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1 Study of Routing Protocols in Telecommunication Networks13

Pawandeep Chahal ? & Dr. Jatinder Singh ?14
In this paper we have discussed the problem of routing in telecommunication networks and the salient15

characteristics of some of the most popular routing schemes.16
In particular, we have discussed the characteristics of adaptive and multipath routing solutions versus static17

and single-path strategies.18
I.19

2 Routing: Definition and Characteristics20

outing can be characterized in the following general way. Let the network be represented in terms of a directed21
weighted graph G = (V, E), where each node in the set V represents a processing and forwarding unit and each22
edge in E is a transmission system with some capacity/bandwidth and propagation characteristics. Data traffic23
originates from one node and can be directed to another node (unicast traffic), to a set of other nodes (multicast24
traffic) and/or to all the other nodes (broadcast traffic). The node from where the traffic flow originates is25
also called source, or starting end-point, while the nodes to which traffic is directed are the final end-points, or26
destinations. The nodes in-between that forward traffic from sources to destinations are called intermediate, or27
relay, nodes. A flow is a vector in R |E| that for a traffic pair (s, D), s ? V, D ? V, assigns a way of forwarding28
the data traffic from s to the nodes in D across the network while respecting the edge capacities and such that29
the sum of entering flows minus exiting flows at each node is null.30

The general routing problem is the problem of defining path flows to forward incoming data traffic such that31
the overall network performance is maximized. At each node data is forwarded according to a decision policy32
parameterized by a local data structure called routing table. In this sense, a routing system can be properly seen33
as a distributed decision system.34

According to the different characteristics of the processing and transmission components, as well as of traffic35
pattern and type of performance expected to be delivered, a variety of different classes of specific routing problems36
of practical and theoretical interest can be defined. For example, routing telephone calls in a network of mobile37
devices is a problem presenting characteristics which are quite different from those of the problem of routing38
telephone calls in a cable telephone network, which, in turn, is a problem much different from the problem of39
routing data packets in a best-effort connectionless data network as the Internet.40

An important difference between routing and the combinatorial problems that have been considered so far41
consists in the presence of input data traffic which characterizes the problem instance. That is, the routing42
problem is composed of two parts: (i) the communication structure, which in a sense defines the constraints,43
and (ii) the traffic patterns that make use of this structure. It is always necessary to reason taking into account44
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5 II. ROUTING ALGORITHMS CLASSIFICATION

the two aspects together. For instance, the set of all the disjoint shortest paths (taken with respect to link45
bandwidths and propagation times) between all the network node pairs is not, in general, the optimal solution to46
the routing problem at hand. The optimal solution is obtained by considering the specific temporal and spatial47
distribution of the input traffic taken as a whole and solving simultaneously all the shortest path problems related48
to all the source-destination pairs relevant for traffic data. In fact, each allocated path flow recursively interferes49
with all the other path flows since it reduces the capacity which is available along the used links. Therefore, in a50
sense, the order of path flows allocation does really matter, as well as the possibility of rerouting path flows over51
time. That is, the knowledge about the characteristics of the input traffic is a key aspect to allow optimizing52
the allocation of the path flows in order to obtain optimal network-wide performance. On the other hand, in the53
case of routing this is rarely the case, since the characteristics of the incoming data traffic are hardly known with54
precision in advance. In the most fortunate cases, only some statistical knowledge can be assumed.55

In practice, the routing problem in telecommunication networks must be solved online and under dynamically56
changing traffic patterns whose characteristics are usually not known in advance and recursively interact with57
the routing decisions. Moreover, routing is a fully distributed problem, a characteristic that usually rules out58
the use of global knowledge and/or centralized actions, and introduces problems of perceptual aliasing [15] (or59
hidden networks state) from the point of view of the nodes. Performance metrics usually consists of multiple60
conflicting objectives constrained by the specific characteristic of the( D D D D )61

transmission and processing technology. Finally, routing is a business-critical activity, therefore, any62
implementation of a routing system is required to be efficient, fault-tolerant, reliable, secure, etc.63

