
© 2014. T. O. Olatayo & A. I. Taiwo. This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial 
use, distribution, and reproduction inany medium, provided the original work is properly cited. 
 

Global Journal of Comuter Science and Technology: G 
Interdisciplinary 
Volume 14 Issue 1 Version1.0 Year2014 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Statistical Modelling and Prediction of Rainfall Time Series Data 
By T. O. Olatayo & A. I. Taiwo    
Olabisi Onabanjo University, Nigeria 

Abstract- Climate and rainfall are highly non-linear and complicated phenomena, which require classical, 
modern and detailed models to obtain accurate prediction. In order to attain precise forecast, a modern 
method termed fuzzy time series that belongs to the first order and time-variant method was used to 
analyse rainfall since it has become an attractive alternative to traditional and non-parametric statistical 
methods. In this paper, we present tools for modelling and predicting the behavioural pattern in rainfall 
phenomena based on past observations. The paper introduces three fundamentally different approaches 
for designing a model, the statistical method based on autoregressive integrated moving average 
(ARIMA), the emerging fuzzy time series(FST) model and the non-parametric method(Theil’s regression). 
In order to evaluate the prediction efficiency, we made use of 31 years of annual rainfall data from year 
1982 to 2012 of Ibadan South West, Nigeria. The fuzzy time series model has it universe of discourse 
divided into 13 intervals and the interval with the largest number of rainfall data is divided into 4 sub-
intervals of equal length. Three rules were used to determine if the forecast value under FST is upward 
0.75–point, middle or downward 0.25-point. ARIMA (1, 2, 1) was used to derive the weights and the 
regression coefficients, while the theil’s regression was used to fit a linear model.   

Keywords: fuzzy time series, autoregressive integrated moving average, theil’s regression, mean squared 
forecast error, root mean square forecast error and coefficient of determination. 

GJCST-G Classification: H.2.8 

 

StatisticalModellingandPredictionofRainfallTimeSeriesData 
 
 
 

                                                 Strictly as per the compliance and regulations of: 

 



Statistical Modelling and Prediction of Rainfall 
Time Series Data 

T. O. Olatayo α & A. I. Taiwo σ 

Abstract- Climate and rainfall are highly non-linear and 
complicated phenomena, which require classical, modern and 
detailed models to obtain accurate prediction. In order to 
attain precise forecast, a modern method termed fuzzy time 
series that belongs to the first order and time-variant method 
was used to analyse rainfall since it has become an attractive 
alternative to traditional and non-parametric statistical 
methods. In this paper, we present tools for modelling and 
predicting the behavioural pattern in rainfall phenomena based 
on past observations. The paper introduces three 
fundamentally different approaches for designing a model, the 
statistical method based on autoregressive integrated moving 
average (ARIMA), the emerging fuzzy time series(FST) model 
and the non-parametric method(Theil’s regression). In order to 
evaluate the prediction efficiency, we made use of 31 years of 
annual rainfall data from year 1982 to 2012 of Ibadan South 
West, Nigeria. The fuzzy time series model has it universe of 
discourse divided into 13 intervals and the interval with the 
largest number of rainfall data is divided into 4 sub-intervals of 
equal length. Three rules were used to determine if the 
forecast value under FST is upward 0.75–point, middle or 
downward 0.25-point.  ARIMA (1, 2, 1) was used to derive the 
weights and the regression coefficients, while the theil’s 
regression was used to fit a linear model. The performance of 
the model was evaluated using mean squared forecast error  
(MAE), root mean square forecast error (RMSE) and 
Coefficient of determination (  . The study reveals that FTS 
model can be used as an appropriate forecasting tool to 
predict the rainfall, since it outperforms the ARIMA and Theil’s 
models. 
Keywords: fuzzy time series, autoregressive integrated 
moving average, theil’s regression, mean squared 
forecast error, root mean square forecast error and 
coefficient of determination. 

I. Introduction 

limate change seems to be the foremost global 
challenge facing humans at the moment, even 
though it seems that not all places on the globe 

are affected. World leaders, union leaders, pressure 
groups and others who have shown concern have been 
meeting to find a lasting solution to the ‘acclaimed’ 
dilemma. The scientific community has not been left out 
as causes and solutions are being proffered and it is 
expected to linger on for a long time. One of the 
indicators of climate change is rainfall (Adger et al., 
2003;  Frich  et   al., 2002;  Novotny  and  Stefan,  2007). 
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Rainfall is a climate parameter that affects the 
way and manner men lives. It affects every facet of the 
ecological system, flora and fauna inclusive. Hence, the 
study of rainfall is important and cannot be over 
emphasized (Obot and Onyeukwu, 2010). Aside the 
beneficial aspect of rainfall, it can also be destructive in 
nature; natural disasters like floods and landslides are 
caused by rain (Ratnayake and Herath, 2005).  

