
© 2012. D.Pramodh Krishna, A.Senguttuvan & T.Swarna Latha. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 12 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Clustering on Large Numeric Data Sets Using Hierarchical
Approach: Birch

 By D.Pramodh Krishna, A.Senguttuvan & T.Swarna Latha
Sree Vidyanikthan Engg.Coll., A.Rangempet, Tirupati, A.P, India

Abstract - The paper is about the clustering on large numeric data sets using hierarchical method. In
this BIRCH approach is used, to reduce the amount of data, for this a hierarchical clustering method
was applied to pre-process the dataset. Now a day’s web information plays a prominent role in the
web technology, large amount of data is consumed to communicate, but some with intruders there is
loss of data or may changes occur in the interaction, so to recognize intruders they detect to build an
intrusion detection system for this a hierarchical approach is used to classify network traffic data
accurately. Hierarchical clustering is performed By taking network as an example. The clustering
method could produce high quality dataset with far less instances that sufficiently represent all of the
instances in the original dataset.

Keywords : Hierarchical clustering, support vector machine,data mining,KDD cup.

GJCST-C Classification: H.3.3

Clustering on Large Numeric Data Sets Using Hierarchical Approach Birch

Strictly as per the compliance and regulations of:

Clustering on Large Numeric Data Sets Using
Hierarchical Approach: Birch

D.Pramodh Krishna α, A.Senguttuvan σ & T.Swarna Latha ρ

Abstract - The paper is about the clustering on large numeric
data sets using hierarchical method. In this BIRCH approach
is used, to reduce the amount of data, for this a hierarchical
clustering method was applied to pre-process the dataset.
Now a day’s web information plays a prominent role in the web
technology, large amount of data is consumed to
communicate, but some with intruders there is loss of data or
may changes occur in the interaction, so to recognize
intruders they detect to build an intrusion detection system for
this a hierarchical approach is used to classify network traffic
data accurately. Hierarchical clustering is performed By taking
network as an example. The clustering method could produce
high quality dataset with far less instances that sufficiently
represent all of the instances in the original dataset.
Keywords : Hierarchical clustering, support vector
machine,data mining,KDD cup.

I. Introduction

ata clustering is an important technique for
exploratory data analysis and has been studied
for several years. It has been shown to be Useful

in many practical domains such as data classification.
There has been a growing emphasis on analysis of very
large data sets to discover the useful patterns. This is
called data mining and clustering is regarded as a
particular branch. So, as the data set size increases they
do not scale up well in terms of memory requirement.
Hence an efficient and scalable data clustering method
is proposed based on a new in memory data structure
called CF Tree which serve as in in-memory summary of
the data distribution.

We have implemented in a system called
BIRCH (Balanced Iterative Reducing And Clustering
Using Hierarchies) and studied its performance
extensively in terms of memory requirement and
scalability.

The SVM technique is unable to operate at such
a large dataset due to system failures caused by
insufficient memory, or may take too long to finish the
training. Since this study used the KDD Cup 1999
dataset, to reduce the amount of data, a hierarchical

Author α : Assistant Professor, Dept. of CSE, Sree Vidyanikthan Engg.
Coll., A.Rangempet, Tirupati, A.P, INDIA-517 102.

E-mail : pramodhkrishna.d@gmail.com

Author σ : Professor, Dept. of CSE, Sree Vidyanikthan Engg. Coll.,
A.Rangempet, Tirupati, A.P, INDIA-517 102.

E-mail : asenguttuvan@rediffmail.com

Author ρ : M.Tech Student, Dept of CSE, Sree Vidyanikethan Engg.
Coll., A.Rangempet , Tirupati , A.P, INDIA-517 102.

E-mail : swarnalatha514@gmail.com

clustering method was applied to pre-process the
dataset before SVM training. The clustering method
could produce high quality dataset with far less
instances that sufficiently represent all of the instances
in the original dataset.

This study proposed an SVM-based intrusion
detection system based on a hierarchical clustering
algorithm to pre-process the KDD Cup 1999 dataset
before SVM training. The hierarchical clustering
algorithm was used to provide a high quality,
abstracted, and reduced dataset for the SVM training,
instead of the originally enormous dataset. Thus, the
system could greatly shorten the training time, and also
achieve better detection performance in the resultant
SVM classifier.

