒𝑤 𝑥,  𝑥1
′ , 𝑥2

′ ,… , 𝑥𝑘
′     𝑥,  𝑥1

′ , 𝑥2
′ ,… , 𝑥𝑘

′    

≡ 𝑃 𝑒𝑖 𝑥, 𝑥𝑗
′   𝑥, 𝑥𝑗

′   , 

Where 
                               𝑗 = 𝑎𝑟𝑔 min𝑙=1…𝑘(𝑒𝑖 𝑥, 𝑥𝑙

′ ), 

This define the prior for the one-to-many case 
as follows: We notice that the event  𝑥,  𝑥1

′ ,… , 𝑥𝑘
′    

decomposes into two events: 𝐺, the event that 𝑥 
matches a set of 𝑘 nodes, and the event 𝐻 that 𝑛 
matches specifically to  𝑥1

′ ,… , 𝑥𝑘
′  . Thus, 

𝑃  𝑥,  𝑥1
′ ,… , 𝑥𝑘

′    = 𝑃 𝐺 |𝑃(𝐻|𝐺). For 𝑃(𝐺), we use the 
fixed empirical prior, 𝑚𝑘 , the observed probability that a 
node 𝑥 will match exactly 𝑘 nodes. For 𝑃(𝐻|𝐺), we use 
an indifference prior: Knowing only that n matches to a 
set of 𝑘 nodes in 𝑁′ , we assume that any of the 𝑘 nodes 
is equally likely. This yield: 

𝑃  𝑥,  𝑥1
′ ,… , 𝑥𝑘

′    =
𝑦𝑘

 |𝑁′ |
𝑘
 

. 

f) The Maximization Problem 
 The previous sections showed how to compute 
𝑃(𝑐|𝑒) for a given correspondence 𝑐 and evidence 𝑒. To 
complete the algorithm, one should describe how to find 
the 𝑐 with maximal 𝑃(𝑐|𝑒).  

Computing the score of such correspondences 
using only simple evidencers can be done in polynomial 
time (ideally constant time per node pair, quadratic 
overall). To find the maximum probability 
correspondence in this case, construct a graph which 
has as its nodes the union of the nodes in the two 
diagrams, 𝑁 ∪ 𝑁 ′ . Place an edge from every node 𝑛 in 
𝑁 to every node 𝑛′  in 𝑁′  with edge weight 𝑤 𝑥, 𝑥 ′ =
𝑃( 𝑥, 𝑥 ′  |𝑒 𝑥, 𝑥 ′ ). Now find the maximum probability 
correspondence in polynomial time using maximum-
weight bipartite matching [4]. 

i. Greedy Search 

The simplest search algorithm is greedy search. 
In greedy search, we keep track of only one piece of 
information, the current state. On each step, we examine 
all states reachable by a single transition from the 
current state, and move to the state with the greatest 

probability. And there is no backtracking—In this paper, 
only consider transitions that add a node pair to the 
correspondence, not those that remove a pair. If there is 
no next state with greater probability than the current 
state, the search stops. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 : Greedy Search 

Fig. 3 gives a high-level description of the 
greedy search algorithm for our problem. We assume 
that, before this algorithm is called, for any nodes 𝑛 and 
𝑛′  in the two diagrams, we have already computed 
𝑝( 𝑛,𝑛′  |𝑒 𝑛,𝑛′ ), the probability that they match, based 
upon the various simple evidencers. 

ii. Complexity Analysis 
 Let’s assume that the total number of nodes in 
the diagrams is 𝑂(𝑁). Then, the naive implementation of 
the greedy search algorithm has complexity 𝑂(𝑁4). The 
outer while loop will be executed at most 𝑂(𝑁) times 
since each iteration removes at least one node of the 
diagrams from future consideration. The for loop is 
executed 𝑂(𝑁2), as there are at most 𝑁2 pairs to 
consider. the naïve implementation, computing 
Score(newCorr) at line “*” costs 𝑂(𝑁) time due to the 
connection evidencer, which requires 𝑃  𝑦,𝑦′  |𝑒(𝑦,𝑦′ ) 
to be recomputed for each pair hm;m0i in the 
correspondence. The connection evidencer will return 
different values for the probability of  𝑦,𝑦′  . Hence, the 
total complexity of the algorithm is 𝑂(𝑁4). 