Globally, lots of studies have been carried out 
on rainfall. A few of them is discussed briefly; 
Jayawardene et al. (2005) observed different trends 
across Sri Lanka using 100 years data. 
Some parts recorded decreasing trend, some 
increasing trend while some locations showed no 
coherent trend. They also showed that the trend 
characteristics vary with the duration of the data 
analyzed. Smadi and Zghoul (2006) examined the trend 
analysis of rainfall over Jordan picking three close-by 
locations. Their study covered a period of 81 years 
(1922-2003). Although, different trends for different 
seasons across the three stations were observed, 
however, one of the stations showed a decline in both 
the rainy days and the total amount of rainfall after the 
mid 1950s. While in Turkey, Partal and Kahya (2006) 
examined the trend within a 64 year period (1929-1993 
of rainfall for 96 stations. The overall result indicated that 
the trend in precipitation is downward, nonetheless, 
there are few stations that showed increasing trend. 

Acknowledging some of the research that has 
been done, it is very important to discuss climatic 
changes as it has contributed to the instability of rainfall 
in Nigeria, then it becomes a very important and 
sensitive issue which requires adequate attention from 
governments, corporate organisations and researchers. 
Since climate and rainfall are highly non-linear and 
complicated phenomena, which require serious and 
vivid investigation and analysis.  Then, this research is 
centred on analysing the pattern and structure of rainfall 
over 30 years in South West, Nigeria. Hence forecast 
values will be obtained in order to plan for the future.  

In order to achieve our set objectives, classical, 
non-parametric and modern methods of discussing 
relationship and forecasting will be discussed. For 
classical forecasting method, we will consider 
autoregressive integrated moving average (ARIMA) 
which is a concept of autoregressive moving average 
while theil’s regression will be used in the concept of 
non-parametric, where fuzzy time series method will be 
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used in the concept of modern forecasting method. 
ARIMA is basically a linear statistical technique and has 
been quite popular for modeling the time series and 
rainfall forecasting due to ease in its development and 
implementation.  

In contrast, fuzzy time series is another 
important modern forecasting method introduced by 
Song and Chissom in 1993 and it is believed that the 
theory of fuzzy time series overcome the drawback of 
the classical time series methods, it has the advantage 
of reducing the calculation time and simplifying the 
calculation process. Based on the theory of fuzzy time 
series, Song et al. presented some forecasting methods 
[Song (2003); Song et al. (1993) and Song and Leland 
(1996)] and these methods are now being used in 
several fields to obtain meaningful results. Furthermore, 
theil’s regression is a simple, non-parametric approach 
to fit a straight line to set of two points. This method was 
introduced by Theil Sen in 1950 and it is has the ability 
to fit a linear trend when no assumptions about the 
population distribution from which the data taken are 
known.   

However, the three models will be used to 
forecast values for rainfall behaviour and the results will 
be compared to determine maybe the result obtained 
using classical forecasting method will better the result 
obtained for the non parametric and modern methods 
and vice verse. 

II. Theory and Methods 

a) Data Exploration 

The pattern and general behaviour of the series 
is examined from the time plot. The series will be 
examined for stationarity, outliers and gaussianity. Test 
for stationarity will be carried out using correlogram. 

Details of the test procedures can be found in Box and 
Jenkins (1976).  

b) ARIMA Theory 

ARIMA (autoregressive integrated moving 
average) models are generalizations of the simple AR 
model that use three tools for modeling the serial 
correlation in the disturbance.  The first tool is the 
autoregressive, or AR, term. The 𝐴𝐴𝐴𝐴(1)  model use only 
the first-order term, but in general, you may use 
additional, higher-order AR terms. Each AR term 
corresponds to the use of a lagged value of the residual 
in the forecasting equation for the unconditional 
residual. An autoregressive model of order  (𝑝𝑝) , 𝐴𝐴𝐴𝐴(𝑝𝑝)  
has the form: 

𝑢𝑢𝑡𝑡 = 𝜌𝜌1𝑢𝑢𝑡𝑡−1 + 𝜌𝜌2𝑢𝑢𝑡𝑡−2 + ⋯+ 𝜌𝜌𝑝𝑝𝑢𝑢𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡
 

The second tool is the integration order term. 
Each integration order corresponds to differencing the 
series being forecast. A first-order integrated component 
means that the forecasting model is designed for the 
first difference of the original series. A second - order 
component corresponds to using second differences, 
and so on. 

The third tool is the MA, or moving average 
term. A moving average forecasting model uses lagged 
values of the forecast error to improve the current 
forecast. A first order moving average term uses the 
most recent forecast error; a second-order term uses 
the forecast error from the two most recent periods, and 
so on. An MA(q ) has the form: 

𝑢𝑢𝑡𝑡 = 𝜀𝜀𝑡𝑡 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞
 

The autoregressive and moving average 
specifications can be combined to form an ARMA (p, q) 
specification: 

𝑢𝑢𝑡𝑡 = 𝜌𝜌1𝑢𝑢𝑡𝑡−1 + 𝜌𝜌2𝑢𝑢𝑡𝑡−2 + ⋯+ 𝜌𝜌𝑝𝑝𝑢𝑢𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞
 

i.
 