In figure.1 traffic data must be forwarded from the source node 1 to the target node 13. Several possible paths64
are possible. Each node will decide where to forward the data according to the contents of its routing table. One65
(long) path among the several possible ones is showed by the arrows.66

3 Figure 1 : Routing in networks67

It is apparent that these characteristics do not find any counterpart in the class of static combinatorial problems68
considered so far. To have an idea, a VRP that could share a similar level of complexity, should have an unknown69
distribution of customer arrivals, a tight interaction among the vehicles (sort of traffic jams), strict time windows,70
backhauls, and the possibility for the drivers to get only local information.71

When the characteristics of the traffic flows are known in advance, the problem can be solved in a centralized72
way, and other additional simplifications are possible, routing can be framed in the general terms of a multi-73
commodity flow problem, which is an important class of problems modeling the transfer of commodities from74
source locations to destinations.75

4 At each network node:76

? Acquisition and organization of up-to-date information concerning the local state, that is, information on the77
local traffic flows and on the status of the locally available resources.78

? Build up a view of the global network state, possibly by some form of exchanging of the local state79
information.80

? Use of the global view to set up the values of the local routing table and, consequently, to define the local81
routing policy with the perspective of optimizing some measure of network performance.82

? Forward of the user traffic according to the defined routing policy.83
? Asynchronously and concurrently with the other nodes repeat the previous activities over time.84

5 II. Routing Algorithms Classification85

Routing algorithms are usually designed in relationship to the type of both the network and the services delivered86
by the network. Under this perspective, given the variety of possible network types and delivered services, it is87
hard to identify meaningful and exhaustive classifications for routing algorithms. Therefore, the algorithms are88
classified according to few very general characteristics that can be singled out. Additional general characteristics89
that can be used to classify routing algorithms can be derived by the metaalgorithm, which suggests that different90
choices for either the optimization criteria or the strategies for building and using the local and the global views91
can result in different classes of algorithms. In particular, since the strategies for building the local and global92
views are strictly related to the way both traffic information and topological information are managed in order93
to define the routing tables, a classification of the different routing systems is precisely given according to the94
algorithm behavior, which can be static or adaptive with respect to topology and/or traffic patterns. Moreover,95
since different choices in the criterion to be optimized can generate different classes of algorithms, a further96
classification is given in this sense, making a distinction between optimal and shortest path routing. A final97
classification is drawn according to the number of paths that are used or maintained for the same traffic In98
centralized algorithms, a main controller is responsible for the updating of all the node routing tables and/or99
for every routing decision. Centralized algorithms can be used only in particular cases and for small networks.100
In general, the controller has to gather information about the global network status and has to transmit all the101
decisions/updates. The relatively long time delays necessarily involved with such activities, as well as the lack102
of fault-tolerance (if not at the expenses of redundant duplications), make centralized approaches unfeasible in103
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practice. From now on only non-centralized, that is, distributed routing systems are considered. In distributed104
routing systems, every node autonomously decides about local data forwarding. At each node a local routing105
table is maintained in order to implement the local routing policy. The distributed paradigm is currently used in106
the majority of network systems. b) Types of routing tables: Static vs. Dynamic Routing tables can be statically107
assigned or dynamically built and updated. It is evident that the performance of the two approaches can be108
radically different, and the appropriateness of one approach over the other tightly depends on the characteristics109
of the network scenario under consideration.110

In both cases routing tables are built in order to possibly optimize some network-wide criteria which are111
made depending in turn on costs associated to network elements. That is, to each link, or whatever network112
resource of interest (e.g., available processing power of a routing node), a value (integer, real, nominal, etc.),113
here called cost, is assigned according to some metric in order to have a measure of either utilization level or114
physical characteristics (e.g., bandwidth, propagation delay). Therefore, the process of finding routing paths115
optimized with respect to the chosen criteria can be actually intended as the minimization process with respect116
to the defined costs (e.g., the overall cost criterion can be expressed in terms of a sum of the link costs or of the117
path/link flows). If trusting information about the incoming traffic patterns is available, then an optimal routing118
approach (i.e., a multi-commodity flow formulation) can be used to actually carry the minimization, otherwise119
other approaches, like those based on independent shortest path calculations, are called for.120