GreedySearch: 
 
BestCorr   : = emptyCorrespondence 
/* Initialize the best correspondence to one  in which no node 
has a corresponding match in the order diagram */ 
BestScore: = Score (BestCorr) 
FoundBetter: = True 
While foundBetter do 
 FoundBetter: = False 

BestFoundSoFar: = BestCorr 
BestScoreSoFar: = BestScore 
for each pair <n,n’> that can be added to BestCorr 

do 
    newCorr  :=  addPairToCorr(BestCorr,<n,n’>) 
    newScore  :=  Score(newCorr) 
    if newScore > bestScoreSoFar then 
 BestFoundSoFar: = newCorr 
 BestScoreSoFar: = newScore 
 FoundBetter   : = TRUE 
    end if 
end for 
if foundBetter then 
     BestCorr: = bestFoundSoFar 
     BestScore   : = bestScoreSoFar 
end if 

end while 
return (BestCorr, BestScore) 
end GreedySearch 
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HLV (High-Level View)                       LLV (Low-Level View) 

Fig. 4 : Connection matching on the example 

iii. Incremental Algorithm 
 It is possible to implement the Score() function 
so that it takes time proportional to the number of 
neighbors of the added nodes—probability is only 
recomputed for pairs that might possibly be affected by 
a newly added pair. Assuming bounded degree graphs, 
this incremental version takes complexity 𝑂(𝑁3). 

 

  It Describes the set of evidencers that was 
designed and implemented as part of  prototype 
implementation of the AMMO algorithm. The prototype 
evidencers can calculate  

a) Simple Evidencer 
  Label Evidencer measures the similarity 
between text labels of a node pair. Python standard 
library function difflib.Sequence- Matcher.ratio(). 
  Region Evidencer, A region may have a name, a 
set of neighboring regions, and a set of nodes that are 
located within it. 
  Type Evidencer. Some diagrams have nodes 
typed as being hardware components or infrastructure 
software components or application software 
components (or EJBs or ManagedComponents), while 
other diagrams have nodes typed as being actors or 
information flows or use cases or systems. 
  Position Evidencer Similarity values returned by 
position evidencer and expect the euclidean distance 
between matching nodes to be small. 

b) Complex Evidencer 
 A complex evidencer to be an evidence which 
requires information from more than just the node pair 

for which it is finding a similarity value. In addition to that 
node pair, it also takes as input a partial 
correspondence between the two diagrams. 

Connection evidencer.
 

The Connection 
evidencer is based on the connections, or edges, that 
each node has to its immediate neighbors.

 

Fig.3 illustrates connection similarity 
computation for the pair (B2, Q4) in our sample diagram 
pair. In this figure, the solid curved line indicates that at 
this point in the search, the match  𝐵4,𝑄6 

 
is already 

part of the correspondence. The dotted curved line 
indicates that we are considering the node pair (B2, Q4). 
By virtue of the facts that B2 has two neighbors (B1 and 
B4), Q4 has two neighbors (Q3 and Q6), and one of 
B2’s two neighbors (B4) matches one of Q4’s two 
neighbors (Q6), as indicated by the dashed line, the 

connection similarity for (B2, Q4) is 𝑎𝑣𝑔  
1

2
,

1

2
 = 0.5. 

Ultimately, connections turn out to be strong evidence 
that B2 and Q4 match.

 

c)
 

Split Evidencer
 

A Split-Merge Model which defined the 
probability of a split-merge correspondence conditional 
on the observed evidence. Recall that a split-merge 
correspondence is one containing split-merge 
matches—matches between one node and a set of 
nodes. Further, recall that, to evaluate the probability of 
such correspondences, two types of evidencers are 
used: simple (pair) evidencers and split evidencers. The 
simple evidencers that were implemented as part of our 
prototype, and this section describes the split 
evidencers of our prototype.

