
Quantitative Analysis of Fault and Failure Using Software1

Metrics2

Shital V. Tate13

1 Bharati Vidyapeeth Deemed University4

Received: 11 December 2011 Accepted: 31 December 2011 Published: 15 January 20125

6

Abstract7

It is very complex to write programs that behave accurately in the program verification tools.8

Automatic mining techniques suffer from 90â??”999

10

Index terms—11

1 Introduction12

oftware remains buggy and testing is still the leading approach for detecting software errors. Incorrect and13
buggy behaviour in deployed software costs up to $70 billion each year in the US [1]. Thus debugging, testing,14
maintaining, optimizing, refactoring, and documenting software, while timeconsuming, remain significantly15
important. Such maintenance is reported to consume up to 90% of the total cost of software projects16
[2]. Maximum maintenance time is spent studying existing software since maintenance concern is incomplete17
documentation.18

Consistently, however, verification tools require specifications that describe some aspect of program accuracy.19
Creating accurate specifications is difficult, time-consuming and error-prone. Verification tools can only point20
out disagreements between the program and the specification. Even assuming a sound and complete tool, an21
defective specification can still yield false positives by pointing out non-bugs as bugs or false negatives by failing22
to point out real bugs. Crafting specifications typically requires program-specific knowledge.23

Specification mining can be compared to learning the rules of English grammar by reading essays written by24
high school students; we propose to focus on the essays of passing students and be doubtful of the essays of failing25
students. We claim that existing miners have high false positive rates in large part because they treat all code26
equally, even though not all code is created equal. For example, consider an execution trace through a recently27
modified, rarely-executed piece of code that was copied-and-pasted by an inexperienced developer. We argue28
that such a trace is a poor guide to correct behaviour when compared with a well-tested, infrequently-changed,29
and commonly-executed trace.30

Various pre-existing software projects are not yet formally specified [3]. Formal program specifications are31
difficult for humans to construct [4], and incorrect specifications are difficult for humans to debug and modify32
[5]. Accordingly, researchers have developed techniques to automatically infer specifications from program source33
code or execution traces [6], [7], [8], [9]. These techniques typically produce specifications in the form of finite34
state machines that describe legal sequences of program behaviours.35

Unfortunately, these existing mining techniques are insufficiently precise in practice. Some miners produce large36
but approximate specifications that must be corrected manually [5]. As these large specifications are indefinite37
and difficult to debug, this article focuses on a second class of techniques that produce a larger set of smaller and38
more precise candidate specifications that may be easier to evaluate for correctness. These specifications typically39
take the form of two-state finite state machines that describe temporal properties, e.g. ”if event a happens during40
program execution, event b must eventually happen during that execution.” Twostate specifications are limited41
in their expressive power; comprehensive API specifications cannot always be expressed as a collection of smaller42
machines [8].43

Recognize and illustrate lightweight, automatically collected software features that fairly accurate source code44
quality for the purpose of mining specifications. In this approach explain how to lift code quality metrics to45

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

8 III.

metrics on traces, and empirically measure the utility of our lifted quality metrics when applied to previous static46
specification mining techniques. To avoid false positives recommend two novel specification mining techniques47
that use our automated quality metrics to learn temporal safety specifications. The main contributions of48
this project are: ? A set of source-level features related to software engineering processes that capture the49
trustworthiness of code for specification mining. We analyze the relative analytical power of each of these50
features. ? Experimental evidence that our notions of trustworthy code serve as a basis for evaluating the51
trustworthiness of traces. We provide a characterization for such traces and show that offthe-shelf specification52
miners can learn just as many specifications using only 60% of traces. ? A novel automatic mining technique53
that uses our trust-capturing features to learn temporal safety specifications with few false positives in practice.54
We evaluate it on over 800,000 lines of code and explicitly compare it to two previous approaches.55

2 II.56

3 On going methodology57

Our basic mining technique learns specifications that locate more safety-policy violations than previous miners58
(740 vs. 426) while presenting far fewer false positive specifications (107 vs. 567). When focused on precision,59
our technique obtains a low 5% false positive rate, an order-of-magnitude improvement on previous work, while60
still finding specifications that locate 265 violations. To our knowledge, this is the first specification miner that61
produces multiple candidate specifications and has a false positive rate under 90%. i.62

4 Approach63

In this approach present a specification miner that works in three stages: 1. Statically estimate the trustworthiness64
of each code fragment. 2. Lift that judgment to traces by considering the code visited along a trace. 3. Weight65
the contribution of each trace by its trustworthiness when counting event frequencies for specification mining.66