Static routing: In static (or oblivious) routing systems, the path to forward traffic between pairs of nodes is121
determined without regard to the current network state. The paths are usually chosen as the result of the offline122
optimization of some selected cost criterion. Once defined the paths to be used for each source-destination pair,123
data are always forwarded along these paths.124

Costs and accordingly, routing tables, are assigned either by an operator or through automatic procedures125
independently from the current traffic events. The use of the links’ physical characteristics is one of the simplest126
ways to assign static link costs (e.g., a link with characteristics of high bandwidth and low propagation delay will127
have associated a low cost). For instance, the cost default value of a link for the Internet intra-domain protocol128
Open Shortest Path First (OSPF) ??55, ??4] as automatically assigned by most CISCO routers is 108 /b, with129
b being the unload bandwidth of the link ??56].130

Routing tables can be also assigned on the basis of some a priori knowledge about the expected input traffic.131
For instance, traffic statistics can be periodically recorded, and if some regularity can be spot, these can be used132
in turn to model the incoming traffic and assign the routing tables as the result of optimal routing calculations.133

Dynam ic routing: Dynamic (or adaptive) routing goes beyond static routing by admitting the possibility134
of building/changing the routing tables online according to the current traffic events. It is useful to distinguish135
between the ability of adapting to the changing traffic conditions and to topological modifications (e.g., link/node136
failures, link/node addition/removal).137

Topological adaptivity is in a sense more fundamental. It is not reasonable to think that every resource138
addition/removal should be explicitly notified by the human operator. Instead, is a minimal requirement to ask139
the distributed routing system to have the ability to automatically get aware of such modifications? This is what140
actually happens in most of the currently used routing protocols. Clearly, different protocols react in different141
way to such events. For instance, Bellman-Ford algorithms, since they do not make explicit use of global network142
topology and only use the notion of distance, suffer the problem of the socalled counting-to-infinity, that is, when143
a link becomes suddenly unavailable, in the worst case it might take infinite time to adjust the routing tables144
accordingly.145

On the other hand, the most common intradomain routing protocol, OSPF [55], is a shortest path algorithm146
based on topology broadcast and is able to be fully and efficiently adaptive with respect to topological147
modifications. However, OSPF is not really adaptive with respect to traffic modifications, such that link costs148
are static, and may change only when network components become unreachable or new ones come up.149

As another example, the Enhanced Interior Gateway Routing Protocol (EIGRP), which is the CISCO’s150
proprietary intra-domain protocol, is an extension of the Bellman-Ford based on the DUAL algorithm ??34],151
such that it overcomes the counting-to-( D D D D )152

infinity problem and uses link costs which are dynamically assigned according to the following formula:?? =153
??? 1 ?? + ?? 2 256??? + ?? 3 ? ?? 5 ??? ?? 4 (1)154

Where k i , i = 1, . . . , 5 are constants, L is the link load assigned as an integer over a scale going from155
1 to 255. D is the topological delay, that is, the amount of time it takes to get to the destination using that156
link in case of unloaded network. R is the reliability of the path expressed as the fraction of packets that will157
arrive at destination undamaged and B = 10 7 / min i b i , where b i is the bandwidth of path to destination.158
The parameters B and D are defined during the router configuration, while L and R are estimated through159
measurements. However, the default link cost is also defined as C = B + D.160

Generally speaking, adaptivity to traffic events is commonly obtained by monitoring local resource utilization161
(usually in terms of link costs), building up statically estimates of these costs, using these costs to update the162
local routing table and possibly exchanging this information with other nodes in order to allow some form of163
dissemination of fresh local information. The nature of the local statistical information and the modalities of164
information exchange characterize the different algorithms.165

Adaptive routers are, in principle, the most attractive ones, because they can adapt the routing policy to166
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6 D) LOAD DISTRIBUTION

varying traffic conditions. As a drawback, they can cause oscillations and inconsistencies in the selected paths,167
and, in turn, these can cause, circular paths, as well as large fluctuations in measured performance. Stability and168
inconsistency problems are more evident for connection-less than for connectionoriented networks. The problems169
with adaptive routing are well captured by the following sentence, slightly changed from the original citation:170
Link arrival rates depend on routing, which in turn depends on arrival rates via routing selected paths, with a171
feedback effect resulting.172