 

R1: Client Zone 
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Fig. 5 : Ammo-Lite 

a) Algorithm Description 
 It uses the probabilities of the pairs to determine 
the order in which pairs should be added to the 
correspondence. This is done as follows: 

As in the case of AMMO, the first thing that the 
algorithm does is to precompute probabilities of all 
possible node pairs, using the simple evidencers. It then 
creates a sorted list Potential Pairs, which contains the 
node pairs sorted in descending order by probability. 

The main loop of AMMO-LITE goes through 
Potential-Pairs, adding the highest probability pair (the 
one at the head of the list) to the correspondence, 
provided that it is permissible to add that pair. It is not 
permissible to add a pair. It is not permissible to add a 

AMMO-LITE  

Use simple evidencers to precompute and store 

probabilities of all pairs < n,  m >  

PotentialPairs := list of all pairs < n,  m > in descending 

order of      probability  

Corr := emptyCorrespondence  

Done = False  

While PotentialPairs is not Empty and  

        Prob(first(PotentialPairs)) > threshold do  

       <n,  m> :=  removeFirst (PotentialPairs)  

       if <n, m> can be added to Corr then  

 must_re_sort := False  

 Corr := addPairToCorr(Corr, <n,  m>)  

 for each pair <<nn, mm> in PotentialPairs do  

     if nn == n or mm == m then  

    use split evs to update the probability of <nn, mm>  

        must_re_sort  : =  True  

     else if nn is neighbor of n and  

        mm is a neighbor of m then  

    use connect ev to update the probability of <<nn,mm>  

        must_re_sort  : =  True  

     end if  

 end for  

 if must_re_sort then  

     PotentialPairs  : = re-sort(PotentialPairs)  

 end  if  

        end if  

end while  

© 2012 Global Journals Inc.  (US)
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The motivation for creating special-purpose split 
evidencers arose out of the observation that split-merge 
correspondences exhibited different characteristics than 
singular correspondences and that these characteristics 
were not taken into account by the simple evidencers.

Label Sim evidencer. The similarity determined 
by the Label Sim evidencer is the minimum similarity 
among the labels of the  nodes.

Label Intersect evidencer. The similarity 
determined by the Label Intersect evidencer is the 
similarity between the label of 𝑥 and the longest suffix or 
prefix commonto the labels of the 𝑥𝑖

′ nodes.
Label Concat evidencer. The Label Concat 

Evidencer similarity function uses the Label Evidencer 
similarity function to obtain the similarity between the 
label of 𝑥 and the concatenation of the labels of the 𝑥𝑖

′

nodes.
Inner Connect evidencer. This is a discrete 

measure of similarity based on whether or not all of the 
𝑥𝑖
′ nodes are connected to each other.

Outer Connect evidencer. This is a continuous 
measure of connection similarity between 𝑥 and the 
cluster of 𝑥𝑖

′ nodes taken as a whole.

Although the greedy search algorithm 
described performed well for diagrams with dozens of 
nodes, it was not practical for diagrams with hundreds 
of nodes. the major scalability problem with AMMO is 
that every time it has to decide which node pair to add 
next, it must compute an exact probability for each 
possible correspondence that would result from adding 
one more node pair. Our incremental version of greedy 
search helps avoid some of this recomputation, but not 
enough to be practical for larger-scale diagrams. To 
solve this problem, we designed a new algorithm, 
AMMO-LITE, which approximates AMMO’s behavior but 
uses a simpler search that is driven by pair probabilities 
rather than correspondence probabilities. This approach 
avoids repeated calculation of correspondence 
probabilities and, in practice, achieves much better 
performance with only a small loss of precision. 
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pair to the correspondence if that would result in a 
many-to-many match. Each time a new pair 〈𝑥𝑥,𝑦𝑦〉 is 
added to the correspondence, the algorithm goes 
through the list again, in order to determine if the 
precomputed probability of any remaining pair 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 
has been affected. The probability of pair 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 in 
PotentialPairs will be affected in two different 
circumstances: 
• If 𝑥𝑥𝑥𝑥 or 𝑦𝑦𝑦𝑦 is one of the nodes in the pair we just 

added, then adding 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 would result in a 
split/merge. Thus, we change the precomputed 
probability stored for 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 to be the probability of 
the split/merge that would result from adding 
〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 to the correspondence. 