Principles of ARIMA Modeling 
 

In ARIMA forecasting, you assemble a complete 
forecasting model by using combinations of

 
the three 

building blocks to be described below. The first step is 
forming an ARIMA model for a series of residuals by 
looking into its autocorrelation properties. We will make 
use the correlogram view of a series for this purpose. 
This phase of the ARIMA modeling procedure is called 
identification. 

 

The next step is to decide what kind of ARIMA 
model to use. If the autocorrelation function

 
dies off 

smoothly at a geometric rate, and the partial 
autocorrelations were zero after one lag, then a first-
order autoregressive model is appropriate. Alternatively, 
if the autocorrelations were zero after one lag and the 
partial autocorrelations declined geometrically, a first 
order moving average process would seem appropriate. 

 
 

ii.
 

Estimating ARIMA Models
 

To specify your 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
 

model, you will 
difference your dependent variable, if necessary, to 
account for the order of integration and describe your 
structural regression model (dependent variables and 
regressors) and add any 𝐴𝐴𝐴𝐴

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  terms. The d 

operator can
 
be used to specify differences of series. To 

specify first differencing, simply include the series name 
in parentheses after d. For example, 𝑑𝑑(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)  
specifies the first difference of rainfall.

 

More complicated forms of differencing may be 
specified with two optional parameters, 𝑛𝑛

 
𝑎𝑎𝑎𝑎𝑎𝑎

 
𝑠𝑠,       

𝑑𝑑(𝑋𝑋,𝑛𝑛)
 
specifies the 𝑛𝑛𝑛𝑛ℎ

  
order difference of the 

series
 
𝑋𝑋  : 

𝑑𝑑(𝑋𝑋,𝑛𝑛) = (1 − 𝐿𝐿)𝑛𝑛𝑥𝑥 

Where 𝐿𝐿  is the lag operator.  
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c) Basic Concept of Fuzzy Time Series 

Song et al (1993 and 1994) proposed the 
definition of fuzzy time series based on fuzzy sets in  

Zadeh (1965) as follows: Let 𝑇𝑇 be the universe 
of discourse,  𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛}  and let 𝑍𝑍  be a fuzzy 
set in the universe of discourse 𝑈𝑈  defined as follows: 

𝑍𝑍 = 𝑓𝑓𝑧𝑧(𝑡𝑡1) 𝑡𝑡1⁄ +  𝑓𝑓𝑧𝑧(𝑡𝑡2) 𝑡𝑡2⁄ + ⋯+ 𝑓𝑓𝑧𝑧(𝑡𝑡𝑛𝑛) 𝑡𝑡𝑛𝑛           ⁄                       (5)
 

where  𝑓𝑓𝑧𝑧   is the membership function of 𝑍𝑍. 
𝑓𝑓𝑍𝑍:𝑇𝑇 → [0,1],  𝑓𝑓𝑧𝑧(𝑡𝑡𝑖𝑖) indicates the grade of membership 
of 𝑡𝑡𝑖𝑖   in the fuzzy set 𝑍𝑍,  𝑓𝑓𝑧𝑧(𝑡𝑡𝑖𝑖) ∈ [0,1] and 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛.    

Let 𝑋𝑋(𝑢𝑢) (𝑢𝑢 = ⋯ , 0,1,2, … )  be the universe of 
discourse and be a subset of 𝑅𝑅, and let fuzzy set 
𝑓𝑓𝑖𝑖(𝑢𝑢) (𝑖𝑖 = 1.2, … ) be defined in 𝑋𝑋(𝑢𝑢). Let 𝐹𝐹(𝑢𝑢) be a 
collection of 𝑓𝑓𝑖𝑖(𝑢𝑢) (𝑖𝑖 = 1.2, … ). Then, 𝐹𝐹(𝑢𝑢) is called a 
fuzzy time series of  𝑋𝑋(𝑢𝑢) (𝑢𝑢 = ⋯ , 0,1,2, … ) .  

If 𝐹𝐹(𝑢𝑢) is caused by 𝐹𝐹(𝑢𝑢 − 1), denoted by  
𝐹𝐹(𝑢𝑢 − 1) → 𝐹𝐹(𝑢𝑢), then this relationship can be 
represented by 𝐹𝐹(𝑢𝑢) = 𝐹𝐹(𝑢𝑢 − 1) ∘ 𝑅𝑅(𝑢𝑢,𝑢𝑢 − 1), where the 
symbol ′′ ∘ ′′ denotes the Max-Min composition 
operator; 𝑅𝑅(𝑢𝑢,𝑢𝑢 − 1) is a fuzzy relation between 𝐹𝐹(𝑢𝑢)  
and 𝐹𝐹(𝑢𝑢 − 1) and is called the first-order model of 𝐹𝐹(𝑢𝑢).  