Intuitively, the general non stationarity of the traffic patterns, as well as the above feedback effect, generate173
non-trivial problems of parameters setting in any adaptive algorithm. If the link costs are adaptively assigned174
in function of the locally observed traffic flows, which is, for instance, the amount of the variation in the traffic175
flows that should trigger an update of the link costs and in turn of the routing table. Should every update trigger176
a transmission of the new costs/routing table to other nodes in the network. In general, every answer to these177
questions will contain some level of arbitrariness. In fact, the values assigned to the parameters of the algorithm178
define the tradeoff between reactivity to local traffic changes and stability in the overall network response. c)179
Optimization criteria: Optimal vs. Shortest paths Shortest path routing is the routing paradigm most in use180
in real networks. In shortest path routing the optimizing strategy for path flows consists in using the minimum181
cost paths connecting all the node pairs in the network, where the paths are calculated independently for each182
pair. That is, shortest path routing adopts a per pair perspective. On the other hand, optimal routing, which183
is the other main reference paradigm (at least from a theoretical point of view), has a network-wide perspective,184
since the path flows are calculated considering all the incoming traffic sessions. Clearly, in order to adopt such a185
global strategy, optimal routing requires the prior knowledge of the statistical characteristics of all the incoming186
flows, a requirement which is usually quite hard to satisfy.187

According to an optimization perspective, a more coarse-grained distinction can be also made between minimal188
and non-minimal routing algorithms. Minimal routers allow packets to choose only paths which are minimal189
with respect to some cost criterion, while in non-minimal algorithms packets can be forwarded along any of the190
available paths according to some heuristic decision strategy [9]. Both optimal and pure shortest path routing191
implement minimal routers. On the other hand, ACO algorithms for routing are not minimal, due to the presence192
of stochastic components playing a major role in decision-taking.193

6 d) Load distribution194

Data traffic toward the same destination d can be forwarded along always the same link or it can be spread along195
multiple paths. Actually, when routing tables are updated being adaptive to traffic patterns, the resulting effect196
can be that of actually spreading the data packets toward the same destination over multiple paths at the same197
time, if the updating interval is shorter than or comparable to the inter-arrival time of the packets directed to d.198
However, this is a quite particular and unlikely case, while, more precisely:199

Multipath and alternate path routing: With multipath routing is intended the situation in which multiple200
next hop entries for the same destination are maintained in the routing table and used to forward data according201
to some (usually distance-proportional) scheme.202

On the other hand, alternate routing is the situation in which information about multiple paths is maintained203
in the routing table but is used only as a backup in the case the primary path becomes unavailable because of204
failure or suddenly congested such that its quality scores poorly.205

Multipath routing can be effectively visualized in the terms of defining through the distributed routing tables,206
instead of a collection of single paths between( D D D D )207

each source and destination, a directed, possibly acyclic, graph rooted at the destination. Figure ??.2208
graphically shows the situation. The directed links represent the available routing alternatives for packets bound209
for d according to the local routing tables. The leftmost graph shows a global distributed assignment of the210
routing tables that results in multiple loop-free paths connecting each source s i , i = 1, 2, 3 to the destination211
d. The rightmost graph shows the routing table assignment that would result from a single-path shortest path212
routing algorithm. It is evident the difference in resources utilization in the two cases. With the singlepath policy213
only three links are actually going to be used to forward packets toward d. This means that if the traffic rate at214
one of the three sources is higher than the bandwidth of the single link, either packet must be dropped or they215
will incur high delays. In the multipath case, the effective bandwidth available to each source is much higher,216
and the whole network bandwidth can be fully exploited through statistical multiplexing of link access. Clearly,217
in the case of lightly loaded network, when for instance the bandwidth of each single link is able to carry to whole218
traffic of each source, the singlepath assignments will provide the best performance in terms of both maximal219
throughput and minimal end-toend delays. The leftmost graph shows a routing policy which is globally loop-free220
independently from the specific policy adopted to locally spread the data along the different links. That is, the221
combination of the routing policies of all the nodes defines a directed acyclic graph rooted in d. The middle222
graph shows an assignment of the routing tables which can give rise to packet looping between s 1 and s 2 ,223
depending on the specific utilization of the local multiple alternatives as a function, for instance, of the distance224
to the destination. If the distances/costs are calculated in a wrong way, possibly because of traffic fluctuations,225
is easy to incur in packet looping in this case. The rightmost graph shows the assignment of the routing tables226
resulting from a single-path shortest path calculation [8].227