• If 𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑦𝑦 are neighbors of 𝑥𝑥 and 𝑦𝑦, respectively, 
then adding 〈𝑥𝑥,𝑦𝑦〉 to the correspondence will affect 
the connectivity similarity of 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉. Thus, 
𝑃𝑃(〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉) must be recomputed, this time using the 
connection evidencer as well as the simple 
evidencers. 

After going through PotentialPairs, if any 
probabilities have been recomputed, the list is resorted. 
The algorithm then continues with another iteration of 
the main loop to add another pair to the 
correspondence. The algorithm terminates when either 
the list is empty or the probability of the pair at the head 
of the list is less than some threshold value. This value is 
determined by experimentation with training data, and 
can be easily changed. In our implementation, this 
threshold is 𝑡𝑡0, the empirically determined probability 
that a node does not correspond to any node in the 
other diagram. 

b) Complexity Analysis 
 Let the total number of nodes in a diagram be 
𝑂𝑂(𝑁𝑁), as in the analysis of AMMO. Depending on the 
value of threshold, the outer while loop could be 
executed 𝑂𝑂(𝑁𝑁2) times, once for every possible node 
pair. However, the outer if statement (immediately within 
the while loop) will only be true 𝑂𝑂(𝑁𝑁) times since each 
pair added must add at least one new node to the 
correspondence, due to the many-to-many restriction, 
and hence, add at most 𝑂𝑂(𝑁𝑁) pairs. Thus, the nested for 
loop will be reached on only 𝑂𝑂(𝑁𝑁) iterations of the while 
loop. Each time the for loop is reached, it will  execute 
𝑂𝑂(|𝑃𝑃𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡|) = 𝑂𝑂(𝑁𝑁2) iterations. The resulting 
total complexity is 𝑂𝑂(𝑁𝑁3). Similarly, like the nested for 
loop, the statement resort(PotentialPairs) will be reached 
at most 𝑂𝑂(𝑁𝑁) times. Sorting being 𝑂𝑂(𝑁𝑁𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁), each sort 
of the 𝑂𝑂(𝑁𝑁2) items in PotentialPairs will have complexity 
𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). Thus, the resulting total complexity of the 
algorithm due to all sorting is 𝑂𝑂(𝑁𝑁3𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). That 
dominates the 𝑂𝑂(𝑁𝑁3) of the nested for loop, and 
therefore, the overall worst-case total complexity of the 
AMMO-LITE algorithm is 𝑂𝑂(𝑁𝑁3𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). 
 

Table 7 : Experiment Results: 
Average Algorithm Recall, Precision and Runtime         

(in Seconds) 

Algorithm Recall % Precision % Time 
Baseline       

(non-Bayesian) 
75 70 3 

AMMO              
(all evidencers) 

82 85 82 

AMMO-LITE      
(all evidencers) 

