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Clustering on Large Numeric Data Sets Using 
Hierarchical Approach: Birch 

D.Pramodh Krishna α, A.Senguttuvan σ & T.Swarna Latha ρ 

Abstract - The paper is about the clustering on large numeric 
data sets using hierarchical method. In this BIRCH approach 
is used, to reduce the amount of data, for this a hierarchical 
clustering method was applied to pre-process the dataset. 
Now a day’s web information plays a prominent role in the web 
technology, large amount of data is consumed to 
communicate, but some with intruders there is loss of data or 
may changes occur in the interaction, so to recognize 
intruders they detect to build an intrusion detection system for 
this a hierarchical approach is used to classify network traffic 
data accurately. Hierarchical clustering is performed By taking 
network as an example.  The clustering method could produce 
high quality dataset with far less instances that sufficiently 
represent all of the instances in the original dataset. 
Keywords : Hierarchical clustering, support vector 
machine,data mining,KDD cup. 

I. Introduction 

ata clustering is an important technique for    
exploratory data analysis and has been studied 
for several years. It has been shown to be Useful 

in many practical domains such as data classification. 
There has been a growing emphasis on analysis of very 
large data sets to discover the useful patterns. This is 
called data mining and clustering is regarded as a 
particular branch. So, as the data set size increases they 
do not scale up well in terms of memory requirement. 
Hence an efficient and scalable data clustering method 
is proposed based on a new in memory data structure 
called CF Tree which serve as in in-memory summary of 
the data distribution. 

We have implemented in a system called 
BIRCH (Balanced Iterative Reducing And Clustering 
Using Hierarchies) and studied its performance 
extensively in terms of memory requirement and 
scalability. 

The SVM technique is unable to operate at such 
a large dataset due to system failures caused by 
insufficient memory, or may take too long to finish the 
training. Since this study used the KDD Cup 1999 
dataset,  to  reduce  the  amount of  data, a  hierarchical  
 

Author α : Assistant Professor, Dept. of CSE, Sree Vidyanikthan Engg. 
Coll., A.Rangempet, Tirupati, A.P, INDIA-517 102.  

E-mail : pramodhkrishna.d@gmail.com 

Author σ : Professor, Dept. of CSE, Sree Vidyanikthan Engg. Coll., 
A.Rangempet, Tirupati, A.P, INDIA-517 102.  

E-mail : asenguttuvan@rediffmail.com  

Author ρ : M.Tech Student, Dept of CSE, Sree Vidyanikethan Engg. 
Coll., A.Rangempet , Tirupati , A.P, INDIA-517 102.  

E-mail : swarnalatha514@gmail.com  

clustering method was applied to pre-process the 
dataset before SVM training. The clustering method 
could produce high quality dataset with far less 
instances that sufficiently represent all of the instances 
in the original dataset. 

This study proposed an SVM-based intrusion 
detection system based on a hierarchical clustering 
algorithm to pre-process the KDD Cup 1999 dataset 
before SVM training. The hierarchical clustering 
algorithm was used to provide a high quality, 
abstracted, and reduced dataset for the SVM training, 
instead of the originally enormous dataset. Thus, the 
system could greatly shorten the training time, and also 
achieve better detection performance in the resultant 
SVM classifier. 

This study proposed an SVM-based intrusion 
detection system, which combines a hierarchical 
clustering algorithm, a simple feature selection 
procedure, and the SVM technique. The hierarchical 
clustering algorithm provided the SVM with fewer, 
abstracted, and higher-qualified training instances that 
are derived from the KDD Cup 1999 training set. It was 
able to greatly shorten the training time, but also 
improve the performance of resultant SVM. The simple 
feature selection procedure was applied to eliminate 
unimportant features from the training set so the 
obtained SVM model could classify the network traffic 
data more accurately. The famous KDD Cup 1999 
dataset was used to evaluate the proposed system. 
Compared with other intrusion detection systems that 
are based on the same dataset, this system showed 
better performance in the detection of DoS and Probe 
attacks, and the be set performance in overall accuracy. 

II. Background 

a) Data transformation and scaling 
SVM requires each data point to be represented 

as a vector of real numbers. Hence, every non-
numerical attribute has to be transformed into numerical 
data first. The method is simply by replacing the values 
of the categorical attributes with numeric values. For 
example, the protocol type attribute in KDD Cup 1999, 
thus, the value tcp is changed with 0, udp with 1, and 
icmp with 2. The important step after transformation is 
scaling. Data scaling can avoid attributes with greater 
values dominating those attributes with smaller values, 
and also avoid numerical problems in computation. In 
this paper, each attribute is called with linear scaling to 
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the range of [0, 1] by dividing every attribute value by its 
own maximum value. 

b) Clustering feature (CF) 
The concept of a clustering feature (CF) tree is 

at the core of BIRCH’s incremental clustering algorithm. 
Nodes in the CF tree are composed of clustering 
features. A CF is a triplet, which summarizes the 
information of a cluster. 

c) Defining the CF trees 
Given n d- dimensional data points in a cluster 

{xi}, where i = 1, 2, . . ., n, the clustering feature (CF) of 
the cluster is a 3-tuple, denoted as CF = (n, LS, SS), 
where n is the number of data points in the cluster, LS is 

the linear sum of the data points, i.e.,  , and 

SS is the square sum of the data points, i.e., . 