The multipath solution will likely show also maximal throughput, but the end-to-end delays will be worse than228
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those of single-path since some packets will be forwarded along routes that are longer than one hop. The middle229
graph of the figure points out another potential drawback in multipath routing: loops can easily arise because230
of ”wrong” composition of the local routing policies. In the case of the figure, packets can bounce between s 1231
and s 2 according to the policy adopted to spread data over the available multipath and to the costs that are232
assigned to the different links in the perspective of reaching d.233

There are the three key design issues in multipath routing protocols [7]: (i) how many paths are needed, (ii)234
according to which criterion these paths are selected, (iii) which data distribution policy is adopted to use the235
selected paths. Issues (i) and (ii) are by far the most important ones since determine the final performance of236
the algorithm.237

Regarding (i), is clear that the optimal answer would depend on the characteristics of the both the network238
and traffic. However, the general target is to get good load balancing while using a low number of paths. In239
fact, a high number of paths bring more complexity in the management of the routing tables and increases at240
the same time the probability of packet looping.241

The criteria to select the paths referred in point (ii) differ from network to network. Paths might be selected242
not only according to their quality in the sense of distance/cost to the destination, but also according to other243
features, like the level of node and/or edge disjointness. Disjoint paths are in principle the most appealing244
ones, since they allow an effective and not interfering distribution of the load. On the other hand, the need245
for disjointness is strictly related to the packet production rate of the traffic sources. For low rates (inferior to246
the links’ bandwidths) it might be not really necessary to search for disjoint paths since packets for the same247
destination will likely not interfere along the common parts of the followed paths. On the other hand, this might248
be the case for destinations which are hot spots and concentrates high rates of traffic from several sources. The249
issue of disjointness is particularly( D D D D )250

important in the case of connection oriented networks providing quality of service, since disjointness means251
also increased robustness to failures for the single session: if multiple paths toward the same destination share252
several networks elements, the failure of one of these elements will cause the breakdown of the whole bundle of253
paths and consequently of the QoS session. Disjointness is even a more critical issue in the case of mobile ad hoc254
networks. In fact, in presence of high rates of data generation the use of multiple paths can be effective only if255
the paths are radio-disjoint. If this does not happen, packets from the same session hopping between different256
nodes situated in the same radio range will likely generate MAC-level collisions when accessing the shared radio257
channel. As a result, the use of multiple paths can in principle dramatically bring down the performance, instead258
of boosting it. In general quite difficult to identify disjoint paths. This is true in particular for mobile ad hoc259
networks, because of the highly dynamic conditions, and in connection-less networks, like the IP networks, since260
every routing table is built according to a local view and routing decisions are taken independently at each node,261
while it might be quite straightforward to do in connection-oriented networks. Referring to the last considered262
point (iii), the policies adopted to spread data on the available paths usually follow a proportional approach263
based on the estimated cost/quality of the paths. That is, each link is used for a destination proportionally to264
the estimated quality of the associated path toward that destination. This is the approach followed for instance265
in the Optimized MultiPath (OMP) [9] scheme, in which link load information is gathered dynamically. On266
the other hand, the Equal Cost MultiPath (ECMP) strategy [5] adopted by OSPF on the Internet, consists in267
considering only the set of paths with equal (best) quality and distributing the traffic evenly among them. In268
variance-based approaches [6] if J min is the cost associated to the best path among the locally known ones, then269
all paths whose cost is J ? vJ min , v ? 1, are used for routing, depending on the specific value of the ”variance”270
parameter v. In EIGRP the traffic is split over these paths proportionally to their metric.271