80 84 3 

To see why AMMO-LITE performs better than 
AMMO in practice, consider the following: In AMMO-
LITE, each timewe add a pair 〈𝑥𝑥,𝑦𝑦〉 and make a pass 
through the list PotentialPairs. Although this list can be 
𝑂𝑂(𝑁𝑁2), it is a “quick” pass over the list—most of the 
pairs are just skipped. “Real” computation only takes 
place if 〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦〉 meets certain criteria in which case, we 
recompute its associated probability. So, in practice, our 
performance is better than 𝑂𝑂(𝑁𝑁3𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁) would suggest. 
 In fact, employing a priority queue along with an 
incremental approach to updating pair probabilities, and 
assuming a bounded-degree graph, we could achieve 
an overall total complexity of 𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁) as follows: This 
can implement PotentialPairs as a priority queue in 
which pairs are ordered according to their probability, 
there by obviating the need for separate explicit sorts. 
Initially, we construct PotentialPairs by inserting all of the 
𝑂𝑂(𝑁𝑁2) pairs into it. With a priority queue implementation 
for which insert, get_max, and delete are 𝑂𝑂(𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁), the 
complexity of constructing PotentialPairs is 𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). 
In that way, we avoid having to reexamine all of the 
𝑂𝑂(𝑁𝑁2) remaining pairs in PotentialPairs. Assuming 
bounded-degree graphs, with the number of neighbors 
of a pair 〈𝑥𝑥,𝑦𝑦〉 being bounded by a constant 𝑘𝑘, the 
number of pairs whose probability must be recomputed 
due to connectivity is 𝑘𝑘. Whenever we recomputed the 
probability of a pair and delete it from Potential-Pairs 
and reinsert it with its new probability (or we could 
simply do a change_priority operation). With delete and 
insert being 𝑂𝑂(𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁), the total complexity due to 
recomputing probabilities of neighbors of all of the 𝑂𝑂(𝑁𝑁) 
added pairs is 𝑂𝑂(𝑁𝑁 ∗ 𝑘𝑘 ∗ 𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁) = 𝑂𝑂(𝑁𝑁𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). Similarly, 
when a pair 〈𝑥𝑥,𝑦𝑦〉 is added to the correspondence, the 
number of pairs 〈𝑥𝑥𝑥𝑥.𝑦𝑦𝑦𝑦〉 whose probability must be 
recomputed because they would now result in splits or 
merges is at most 𝑂𝑂(𝑁𝑁) because there are at most 
𝑂𝑂(𝑁𝑁) pairs for which 𝑥𝑥 = 𝑥𝑥𝑥𝑥 or 𝑦𝑦 = 𝑦𝑦𝑦𝑦. Hence, the total 
complexity due to recomputing probabilities due to split/ 
merge considerations is 𝑂𝑂(𝑁𝑁 ∗ 𝑁𝑁 ∗ 𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁) = 𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). 
Thus, the overall total complexity of the algorithm would 
be 𝑂𝑂(𝑁𝑁2𝑝𝑝𝑝𝑝𝑎𝑎𝑁𝑁). 

c) AMMO-LITE Experiments 
 Table 7 compares the results of running AMMO-
LITE against those obtained by running AMMO and 
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Baseline. The results include accuracy as well as the 
runtime (in seconds) required by each algorithm. 

Table 8 : Experimental Results: AMMO-LITE versus 
AMMO Runtimes (in seconds) for Various Diagram Sizes 

Pair Nodes Edges AMMO-
LITE 

AMMO Ratio 

Pair 1 9 13 0.83 2.74 3.3 
Pair 2 12 12 0.96 3.68 3.8 
Pair 3 15 24 2.63 12.19 4.6 
Pair 4 22 41 5.11 41.49 8.1 
Pair 5 35 31 11.30 98.66 8.7 
Pair 6 41 68 15.51 257.27 16.6 
Pair 7 637 968 6175.00 - - 

The values in the table were obtained by 
averaging the Recall, Precision, and Time metrics for 
each algorithm across all of our model pairs. 
 The AMMO-LITE algorithm did not do quite as 
well as AMMO in terms of both Recall and Precision, but 
it still did significantly better than the non-Bayesian 
approach. Furthermore, if one examines the cases 
where AMMO-LITE did poorly in comparison to AMMO, 
most of these cases involved complex correspondences 
with a number of challenging matches and multiple 
split/merges. 

VIII. Results 

 

Fig. 6 : (a). Mapping between two ADL Models 

 

Fig. 6 : (b). Mapping between two ADL Models 

 

 

Fig. 7 : (a). Mapping the objects between two ADL 
Models 

 

Fig. 7 : (b). Mapping the objects between two ADL 
Models 

IX. Conclusion 

We have identified and described the model 
correspondence problem, an important problem in 
software engineering. We have designed a Bayesian 
framework that supports the reasoning needed to solve 
the model correspondence problem. And we have 
implemented and tested a matching algorithm based on 
our framework, finding that it achieved high accuracy on 
a set of test diagram pairs. We believe that this work 
holds great promise for the future. 
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