III. Related work 

a) Theorem (CF addition theorem) 
Assume that CF1 = (n1, LS1, SS1) and CF2 = 

(n2, LS2, SS2) are the CFs of two disjoint clusters. Then 
the CF of the new cluster, as formed by merging the two 
disjoint clusters is 

CF1 + CF2 = (n1+n2, LS1+ LS2, SS1+SS2) 

For example, suppose there are three points (2, 
3), (4, 5), (5, 6) in cluster C1, then the CF of C1 is 

CF1 = {3, (2+4+5, 3+5+6), (22+42+52, 32+52+62)} 

   = {3,(11,14),(45,70)} 

Suppose that there is another cluster C2 with 
CF2 = {4, (40, 42), (100, 101)}. Then the CF of the new 
cluster formed by merging cluster C1 and C2 are  

CF3 = {3+4, (11+40, 14+42), (45+100, 70+101)} 

By Definition and Theorem, the CFs of clusters 
can be stored and calculated incrementally and 
accurately as clusters are merged. Based on the 
information stored in CF, the centroid C and radius R of 
a cluster can be easily computed. The definitions of C 
and R of a cluster are given as follows. Given n d-
dimensional data points, say {xi} and i = 1, 2. . . n, in a 
cluster:  

the centroid C =         and 

    the radius R =  

Where, R denotes the average distance of all 
member points to the centroid. As mentioned earlier, CF 
stores only the abstracted data point, i.e., statistically 
summary of data points that belong to the same cluster. 
After a data point is added into a cluster, the detail 
information of the data point itself is missing. Therefore, 

this approach can save space significantly for densely 
packed data. 

b) CF tree 
A CF tree is a height-balanced tree with two 

parameters, branching factor B and radius threshold T. 
Each non-leaf node in a CF tree contains the most B 
entries of the form (CFi, childi), where1≤ i≤ B and childi 
is a pointer to its ith child node, and CFi is the CF of a 
cluster pointed by the child i. An example of a CF tree 
with height h = 3 is shown in Fig. 1. Each node 
represents a cluster made up of sub-clusters, which 
represents its entries. It is different from a non-leaf node 
is that a leaf node has no pointer to link to other nodes, 
and contains at most B entries. The CF at any particular 
node contains information for all data points in that 
node’s sub-trees. A leaf node must satisfy the threshold 
requirement, that is, every entry in every leaf node must 
have its radiuses less than threshold T. 

 

Fig.1
 
:  A CF Tree with height h=3

 

A CF tree is a compact representation of a 
dataset, each entry in a leaf node represents a cluster 
that absorbs many data points within its radius of T or 
less.

 

A CF tree can be built dynamically as new data 
points are inserted. The insertion procedure is similar to 
that of a B+-tree to insert a new data to its correct 
position in the sorting algorithm. The insertion procedure 
of CF tree has the following steps.

  

1.
 

Identify the appropriate leaf
 

2.
 

Modify the leaf
 

3.
 

Modify entries on the path to the leaf
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String Value

 
Equivalent Numerical Value

 

1
 

Tcp
 

0
 

2
 

Udp
 

1
 

3
 

Icmp
 

2
 

4
 

http
 

0
 

5
 

domain_u
 

1
 

6
 

Auth
 

2
 

7
 

Smtp
 

3
 

8
 

finger
 

4
 

9
 

telnet
 

5
 

10
 

ecr_i
 

6
 

Table 1
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IV. Experimental results 

Here the scenario is mainly responsible in the 
task of clustering. The process of data clustering is 
performed using the WEKA 3.7 tool’s Hierarchical 
clustered. The testing in this test case can be done in 
the stage of mentioning the parameters of the clustering 
such as distance parameter i.e. Euclidean distance, link 
type such as centroid and number of clusters value. The 
testing strategies here mainly the setting of those 
parameters regarding the hierarchical clustered in the 
WEKA tool. The clustered output can be visualized on 
the results for the test results. 

This test case deals with the training of the 
clustered dataset. Both the train set and the test set are 
givenas input for classification and regression/prediction 
of the accuracy values with the following option lists. 