Let 𝐹𝐹(𝑢𝑢) be a fuzzy time series and let 𝑅𝑅(𝑢𝑢,𝑢𝑢 −
1 be a first-order model of 𝑢𝑢 . If 𝑅𝑅𝑢𝑢, 𝑢𝑢−1=𝑅𝑅𝑢𝑢−1, 𝑢𝑢−2 for 

any time 𝑢𝑢, then 𝐹𝐹(𝑢𝑢) is called a time-invariant fuzzy 
time series. If 𝑅𝑅(𝑢𝑢,𝑢𝑢 − 1) is dependent on time 𝑢𝑢, that is, 
𝑅𝑅(𝑢𝑢,𝑢𝑢 − 1) may be different from 𝑅𝑅(𝑢𝑢 − 1,𝑢𝑢 − 2)  for 

any u , then 𝐹𝐹(𝑢𝑢) is called a time-variant fuzzy time 
series. 

i. Fuzzy Time Series Model 

Using the time-variant fuzzy time-series model, 
the following steps form the procedure. 

Step 1: Define the universe of discourse within which 
fuzzy sets are defined. 

Step 2: Partition the universe of discourse 𝑇𝑇  into several 
even and equal length intervals. 

Step 3: Determine some linguistic values represented by 
fuzzy sets of the intervals of the universe of discourse. 

Step 4: Fuzzify the rainfall data. 

Step 5: Choose a suitable parameter 𝜔𝜔, where 𝜔𝜔 > 1, 
calculate 𝑅𝑅𝜔𝜔(𝑢𝑢,𝑢𝑢 − 1) and forecast the rainfall as 
follows: 

𝐹𝐹(𝑢𝑢) = 𝐹𝐹(𝑢𝑢 − 1) ∘ 𝑅𝑅𝜔𝜔(𝑢𝑢,𝑢𝑢 − 1) 

  
where 𝐹𝐹(𝑢𝑢) denotes the forecasted fuzzy rainfall 

of year 𝑢𝑢,  𝐹𝐹(𝑢𝑢 − 1) denotes the fuzzified rainfall of year 
𝑢𝑢 − 1, and 

𝑅𝑅𝜔𝜔(𝑢𝑢,𝑢𝑢 − 1) = 𝐹𝐹𝑇𝑇(𝑢𝑢 − 2) × 𝐹𝐹(𝑢𝑢 − 1) ∪ 𝐹𝐹𝑇𝑇(𝑢𝑢 − 1) × 𝐹𝐹(𝑢𝑢 − 2) ∪ …∪ 𝐹𝐹𝑇𝑇(𝑢𝑢 − 𝜔𝜔) × 𝐹𝐹(𝑢𝑢 − 𝜔𝜔 + 1) 

where 𝜔𝜔 is called the “model basis” denoting 
the number of years before 𝑢𝑢, ′′ × ′′ is the Cartesian 
product operator, and 𝑇𝑇 is the transpose operator. 

Step 6:
 

Defuzzify the forecasted fuzzy rainfall using 
neural nets.

 

It very important to note that we will divide
 
each 

interval derived in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2
 
into four subintervals of equal  

length, where the 0.25-point and 0.75-point of each 
interval are used as the upward and downward 
forecasting points of the forecasting. Three rules were 
used and they are: 

 

1.
 

If |(the difference of the rainfall between years 
𝑛𝑛 − 2  and 𝑛𝑛 − 1

 
)|/2  ＞

 
half of the length of the 

interval corresponding to the fuzzified rainfall 𝐴𝐴𝑗𝑗   
with the membership value equal to 1, then the 
trend of the forecasting of this interval will be 
upward and the forecasting rainfall falls at the 0.75-
point of this interval; if |(the difference of the rainfall 
data between years  𝑛𝑛 − 2 and 𝑛𝑛 − 1

 
)|/2 ＝

 
half of 

the length of the interval corresponding to the 
fuzzified rainfall 𝐴𝐴𝑗𝑗

 
with the membership value equal 

to 1, then the forecasting rainfall falls at the middle 
value of this interval; if |(the difference of the rainfall 
data between years 

 
𝑛𝑛 − 2

 
and  𝑛𝑛 − 1) )|/2 ＜

 
half 

of the length of the interval corresponding to the  

will be downward, and the forecasting rainfall falls at 
the 0.25-point of the interval.

 

2.

 

If (|the difference of the differences between years 
n-1 and n-2 and between years n-2 and n-3|/2 ＋

 

the rainfall data of year n-1) or (the rainfall data of 
year n-1 - |the difference of the differences between 
years n-1 and n-2 and between years n-2 and n-
3|/2) falls in the interval of the corresponding 
fuzzified rainfall 𝐴𝐴𝑗𝑗

 

with the membership value equal 
to 1, then the trend of the forecasting of this interval 
will be downward, and the forecasting rainfall falls at 
the 0.25-point of the interval corresponding to the 
fuzzified rainfall   with the membership value equal 
to 1; if (|the difference of the differences between 
years n-1 and n-2 and between years n-2 and n-3| 
× 2 ＋

 

the rainfall data of year n-1) or (the rainfall 
data of year n-1 - |the difference of the differences 
between years n-1 and n-2 and between years n-2 
and n-3| × 2) falls in the interval corresponding to 
the fuzzified rainfall 𝐴𝐴𝑗𝑗   with the membership value 
equal to 1, then the trend of the forecasting of this 
interval will be upward, and the forecasting rainfall 
falls at the 0.75-point of the interval corresponding 
to the fuzzified rainfall 𝐴𝐴𝑗𝑗   with the membership 
value equal to 1; if neither is the case, then we let 
the forecasting rainfall be the middle value of the 
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to 1, then the trend of the forecasting of this interval 

fuzzified rainfall 𝐴𝐴𝑗𝑗 with the membership value equal 

                                                                                       (7)

(6)



interval corresponding to the fuzzified rainfall  𝐴𝐴𝑗𝑗   
with the membership value equal to 1. 