The use of multipaths appears as particularly appealing in the case of QoS networks, since it can bring272
significant advantages during both the connection setup phase, when the requested resources must be found and273
reserved, and the data communication phase. In fact, at setup time, multiple concurrent reservation processes274
can be used for the same session [16], such that (a) the search can be speed up since multiple paths are tried out275
at the same time, (b) a failure in one or more of the processes does not affect the others, and (c) if several routes276
are made available for reservation the most appropriate one(s) can be selected. During the session running time,277
the availability of multiple paths can allow an easier recovering from link or node failures, as well as the shifting278
and/or splitting of the connection flow over other paths in order to gracefully adapt the load distribution and279
possibly minimizing the blocking probability for the forthcoming sessions. The positive features provided by the280
use of multipath routing at setup time suggest that it can play an important role especially to allocate bursty281
applications, as it is also confirmed by theoretical analysis in [7]. Interestingly, also the theoretical analysis in282
[6,7], which refers to the use of multipath for besteffort routing in the IP networks, suggests that multipath can283
bring significant advantages to deal with bursty connection (while the long-lived connections, which account for284
the majority of the Internet traffic, preferentially should not be split over multiple paths).285

A potential drawback of adopting a multipath strategy consists in the fact that if the data packets of the286
same traffic session are spread over different multiple paths, each associated to a possibly different traveling time,287
packets will likely arrive at destination outof-order, creating problems to the transport protocol. For instance,288
facing such a situation, a TCP-like algorithm could easily get wrong and start asking for packet retransmissions289
while packets are just arriving out-of-order and slightly time-shifted. A solution to this problem could consist in290
hashing at the routing layer of each intermediate node the TCP connection identifiers (source and destination291
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8 B) SHORTEST PATH ROUTING

IP addresses) of each received packet in order to determine the next hop ??56, ??8]. In this way, packets292
from the same source/application are always forwarded along the same outgoing link, while the overall load is293
however balanced since different TCP connections are routed along possibly different links. This solution has the294
drawback that in case of few longlived heavy loaded traffic sessions, network utilization can be result quite close295
to the single-path case, losing in this way the possibly advantages of using a multipath protocol. Moreover, if296
the number of traffic sessions is high, the memory requirements necessary to keep trace of all the hashed values297
might result unfeasible (at least for most of the current commercial routing boxes which are equipped with a298
limited small amount of memory). In more general terms, one might think that if multipath routing is used then299
the transport layer algorithms should be consequently adapted in order to fully exploit the potentialities of using300
multipath at the routing layer.301

7 III. Optimal and Shortest Path Routing302

Shortest path routing is the most popular form of routing strategy in current data networks. Therefore, it is303
customary to review in detail the characteristics of this class of algorithms. On the contrary, optimal routing304
algorithms are extremely important from a theoretical point of view, since they provide a solution which is305
globally optimal.306

Volume XII Issue XI Version I Optimal routing has a network-wide perspective and its objective is to optimize307
a function of all individual link flows. Optimal routing models are also called flow models because they try to308
optimize the total mean flow on the network. They can be characterized as multi commodity flow problems,309
where the commodities are the traffic flows between the sources and the destinations, and the cost to be optimized310
is a function of the flows, subject to the constraints of flow conservation at each node and positive flow on every311
link. Obviously, the flow conservation constraint can be explicitly stated only if the arrival rate of the input312
traffic is known and if no packets can be dropped. The routing policy consists of splitting any source-target313
traffic pair at strategic points, then shifting traffic gradually among alternative routes. This usually results in314
the use of multiple paths for a same traffic flow between the same origin-destination pair and in conditions of315
load balancing.316

The multi commodity flow model of an optimal routing problem is solved with respect to the so-called path317
flow variables x p :?????? ? ?? ???? ? ? ? ? ? ?? ?? ?????? ?????? ??? ?? ?????????????????? ð�??”ð�??”<??,??318
> ? ? ? ? <??,?? > ? ?? ?? = ?? ?? ????? ?? , ? ?? ? ?? ?? ?? ? 0 ? ?? ? ?? ?? , ?? ? ??(2)319