This study proposed an SVM-based intrusion
detection system, which combines a hierarchical
clustering algorithm, a simple feature selection
procedure, and the SVM technique. The hierarchical
clustering algorithm provided the SVM with fewer,
abstracted, and higher-qualified training instances that
are derived from the KDD Cup 1999 training set. It was
able to greatly shorten the training time, but also
improve the performance of resultant SVM. The simple
feature selection procedure was applied to eliminate
unimportant features from the training set so the
obtained SVM model could classify the network traffic
data more accurately. The famous KDD Cup 1999
dataset was used to evaluate the proposed system.
Compared with other intrusion detection systems that
are based on the same dataset, this system showed
better performance in the detection of DoS and Probe
attacks, and the be set performance in overall accuracy.

II. Background

a) Data transformation and scaling
SVM requires each data point to be represented

as a vector of real numbers. Hence, every non-
numerical attribute has to be transformed into numerical
data first. The method is simply by replacing the values
of the categorical attributes with numeric values. For
example, the protocol type attribute in KDD Cup 1999,
thus, the value tcp is changed with 0, udp with 1, and
icmp with 2. The important step after transformation is
scaling. Data scaling can avoid attributes with greater
values dominating those attributes with smaller values,
and also avoid numerical problems in computation. In
this paper, each attribute is called with linear scaling to

D

© 2012 Global Journals Inc. (US)

29

20

12

(
DDDD

)
C

Y
e
a
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

the range of [0, 1] by dividing every attribute value by its
own maximum value.

b) Clustering feature (CF)
The concept of a clustering feature (CF) tree is

at the core of BIRCH’s incremental clustering algorithm.
Nodes in the CF tree are composed of clustering
features. A CF is a triplet, which summarizes the
information of a cluster.

c) Defining the CF trees
Given n d- dimensional data points in a cluster

{xi}, where i = 1, 2, . . ., n, the clustering feature (CF) of
the cluster is a 3-tuple, denoted as CF = (n, LS, SS),
where n is the number of data points in the cluster, LS is

the linear sum of the data points, i.e., , and

SS is the square sum of the data points, i.e., .

III. Related work

a) Theorem (CF addition theorem)
Assume that CF1 = (n1, LS1, SS1) and CF2 =

(n2, LS2, SS2) are the CFs of two disjoint clusters. Then
the CF of the new cluster, as formed by merging the two
disjoint clusters is

CF1 + CF2 = (n1+n2, LS1+ LS2, SS1+SS2)

For example, suppose there are three points (2,
3), (4, 5), (5, 6) in cluster C1, then the CF of C1 is

CF1 = {3, (2+4+5, 3+5+6), (22+42+52, 32+52+62)}

 = {3,(11,14),(45,70)}

Suppose that there is another cluster C2 with
CF2 = {4, (40, 42), (100, 101)}. Then the CF of the new
cluster formed by merging cluster C1 and C2 are

CF3 = {3+4, (11+40, 14+42), (45+100, 70+101)}

By Definition and Theorem, the CFs of clusters
can be stored and calculated incrementally and
accurately as clusters are merged. Based on the
information stored in CF, the centroid C and radius R of
a cluster can be easily computed. The definitions of C
and R of a cluster are given as follows. Given n d-
dimensional data points, say {xi} and i = 1, 2. . . n, in a
cluster:

the centroid C = and

 the radius R =

Where, R denotes the average distance of all
member points to the centroid. As mentioned earlier, CF
stores only the abstracted data point, i.e., statistically
summary of data points that belong to the same cluster.
After a data point is added into a cluster, the detail
information of the data point itself is missing. Therefore,

this approach can save space significantly for densely
packed data.

b) CF tree
A CF tree is a height-balanced tree with two

parameters, branching factor B and radius threshold T.
Each non-leaf node in a CF tree contains the most B
entries of the form (CFi, childi), where1≤ i≤ B and childi
is a pointer to its ith child node, and CFi is the CF of a
cluster pointed by the child i. An example of a CF tree
with height h = 3 is shown in Fig. 1. Each node
represents a cluster made up of sub-clusters, which
represents its entries. It is different from a non-leaf node
is that a leaf node has no pointer to link to other nodes,
and contains at most B entries. The CF at any particular
node contains information for all data points in that
node’s sub-trees. A leaf node must satisfy the threshold
requirement, that is, every entry in every leaf node must
have its radiuses less than threshold T.