3. If (|the difference of the differences between years 
n-1 and n-2 and between years n-2 and n-3|/2 ＋ 
the rainfall data of year n-1) or (the rainfall data of 
year n-1 - |the difference of the differences between 
years n-1 and n-2 and between years n-2 and n-
3|/2) falls in the interval of the corresponding 
fuzzified rainfall  𝐴𝐴𝑗𝑗  with the membership value equal 
to 1, then the trend of the forecasting of this interval 
will be downward, and the forecasting rainfall falls at 
the 0.25-point of the interval corresponding to the 
fuzzified rainfall 𝐴𝐴𝑗𝑗   with the membership value equal 
to 1; if (|the difference of the differences between 
years n-1 and n-2 and between years n-2 and n-3| 
× 2 ＋ the rainfall data of year n-1) or (the rainfall 
data of year n-1 - |the difference of the differences 
between years n-1 and n-2 and between years n-2 
and n-3| × 2) falls in the interval corresponding to 
the fuzzified rainfall 𝐴𝐴𝑗𝑗  with the membership value 
equal to 1, then the trend of the forecasting of this 
interval will be upward, and the forecasting rainfall 
falls at the 0.75-point of the interval corresponding 
to the fuzzified rainfall   with the membership value 
equal to 1; if neither is the case, then we let the 
forecasting rainfall be the middle value of the 
interval corresponding to the fuzzified rainfall 𝐴𝐴𝑗𝑗    
with the membership value equal to 1. 

d) Theil’s Regression 
This is a simple and non-parametric approach 

for fitting a straight line to a set of  -points is the theil’s 

  
  

 
  

  
  

  
 

 
 

 
  

   

  

 

 

e)

 

Forecast Evaluation

 

Forecasts of ARIMA,Fuzzy Time series and 
Theil' s regression  will be computed for in-sample 
values. The optimal forecasts values are then evaluated 
using the mean squared forecast error (MAE) defined 
as, 
  

                                                                               

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��𝑋𝑋�𝑡𝑡 − 𝑋𝑋𝑡𝑡�

2
𝑁𝑁

𝑡𝑡=1

                                                                                         (8)

 

the root

 

mean square forecast error (RMSE) is define as

  

                                                                           

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
��𝑋𝑋�𝑡𝑡 − 𝑋𝑋𝑡𝑡�

2
𝑁𝑁

𝑡𝑡=1

                                                                                        (9)

 

The actual and predicted values for 
corresponding 𝑡𝑡  values are denoted by 𝑋𝑋�𝑡𝑡

 

𝑎𝑎𝑎𝑎𝑎𝑎

 

    
𝑋𝑋𝑡𝑡

 

respectively.  The smaller the values of RMSE and 
MAE, the better the forecasting performance of the 
model.

 
 

f)

 

Data

 

The annual rainfall of Ibadan in South West 
region of Nigeria which is bounded by  30

 

53′ , 70

 

22′

  

will 
be used for this study. The data was obtained from the 
Nigerian Meteorological Agency, Lagos. It consists of 
the annual rainfall from 1981 to 2012 (31 years).
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method which assumes that points  
(𝑥𝑥1, 𝑦𝑦1),   (𝑥𝑥2,𝑦𝑦2), …  , (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁)  are described by the 
equation; 𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋.  

The calculation of  𝑎𝑎 and  𝑏𝑏 follows the steps 
outlined below;
• All 𝑁𝑁  data points are ranked in ascending order of   

𝑋𝑋 values.
• The data are separated into two equal  (𝑚𝑚) groups, 

the low (𝐿𝐿)  and the high (𝐻𝐻)   group. If 𝑁𝑁   is odd 
the middle data point is not included in either group.

• The slope 𝑏𝑏𝑟𝑟   is calculated for all points of each 
group, i.e  𝑏𝑏𝑟𝑟 = �𝑦𝑦𝐻𝐻,𝐴𝐴 − 𝑦𝑦𝐿𝐿,.𝑟𝑟� �𝑋𝑋𝐻𝐻,𝐴𝐴 − 𝑋𝑋𝐴𝐴.𝑟𝑟�� for  
𝑟𝑟 = 1,2, … ,𝑚𝑚.

• The median of the 𝑚𝑚  slope values 𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑚𝑚   is
calculated and it is taken as the best estimate of the 
slope (𝑏𝑏)  of the line,  i.e  𝑏𝑏 = 𝑚𝑚𝑠𝑠𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎(𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚)  

• For each data point (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟) , the value of the 
intercept 𝑎𝑎𝑟𝑟   is calculated using the previously 
calculated slope 𝑏𝑏,   that is  𝑎𝑎𝑟𝑟 = 𝑦𝑦𝑟𝑟 − 𝑏𝑏𝑋𝑋𝑟𝑟 for  
𝑟𝑟 = 1,2, … ,𝑁𝑁. The median of the 𝑁𝑁  intercept values   
𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑁𝑁 is calculated using and it is taken as the 
best estimate of the intercept (𝑎𝑎) of the line, that is  
𝑎𝑎 = 𝑚𝑚𝑠𝑠𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑁𝑁).