The code is most trustworthy when it has been written by experienced Programmers who are familiar with67
the project at hand, when it has been well-tested, and when it has been mindfully written.68

5 b) Mining Temporal Specification for Error Detection69

If we use implicit language-based specifications (e.g., null pointers should not be dereferenced) or to reuse70
standard library specifications then it can reduce the cost of writing specifications. More recently, however,71
a variety of attempts have been made to conclude program-specific temporal specifications and API usage rules72
automatically. These specification mining techniques take programs (and possibly dynamic traces, or other73
hints) as input and produce candidate specifications as output. Basically specifications could also be used for74
documenting, refactoring, testing, debugging, maintaining, and optimizing a program. Centre of attention is75
that finding and evaluating specifications in a particular context: given a program and a generic verification tool,76
what specification mining technique should be used to find bugs in the program and thereby improve software77
quality? Thus we are concerned both with the number of ”real” and ”false positive” specifications produced by78
the miner and with the number of ”real” and ”false positive” bugs found using those ”real” specifications.79

In this methodology propose a novel technique for temporal specification mining that uses information about80
program error handling. Our miner assumes that programs will generally adhere to specifications along normal81
execution paths, but that programs will likely violate specifications in the presence of some run-time errors or82
exceptional situations. Intuitively, error-handling code may not be tested as often or the programmer may be83
unaware of sources of run-time errors. Taking advantage of this information is more important than ranking84
candidate policies. i.85

6 Contributions86

7 ? Propose a novel specification mining technique87

based on the observation that programmers often make mistakes in exceptional circumstances or along uncommon88
code paths. ? Present a qualitative comparison of five miners and show how some miner assumptions are not89
wellsupported in practice. ? Finally, we give a quantitative comparison of our technique’s bug-finding powers90
to generic ”library” policies. For our domain of interest, mining finds 250 more bugs. We also show the relative91
unimportance of ranking candidate policies. In all, we find 69 specifications that lead to the discovery over 43092
bugs in 1 million lines of code.93

8 III.94

Proposed system for quantitative analysis of fault and failure95
In proposed system, aim to develop a system which can be used to measure the quality of the code considering96

different aspects affecting the quality of the code. The term quality of the code can be explained using different97
factors such as code clone, author rank, code churn, code readability, path feasibility etc.98

2

To Present a new specification miner that works in three stages. First, it statically estimates the quality of99
source code fragments. Second, it lifts those quality judgments to traces by considering all code visited along a100
trace. Finally, it weights each trace by its quality when counting event frequencies for specification mining.101

9 Global Journal of Computer Science and Technology102

Volume XII Issue XII Version I develops an automatic specification miner that balances true positives -as required103
behaviours -with false positives -non-required behaviours. We claim that one important reason that previous104
miners have high false positive rates is that they falsely assume that all code is equally likely to be correct.105
For example, consider an execution trace through a recently modified, rarely-executed piece of code that was106
copied and-pasted by an inexperienced developer. We believe that such a trace is a poor guide to correct107
behaviour, especially when compared with a well-tested, stable, and commonly-executed piece of code. Patterns108
of specification adherence may also be useful to a miner: a candidate that is violated in the high quality code109
but adhered to in the low quality code is less likely to represent required behaviour than one that is adhered110
to on the high quality code but violated in the low quality code. We assert that a combination of lightweight,111
automatically collected quality metrics over source code can usefully provide both positive and negative feedback112
to a miner attempting to distinguish between true and false specification candidates.113

Code quality information may be gathered either from the source code itself or from related artefacts, such as114
version control history. By augmenting the trace language to include information from the software engineering115
process, we can evaluate the quality of every piece of information supporting a candidate specification (traces116
that adhere to a candidate as well as those that violate it and both high and low quality code) on which it is117
followed and more accurately evaluate the likelihood that it is valid.118

The system architecture of the system is as in following figure, which explains the modules to be generated.119

10 Conclusion120

Testing, maintenance, optimization, refactoring, documentation, and program repair these are the various121
applications of formal specification. Though human programmers should not produce and verify such specification122
manually. These technique is also problematic since it treat all parts of program as equally indicative as correct123
behaviour. We encode this intuition using dependability metrics such as analytical execution frequency, copy124
paste code measurements, code duplication software readability or path feasibility. We compare the bug finding125
power of various miners. This technique improves the performance of existing trace based miners by focusing on126
high quality traces. Our technique is also useful to improve the quality of code through specification mining. 1