Fig.1

: A CF Tree with height h=3

A CF tree is a compact representation of a
dataset, each entry in a leaf node represents a cluster
that absorbs many data points within its radius of T or
less.

A CF tree can be built dynamically as new data
points are inserted. The insertion procedure is similar to
that of a B+-tree to insert a new data to its correct
position in the sorting algorithm. The insertion procedure
of CF tree has the following steps.

1.

Identify the appropriate leaf

2.

Modify the leaf

3.

Modify entries on the path to the leaf

S

no.

String Value

Equivalent Numerical Value

1

Tcp

0

2

Udp

1

3

Icmp

2

4

http

0

5

domain_u

1

6

Auth

2

7

Smtp

3

8

finger

4

9

telnet

5

10

ecr_i

6

Table 1

:

Replacement of the string values

© 2012 Global Journals Inc. (US)

30

20

12

(
DDDD

)
C

Y
e
a
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

IV. Experimental results

Here the scenario is mainly responsible in the
task of clustering. The process of data clustering is
performed using the WEKA 3.7 tool’s Hierarchical
clustered. The testing in this test case can be done in
the stage of mentioning the parameters of the clustering
such as distance parameter i.e. Euclidean distance, link
type such as centroid and number of clusters value. The
testing strategies here mainly the setting of those
parameters regarding the hierarchical clustered in the
WEKA tool. The clustered output can be visualized on
the results for the test results.

This test case deals with the training of the
clustered dataset. Both the train set and the test set are
givenas input for classification and regression/prediction
of the accuracy values with the following option lists.

1 2 3 4 5 6

0 0 0 0 0.320175 0.188728

0 0 0 0 0.087719 0.018894

0 0 0 0 0.412281 0.005072

0 0 0 0 0.399123 0.00844

0 0 0 0 0.425439 0.001964

Table 2 : Dataset values in .csv format

This is the first step in the process of data
transformation. Here the KDD data set which is in the
text format is changed in to the comma separated
values i.e., from .txt to .csv. The reason for the format
change is the incompatibility of the tool or the language
that we use in the further processing steps.
 After the format conversion the data set can be
view in the office excel as it support csv format viewing
in windows environment. Here the data present in the
KDD data set before transformation is seen in the excel
sheet i.e. in the csv format.
 The java code has been written for the data
transformation, all the non integer values should be
transformed to integer values in the data set. So that
program is executed in this screen shot.
 The data set has been transformed i.e. all the
variables present in the data set has been transformed
to the integer values which is in the text format. The data
set which is transformed is present in the text format we
have to convert that in to .csv format.
 After the data transformation the data scaling
has to be performed. So in order to perform the data
scaling we use the WEKA tool here and load the
transformed file into WEKA pre- processing task.

a) Data Clustering
 WEKA provides a wide range of clusterers for
the process of data clustering. Here we use the
hierarchical clusterer for our clustering process which
has been clearly mentioned in the screen shot. The
testing regarding the clustering has been discussed in
the test case 3 in the system testing chapter.

Once the type of clustering has been selected
now the query tab is double clicked for the setting the
hierarchical clustering parameters. The paramaters of
hierarchical clustering that we see here are,
1. Distance Function
2. Link Type
3. NumClusters