Where W is the set of all origin-destination pairs in the network, r w is the known input traffic rate of the320
origin-destination pair w ? W, and P w is the set of all directed paths that can connect the w’s origindestination321
nodes. G ij is the cost function associated to the data flow on the link <i, j>. The overall function to minimize is322
the sum of all these G ij , that is, a function of the overall cost associated to all the assigned path flows x p . The323
form of G ij is left uninstantiated in the formula. According to the different characteristics of the network and324
of the provided services, each G ij can be chosen in a variety of different ways. If multiple conflicting objectives325
have to be taken into account, it might result quite hard to define an additive function G = ? G ij which is326
able to capture all of the objectives. In general terms, it is preferred to choose a functional form of G such that327
the problem can be solved with analytical methods, usually by derivation operations. A common choice for G328
consists in:?? ???? ??? ???? ? = ?? ???? ?? ???? ? ?? ???? + ?? ???? ?? ???? ,(3)329

Where the C ij are related to the capacity of the link, the d ij are the propagation delays, and F ij is the flow330
through the link < i, j >. According to this formula, the cost function becomes the average number of packets331
in the network under the hypothesis, usually not valid in real networks that each queue behaves as an M/M/1332
queue of packets. However, when formula 5.3 is used and under the M/M/1 hypothesis, the sum of the G ij is the333
total delay experienced by data packets. Gallager proposed an algorithm to carry out these computations in a334
distributed way while ensuring also loop-freedom at every instant. Unfortunately, the algorithm critically depends335
on a global step-size parameter which depends in turn on the specific characteristics of the input traffic patterns.336
Such that the algorithm of Gallager can be used in practice only to provide lower bounds under stationary traffic.337
The cost function G can be also alternatively expressed not as a sum of functions G ij , but also, for example, as338
a max-norm:?? = ?????? <??,?? > ? ?? ??j ?? ???? ? ,339

However, in these cases it is usually more difficult to solve the problem analytically.340

8 b) Shortest path routing341

Shortest path routing has a single origindestination perspective. The path between each node pair is considered342
in isolation from the paths for all the other pairs. In this sense, the shortest path perspective is opposed to that343
of optimal routing, which makes use of a cost function of the flows of all the origin-destination pairs considered344
altogether. No a priori knowledge about the traffic process is required, although such knowledge can be fruitfully345
used, when available.346

Main characteristic of shortest path routing: In shortest path algorithms, at each node s, the local link which is347
on the minimum cost path to the destination d, for all the possible destinations d in the network is identified and348
used to forward the data traffic directed to d. The minimum cost path is calculated without taking into account349
the paths for the other destinations. That is, the path for each destination is treated as an entity independent350
from the paths (i.e., the paths flows) for all the other destinations. This is in contrast with the optimal routing351
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approach that allocates each flow minimizing a joint function of all the flows in the network. The general common352
behavior of most implementations of shortest path algorithms is informally described in Algorithm 2: 1. Assign353
a cost to each one of the out links. The cost can be either static or adaptive; in the following it is assumed the354
most general case of adaptive link costs. 2. Periodically, and without the need for inter-node synchronization,355
transmit to the neighbors either estimates about cost and status (on/off) of the attached links, or some other356
information related to the estimated distance/delay from the node to the other known nodes in the network. 3.357
Upon receiving fresh information from a neighbor, update the local routing table and local information database358
(i.e., the local view of the global network status). The routing tables are updated in order to associate to each359
destination the out link that satisfies the conditions of minimum cost path. That is, for each network destination360
d, the out link belonging to the minimum cost path to reach d will be used to route data traffic bounded for d.361
The computation of the minimum cost paths is executed on the basis of the locally available information only.362
4. The received information packet, and/or the updated routing information, can be in turn also forwarded to363
the neighbors, which might further forward it. 5. Data routing decisions are made according to a deterministic364
greedy policy by always choosing the link on the minimum cost path. 6. Asynchronously and concurrently with365
the other nodes repeat the previous activities over time.366