1 2 3 4 5 6 

0 0 0 0 0.320175 0.188728 

0 0 0 0 0.087719 0.018894 

0 0 0 0 0.412281 0.005072 

0 0 0 0 0.399123 0.00844 

0 0 0 0 0.425439 0.001964 
 

Table 2 : Dataset values in .csv format 

This is the first step in the process of data 
transformation. Here the KDD data set which is in the 
text format is changed in to the comma separated 
values i.e., from .txt to .csv. The reason for the format 
change is the incompatibility of the tool or the language 
that we use in the further processing steps. 
               After the format conversion the data set can be 
view in the office excel as it support csv format viewing 
in windows environment. Here the data present in the 
KDD data set before transformation is seen in the excel 
sheet i.e. in the csv format. 
              The java code has been written for the data 
transformation, all the non integer values should be 
transformed to integer values in the data set. So that 
program is executed in this screen shot. 
              The data set has been transformed i.e. all the 
variables present in the data set has been transformed 
to the integer values which is in the text format. The data 
set which is transformed is present in the text format we 
have to convert that in to .csv format. 
              After the data transformation the data scaling 
has to be performed. So in order to perform the data 
scaling we use the WEKA tool here and load the 
transformed file into WEKA pre- processing task. 

a) Data Clustering 
              WEKA provides a wide range of clusterers for 
the process of data clustering. Here we use the 
hierarchical clusterer for our clustering process which 
has been clearly mentioned in the screen shot. The 
testing regarding the clustering has been discussed in 
the test case 3 in the system testing chapter. 

Once the type of clustering has been selected 
now the query tab is double clicked for the setting the 
hierarchical clustering parameters. The paramaters of 
hierarchical clustering that we see here are, 
1. Distance Function 
2. Link Type 
3. NumClusters 

The process of clustering is continued once 
these parameters are correctly set by the user. 
               The clustered output shown in WEKA mainly 
show the percentage values of the clusters made by it 
and the cluster values. The percentage mainly show the 
amount of dataset those are regarding a single property 
i.e. based on a single attack present in the considered 
test set. The output of the clustered is also compared to 
this test set values in the further procedures such as 
data training etc. 
                This is an additional option that is being 
provided in WEKA tool for visualizing the clustered 
output in the form of graphs with different color 
representations. To select this option right click on the 
result list that is being displayed on the left of the  WEKA 
Explorer sorted with their timing status in hh:mm:ss 
                This is how you visualize the clustered output 
in the form of a graph. Here we come across a slider 
labelled Jitter, which is a random displacement given to 
all points in the plot. Dragging it to the right increases 
the amount of jitter, this is useful for spotting 
concentrations of points. Without jitter, a million 
instances at the same point would look no different to 
just a single lonely instance. Here we have the option 
save to save our clustered output in the external 
memory to use that in our training procedure. 
                 Once the clustering has been visualized and 
saved, the clustered output is saved in the external 
memory with a new column known as cluster of the type 
nominal which clearly mentions the complete 
dependency of the particular row with the respective 
cluster. 
                 This is treated as the clustering output in 
dataset format which is in turn given as the input for the 
process of data training. 
                 This is the visualization graphs for each of the 
column values that is being seen in the KDD dataset. 
The graphs are drawn according to the level of values 
present in the complete column. This helps the user in 
accessing the column present in the particular column in 
the dataset. 
=== Run information === 
Scheme:       
weka.clusterers.HierarchicalClusterer -N 
2 -L SINGLE -P -A 
"weka.core.EuclideanDistance -R first-
last" 
Relation:     testsample-1_clustered 
Instances:    1000 
Attributes:   44 
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              Instance_number 
              1 
              2 
              3 
              4 
              5 
              6 
Cluster 
Test mode:    evaluate on training data 
=== Clustering model (full training set) 
=== 
Cluster 1 
Time taken to build model (full training 
data) : 2.81 seconds 
=== Model and evaluation on training set 
=== 
Clustered Instances 
0        1 (  0%) 
1      999 (100%) 

 

Fig. A : Visualization of the clustered data 

V. CONCLUSION 

In this paper, we have proposed an 
hierarchical clustering approach using BIRCH algorithm 
it proposed an SVM-based network intrusion detection 
system with BIRCH hierarchical clustering for data pre-
processing. The BIRCH hierarchical clustering could 
provide highly qualified, abstracted and reduced 
datasets, instead of original large dataset, to the SVM 
training. Thus, in addition to a significant reduction of 
the training time, the resultant SVM classifiers showed 
better performance than the SVM classifiers using the 
originally redundant dataset. 

                However, in terms of accuracy, the proposed 
system could obtain the best performance. Some new 
attack instances in the test dataset, which never 
appeared in training, could also be detected by this 
system. 
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