 

 

     
     
     
     
        

     
     
     
     
       

  

       

       
Autocorrelation

 

Partial Correlation

  

AC

 

PAC

 

Q-Stat

 

Prob

 
       
       

*****|  .   |

 

*****|  .   |

 

1

 

-0.634

 

-0.634

 

12.896

 

0.000

 
.  |**.   |

 

.**|  .   |

 

2 0.249

 

-0.256

 

14.956

 

0.001

 
.**|  .   |

 

***|  .   |

 

3 -0.263

 

-0.407

 

17.351

 

0.001

 
.  |**.   |

 

.**|  .   |

 

4 0.231

 

-0.257

 

19.263

 

0.001

 
.  |  .   |

 

.  |* .   |

 

5 0.019

 

0.126

 

19.276

 

0.002

 
.**|  .   |

 

. *|  .   |

 

6 -0.222

 

-0.200

 

21.208

 

0.002

 
.  |* .   |

 

. *|  .   |

 

7 0.185

 

-0.096

 

22.606

 

0.002

 
.  |  .   |

 

.  |* .   |

 

8 -0.050

 

0.102

 

22.712

 

0.004

 
.  |  .   |

 

.  |  .   |

 

9 0.050

 

0.002

 

22.825

 

0.007

 
. *|  .   |

 

.  |  .   |

 

10

 

-0.110

 

-0.018

 

23.398

 

0.009

 
.  |  .   |

 

.  |  .   |

 

11

 

0.027

 

-0.040

 

23.435

 

0.015

 

.  |* .   |

 

.  |  .   |

 

12

 

0.076

 

-0.060

 

23.744

 

0.022

 
       

       

Figure 3 :
 
Inverse Root  of ARMA
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t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -3.584924 0.0150

Test critical values: 1% level -3.769597
5% level -3.004861
10% level -2.642242

Figure 3 : Inverse Root of ARMA

Table 1 : Unit Root Test using Augmented Dickey-Fuller (ADF)

Figure 2 : Correlogram of D (Rainfall 2)

Figure 1 : Tlme Plot of Raifall data in Ibadan from 1982-2012
  

*MacKinnon (1996) one-sided p-values.



 
     

       

Sample: 1985 2012

      

Included observations: 28

     

Q-statistic 
probabilities 

adjusted for 2 
ARMA term(s)

       
       
       

Autocorrelation

 

Partial Correlation

  

AC

 

PAC

 

Q-Stat

 

Prob

 
       
       

. *|  .   |

 

. *|  .   |

 

1 -0.117

 

-0.117

 

0.4240

  

.**|  .   |

 

.**|  .   |

 

2 -0.290

 

-0.308

 

3.1417

  

.*|  .   | *|  .   |

 

3 -0.276

 

-0.399

 

5.7067

 

0.017

 

.  |**   |

 

.  |*.   |

 

4 0.010

 

0.241

 

6.602

 

0.003

 

.  |  .   |

 

. *|  .   |

 

5 -0.034

 

-0.151

 

6.645

 

0.009

 

.**|  .   |

 

.**|  .   |

 

6 -0.265

 

-0.280

 

7.318

 

0.006

 

.  |  .   |

 

.  |**.   |

 

7 0.068

 

0.239

 

8.504

 

0.013

 

.  |**.   | .  |* .   |

 

8 0.341

 

0.166

 

8.679

 

0.004

 

.  |  .   |

 

.  |  .   |

 

9 -0.007

 

-0.010

 

8.781

 

0.007

 

.**|  .   |

 

.  |* .   |

 

10

 

-0.009

 

0.080

 

9.560

 

0.003

 

.  |  .   |

 

.  |  .   |

 

11

 

-0.043

 

-0.018

 

9.651

 

0.005

 

.  |* .   |

 

. *|  .   |

 

12

 

0.015

 

-0.074

 

10.643

 

0.004

 
              

III.

 

Fuzzy

 

Time

 

Series

 

Steps

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1: The universe of discourse 𝑈𝑈 = [600, 1800]  and 
it is partitioned into six even and equal length 
intervals

 

𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5

 

and

 

𝑢𝑢6 
 
where    

 

𝑢𝑢1 =

[600, 800],  𝑢𝑢2 = [800, 1000],
  

𝑢𝑢3 = [1000, 1200],  𝑢𝑢4 =
[1200, 1400],  𝑢𝑢5 = [1400, 1600],

 
𝑢𝑢6 = [1600, 1800],

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 
2: Get a statistics of the distribution of the rainfall 

data in each interval.
 