Algorithm 2: General behavior of shortest path routing algorithms.367
The general scheme of Algorithm 2 mainly addresses single-path algorithms. Multipath implementations368

can be realized by building and maintaining at each node information about more than one path toward each369
destination. Accordingly, the routing decisions at point 5 can be such that either all the equally good paths are370
considered for use, or also non-minimal strategies are adopted, such that a set of the n best paths are used in371
some way.372

According to the different contents of the routing tables, shortest path algorithms can be further subdivided373
in two major classes termed distance-vector and link-state [2]. The following two subsections are devoted to the374
description of the characteristics specific to each class.375

9 i. Distance-vector algorithms376

In distance-vector algorithms, each node n maintains a matrix ?? ?? ?? (??) of distance estimates for each377
possible network destination d and for each possible choice of next node i, where i ? N(n), the set of neighbor378
nodes of n. These distance estimates are used to build up the vector SD nd of the shortest distances to d, which,379
in turn, is used to implement routing decisions. Hereafter, distance is to be intended in a general sense as an380
additive cost-to-go to reach the destination node. Figure ??.3 shows all the components of generic distance-vector381
schemes.382

The stored topological information is represented by the list of the known nodes identifiers. The average383
memory occupation per node is of order O(Nn), where N is the number of nodes in the network and n is the384
average connectivity degree (i.e., the average number of neighbor nodes considered over all the nodes). Distance-385
vector algorithms forward a packet with destination d along the local link belonging to the path associated with386
the shortest estimated distance SD nd to d. Therefore, the central component of the algorithm is the distributed387
computation of such minimum cost paths using the locally available topological description of the network, the388
costs-to-go received from the neighbors, and the local distance to the neighbors.389

The framework of the distributed (asynchronous) dynamic programming provides and optimal and efficient390
way of carrying out the required computations given the topological description available at each node. The391
basic idea is the association of each node with a state of a DP backward algorithm. The value of each state392
n for each destination d, is the estimated shortest distance SD nd from n to d. Link choices correspond to393
state actions. The resulting algorithm, the basic distributed Bellman-Ford algorithm (DBF) [4,33], works in an394
iterative, asynchronous and distributed way. Every node n assigns, in a static or dynamic way, a cost to its local395
links.396

10 Conclusion397

All the adaptive algorithms considered in the chapter gather traffic load information only according to a passive398
strategy. That is, it is common practice to monitor at the nodes the load associated to each attached link in399
order to update statistics that are in turn used either to compute distances or are broadcast to the other nodes.400
On the other hand, there is no notable example of gathering information according to also an active strategy.401
For example, by generating an agent and sending it into the network with the purpose of collecting some useful402
information about a well defined resource or destination.403

Taking into account all the aspects discussed so far, it is possible to compile a sort of wish list for the design404
characteristics of novel routing algorithms, that are expected to: (i) be traffic adaptive, (ii) make use of multipaths,405
(iii) integrate both forms of collective rationality and continual and graceful adaptation of the routing policy,406
(iv) show robustness with respect to parameter setting, with possible self-tuning of the parameters in order to407
adapt to the characteristics of the specific network scenario, (v) limit loop formation, or at least ensuring that408
loops are very short-lived, (vi) possibly not fully rely on information bootstrapping or broadcasting, in order409
to obtain more robustness under dynamic and near saturation conditions, while at the same time providing at410
least near-optimal performance under static and low load conditions, (vii) make use of stochastic components in411
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order to be more robust to the lack of global up-to-date information at the nodes, (viii) implement some form412
of (pro)active information gathering to complement passive information gathering one, while at the same time413
limiting the associated routing overhead. Our ACO algorithms for routing have been precisely designed according414
to these guidelines, resulting in novel traffic-adaptive algorithms for stochastic multipath routing.415

11 Bibliography416

Figure 1:
1 2417

1© 2012 Global Journals Inc. (US)
2© 2012 Global Journals Inc. (US)Global Journal of Computer Science and Technology

8



2

Figure 2: Figure 2 :

Figure 3:

9



11 BIBLIOGRAPHY

10



.1 June

.1 June418
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