The process of clustering is continued once
these parameters are correctly set by the user.
 The clustered output shown in WEKA mainly
show the percentage values of the clusters made by it
and the cluster values. The percentage mainly show the
amount of dataset those are regarding a single property
i.e. based on a single attack present in the considered
test set. The output of the clustered is also compared to
this test set values in the further procedures such as
data training etc.
 This is an additional option that is being
provided in WEKA tool for visualizing the clustered
output in the form of graphs with different color
representations. To select this option right click on the
result list that is being displayed on the left of the WEKA
Explorer sorted with their timing status in hh:mm:ss
 This is how you visualize the clustered output
in the form of a graph. Here we come across a slider
labelled Jitter, which is a random displacement given to
all points in the plot. Dragging it to the right increases
the amount of jitter, this is useful for spotting
concentrations of points. Without jitter, a million
instances at the same point would look no different to
just a single lonely instance. Here we have the option
save to save our clustered output in the external
memory to use that in our training procedure.
 Once the clustering has been visualized and
saved, the clustered output is saved in the external
memory with a new column known as cluster of the type
nominal which clearly mentions the complete
dependency of the particular row with the respective
cluster.
 This is treated as the clustering output in
dataset format which is in turn given as the input for the
process of data training.
 This is the visualization graphs for each of the
column values that is being seen in the KDD dataset.
The graphs are drawn according to the level of values
present in the complete column. This helps the user in
accessing the column present in the particular column in
the dataset.
=== Run information ===
Scheme:
weka.clusterers.HierarchicalClusterer -N
2 -L SINGLE -P -A
"weka.core.EuclideanDistance -R first-
last"
Relation: testsample-1_clustered
Instances: 1000
Attributes: 44

© 2012 Global Journals Inc. (US)

31

20

12

(
DDDD

)
C

Y
e
a
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

 Instance_number
 1
 2
 3
 4
 5
 6
Cluster
Test mode: evaluate on training data
=== Clustering model (full training set)
===
Cluster 1
Time taken to build model (full training
data) : 2.81 seconds
=== Model and evaluation on training set
===
Clustered Instances
0 1 (0%)
1 999 (100%)

Fig. A : Visualization of the clustered data

V. CONCLUSION

In this paper, we have proposed an
hierarchical clustering approach using BIRCH algorithm
it proposed an SVM-based network intrusion detection
system with BIRCH hierarchical clustering for data pre-
processing. The BIRCH hierarchical clustering could
provide highly qualified, abstracted and reduced
datasets, instead of original large dataset, to the SVM
training. Thus, in addition to a significant reduction of
the training time, the resultant SVM classifiers showed
better performance than the SVM classifiers using the
originally redundant dataset.

 However, in terms of accuracy, the proposed
system could obtain the best performance. Some new
attack instances in the test dataset, which never
appeared in training, could also be detected by this
system.

References Références Referencias

1. Abraham, A., Grosan, C., & Martin-Vide, C.
(2007).Evolutionary design of intrusion detection
programs. International Journal of Network Security,
4(3), 328–339.

2. Bouzida, Y., & Cuppens, F. (2006). Neural
networks vs. decision trees for intrusion detection.
<http://www.rennes.enstbretagne.fr/~fcuppens/arti
cles/monam06. pdf>.

3. Guha, S., Rastogi, R., & Shim, K. (1999). Rock: A
robust clustering algorithm for categorical attributes.
In Proceedings of the international conference on
data engineering (ICDE’99) (pp. 512–521).

4. Guha, S., Rastogi, R., & Shim, K. (1998). Cure: An
efficient clustering algorithm for large databases. In
Proceedings of the ACM SIGMOD (SIGMOD’98)
(pp. 73–84).

5. Hsu, C. -W., Chang, C. -C., & Lin, C. -J., (xxxx). A
practical guide to support vector classification.
<http://www.csie.ntu.edu.tw/~cjlin/papers/guide/gu
ide.pdf>.

6. Karypis, G., Han, E.-H., & Kumar, V. (1999).
Chameleon: A hierarchical clustering algorithm
using dynamic modelling. Computer, 32, 68–75.

7. KDDCup, (1999). Intrusion detection data set.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup
99.html.

8. Khan, L., Awad, M., & Thuraisingham, B. (2007). A
new intrusion detection system using support vector
machines and hierarchical clustering. The
International Journal on Very Large Data Bases,
16(4), 507–521.

© 2012 Global Journals Inc. (US)

32

20

12

(
DDDD

)
C

Y
e
a
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

	Clustering on Large Numeric Data Sets Using HierarchicalApproach: Birch
	Author's
	Keywords
	I. Introduction
	II. Background
	a) Data transformation and scaling
	b) Clustering feature (CF)
	c) Defining the CF trees

	III. Related work
	a) Theorem (CF addition theorem)
	b) CF tree

	IV. Experimental results
	a) Data Clustering

	V. CONCLUSION
	References Références Referencias