 
Table 2 :

 

The Distribution of the Historical rainfall data

 
Interval

 

[𝟔𝟔𝟔𝟔𝟔𝟔,𝟖𝟖𝟖𝟖𝟖𝟖]

 

[𝟖𝟖𝟖𝟖𝟖𝟖,𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏]

 

[𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏]

 

[𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏]

 

[𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏]

 

[𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏]

 
Number of 
rainfall data

 

1 3 11

 

10

 

4 2 

The universe of discourse [600, 1800]

 

is re-
divided into the following intervals:

 
 

u1,1 = [600, 700]

 

u1,2 = [700, 800]

 
u2 = [800, 1000]

 

u3,1 = [1000, 1050]

 
u3,2 = [1050, 1100

 

u3,3 = [1100,1150]

 
u3,4 = [1150, 1200]

 

u4,1 = [1200, 1266]

 
u4,2 = [1266, 1334]

 

u4,3 = [1334, 1400]

 
u5,1 = [1400, 1500]

 

u5,2 = [1500, 1600]

 
u6 = [1600, 1800]

 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 3: We define each fuzzy set 𝐴𝐴𝑖𝑖

 

based on the re-
divided intervals and fuzzify the rainfall data, where fuzzy 
set 𝐴𝐴𝑖𝑖

 

denotes a linguistic value of the rainfall data 

 

Then, we fuzzify the rainfall data and the linguistic values 
of the rainfall

 

𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴13. The reason for fuzzifying the 
rainfall data into fuzzified rainfall is to translate crisp 
values into fuzzy sets to get a fuzzy time series.

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 4:
 
Establishing fuzzy logical relationships based on 

the fuzzified rainfall: 

 

𝐴𝐴𝑗𝑗 → 𝐴𝐴𝑞𝑞

 

𝐴𝐴𝑗𝑗 → 𝐴𝐴𝑟𝑟

 

⋮

 

where the fuzzy logical relationship ′′𝐴𝐴𝑗𝑗 → 𝐴𝐴𝑞𝑞′′

  

denotes “ if the fuzzified rainfall data of year 𝑛𝑛 − 1

 

is

 

𝐴𝐴𝑗𝑗

  

then the fuzzified rainfall of year 𝑛𝑛

 

is
 

 

𝐴𝐴𝑞𝑞”. 
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𝑅𝑅𝑡𝑡𝑠𝑠𝑝𝑝 5: Divide each interval derived in 𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝 2 into four 
subintervals of equal length, where the 0.25-point and 

represented by a fuzzy set and  1 ≤ 𝑟𝑟 ≤ 13. The 

0.75-point of each interval are used as the upward and 
downward forecasting points of the forecasting. 

membership values of fuzzy set 𝐴𝐴𝑟𝑟 either are 0, 0.5 𝑜𝑜𝑟𝑟 1. 

Figure 4 : Correlogram of Residuals



   
 

 

Table 3 :

 

Forecast  Result of Fuzzy Time Series

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year

 

Rainfall

 

Trend of the Forecasting

 

Forecasting

 

1982

 

1100.8

   

1983

 

656.2

 

Middle value

 

649.5

 

1984

 

1179.3

 

Upward; 0.75 - point

 

1168.5

 

1985

 

1138.7

 

Downward; 0.25 - point

 

1124.5

 

1986

 

1242

 

Downward; 0.25 - point

 

1231

 

1987

 

1356.8

 

Upward; 0.75 - point

 

1411

 

1988

 

954

 

Upward; 0.75 - point

 

987.5

 

1989

 

1265.5

 

Middle value

 

1278

 

1990

 

1177.2

 

Upward; 0.75 - point

 

1157.5

 

1991

 

1596.4

 

Upward; 0.75 - point

 

1579.5

 

1992

 

1055.5

 

Middle value

 

1203

 

1993

 

1095.5

 

Middle value

 

1123.25

 

1994

 

1188.2

 

Upward; 0.75 - point

 

1115

 

1995

 

1277.5

 

Middle value

 

1294.5

 

1996

 

1214.5

 

Downward; 0.25 - point

 

1291

 

1997

 

1062.9

 

Middle value

 

1292

 

1998

 

1270.7

 

Middle value

 

1118.5

 

1999

 

1421.5

 

Downward; 0.25 - point

 

1396.25

 

2000

 

1090.3

 

Middle value

 

1195.25

 

2001

 

901.7

 

Middle value

 

879.5

 

2002

 

1183.8

 

Upward; 0.75 - point

 

1056.25

 

2003

 

1258.9

 

Middle value

 

1196.5

 

2004

 

1179.3

 

Upward; 0.75 - point

 

1258.5

 

2005

 

1200.7

 

Downward; 0.25 - point

 

1378

 

2006

 

1745.8

 

Middle value

 

1698

 

2007

 

1261.2

 

Middle value

 

1642.5

 

2008

 

1290.6

 

Middle value

 

1350.5

 

2009

 

935.5

 

Middle value

 

987.25

 

2010

 

1475.8

 

Middle value

 

1401.5

 

2011

 

1569.5

 

Upward; 0.75 - point

 

1503.25

 

2012

 

1678.2

 

Upward; 0.75 - point

 

1675.5
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Table 4 :
 
Mean Absoloute Errors and Root Mean Square 

Error values
 

Model
 

MAE
 

RMSE
 

𝑹𝑹𝟐𝟐
 

ARIMA
 

110.23
 

10.49
 

0.97882
 

Fuzzy Time 
Series

 85.45
 

9.24
 

0.98456
 

Theil’s 
Regression

 226.12
 

15.03
 

0.83346
 

IV.
 