Figure 1:

3

10 CONCLUSION

1

Figure 2: Figure 1 :

1© 2012 Global Journals Inc. (US)

4

[J. ACM ()] , J. ACM 2005. 52 (3) p. .127

[Mccabe ()] ‘A complexity measure’. T J Mccabe . IEEE Trans. Software Eng 1976. 2 (4) p. .128

[Chidamber and Kemerer ()] ‘A metrics suite for object oriented design’. S R Chidamber , C F Kemerer . IEEE129
Trans. Softw. Eng 1994. 20 (6) p. .130

[Krinke ()] A study of consistent and inconsistent changes to code clones, J Krinke . 2007. WCRE. IEEE131
Computer Society. p. .132

[Whaley et al. (ed.) ()] Automatic extraction of object-oriented component interfaces, J Whaley , M C Martin ,133
M S Lam . ISSTA (ed.) 2002.134

[Engler et al. ()] ‘Bugs as inconsistent behavior: A general approach to inferring errors in systems code’. D R135
Engler , D Y Chen , A Chou . Symposium on Operating Systems Principles, 2001. p. .136

[Engler et al. ()] ‘Bugs as inconsistent behaviour: A general approach to inferring errors in systems code’. D R137
Engler , D Y Chen , A Chou . Symposium on Operating System Principles, 2001. p. .138

[Kapser and Godfrey ()] Cloning Considered Harmful” in WCRE, C Kapser , M W Godfrey . 2006. p. .139

[Ammons et al. ()] ‘Debugging temporal specifications with concept analysis’. G Ammons , D Mandelin , R140
Bod´?k , J R Larus . Programming Language Design and Implementation, 2003. p. .141

[Kayed and Chang (2010)] ‘FiVaTech: Page-Level Web Data Extraction from Template Pages’. Mohammed142
Kayed , Chia-Hui Chang . IEEE Transactions On Knowledge And Data Engineering February 2010. 22143
(2) .144

[Das ()] ‘Formal specifications on industrial-strength code from myth to reality’. M Das . Computer-Aided145
Verification, 2006. p. 1.146

[Le Goues and Weimer] ‘Measuring code quality to improve specification mining’. Claire Le Goues , Westely147
Weimer . IEEE Trans. Software Eng148

[Ammons et al. ()] ‘Mining specifications’. G Ammons , R Bodik , J R Larus . Principles of Programming149
Languages, 2002. p. .150

[Weimer and Necula ()] ‘Mining temporal specifications for error detection’. W Weimer , G C Necula . TACAS151
2005. p. .152

[Sanchez et al. (2007)] On the Sustained Use of a Test Driven Development Practice at IBM,” in Agile, J C153
Sanchez , L Williams , E M Maximilien . 2007. August 2007. IEEE Computer Society. p. .154

[Weimer and Mishra ()] ‘Privately finding specifications’. W Weimer , N Mishra . IEEE Trans. Software Eng155
2008. 34 (1) p. .156

[Seacord et al. ()] R C Seacord , D Plakosh , G A Lewis . Modernizing Legacy Practices, 2003.157

[Chen et al. ()] ‘Setuid demystified’. H Chen , D Wagner , D Dean . USENIX Security Symposium, 2002. p. .158

[Detlefs et al.] Simplify: a theorem prover for program checking, D Detlefs , G Nelson , J B Saxe .159

[Goues and Weimer ()] ‘Specification mining with few false positives’. C , Le Goues , W Weimer . TACAS, 2009.160
p. .161

[Gabel and Su ()] ‘Symbolic mining of temporal specifications’. M Gabel , Z Su . ICSE, 2008. p. .162

[The economic impact of inadequate infrastructure for software testing (2002)] The economic impact of inade-163
quate infrastructure for software testing, may 2002. National Institute of Standards and Technology (Tech.164
Rep. 02-3)165

[Nagappan and Ball ()] ‘Using software dependencies and churn metrics to predict field failures: An empirical166
case study’. N Nagappan , T Ball . ESEM, 2007. p. .167

[Penta and German ()] ‘Who are source code contributors and how do they change?’. M , Di Penta , D M German168
. in Working Conference on Reverse Engineering, 2009. IEEE Computer Society. p. .169

5

	1 Introduction
	2 II.
	3 On going methodology
	4 Approach
	5 b) Mining Temporal Specification for Error Detection
	6 Contributions
	7 ? Propose a novel specification mining technique
	8 III.
	9 Global Journal of Computer Science and Technology
	10 Conclusion