Results
 
and

 
Discussion 

It is evidence from the time plots that rainfall 
data displays series of cyclical behaviour

 
and this is due 

to seasonal changes yearly. For autoregressive 
integrated moving average, model building commenced 
with the examination of the plot of the series, the sample 
plot of the autocorrelation (ACF) and partial 
autocorrelation (PACF) model description.  The time plot 
of the original series (𝐹𝐹𝐹𝐹𝐹𝐹. 1)

 
shows stationarity as 

confirmed by the Augmented Dickey-fuller test in (Table 
1) with a p-value of 0.05, but with seasonal trend. 

 

Since the order of integration of the differenced 
rainfall series in

 
(fig. 2) is two, then

 
𝑑𝑑 = 2 𝑎𝑎𝑎𝑎𝑎𝑎

  
a close 

look of the ACF and PACF of the differenced data in (fig. 
2) revealed the ACF dies off smoothly at a geometric 
rate and the partial autocorrelations were zero after one 
lag and the autocorrelations were zero after one lag and 
the partial autocorrelations declined geometrically, these 
behaviour shows that  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (1,2,1)

 
is the appropriate 

model for the differenced rainfall series, that is     (1 −
𝜌𝜌1𝐿𝐿)∆2𝑢𝑢𝑡𝑡 = (1 − 𝜃𝜃𝜃𝜃)𝜀𝜀𝑡𝑡 .Therefore the fitted model is 
given as: 

 

𝑦𝑦𝑡𝑡 = 4.37 + 𝑢𝑢𝑡𝑡
 

(1 − 0.39𝐿𝐿)𝑢𝑢𝑡𝑡 = (1 − 0.99𝐿𝐿)𝜀𝜀𝑡𝑡
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

With the white noise variance  𝜎𝜎�𝜀𝜀2
 
estimated as 

17452. In order to use the model obtained for forecast 
some  model  diagnostic  test  were 

 
carried out. The 

inverse root of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  in (fig. 3)
 

shows that the 
estimated ARMA process is (covariance) stationary, 
since all AR roots lie inside the unit circle and  the 
estimated ARMA process is invertible, since all MA roots 
should lie inside the unit circle. The correlogram

 
has no 

significant spike and all subsequent Q-statistics are not 
highly significant. This result clearly indicates there is no 
need for respecification of the model. However, the 
forecast of the yearly rainfall from 1982 to 2012 deviated 
slightly from the

 
original data, 𝑠𝑠𝑠𝑠𝑠𝑠

 
𝑓𝑓𝑓𝑓𝑓𝑓. (5).    

  

Under fuzzy time series, we made use of the 
visual Basic Version 6.0 on a Pentium 4 PC. Tab. 4

 

summarizes the forecasting results of fuzzy time series 
method from 1982 to 2012, where the universe of 
discourse is divided into 13 intervals and the interval 
with the largest number of rainfall data is divided into 4 
sub-intervals of equal length. The fuzzy time series 
forecast of the yearly rainfall data from 1982 to 2012 did 
not deviated much from the original data, 
𝑠𝑠𝑠𝑠𝑠𝑠

 
𝑇𝑇𝑇𝑇𝑇𝑇. (4)

 
𝑎𝑎𝑎𝑎𝑎𝑎

 
𝑓𝑓𝑓𝑓𝑓𝑓. (5).  

Using the non-parametric method (theil’s 
regression), we obtain a fitted linear model: 𝑌𝑌 =
900.98 + 10.12(𝑋𝑋), where 𝑌𝑌

 
represents rainfall data and 

𝑋𝑋
 
represents time.

 

a)
 

A Comparison of Different Forecasting Methods 
 

The performance measures of ARIMA, FTS and 
theil’s regression models in terms of numerical 
computations are shown in Table 4. The table indicates 
that the FTS model outperforms both the ARIMA and 
theil’s regression model. While the ARIMA model is 
better than the theil’s regression model.  The MAE for 
ARIMA model and theil’s regression are 110.23 and 
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Figure 5 : Actual and Forecast Raifall data From 1982 -2012



226.12 respectively. While the same MAE is 
considerably lower at 85.45 for FTS model. The other 
performance measures such as RMSE and 𝑅𝑅2 depict 
that the FTS forecast is superior to ARIMA and theil’s 
regression forecast. The forecast graph in fig. 5 as well 
shows clearly that FTS forecast did not deviate much 
from the original data compared to the two other 
models. Therefore, our study establishes that FST 
method should be favoured as an appropriate 
forecasting tool to model and predict annual rainfall. 

V. Conclusion 

Complexity of the nature of annual rainfall 
record has been studied using FST, ARIMA and Theil’s 
regression techniques. An annual rainfall data spanning 
over a period of 1982 – 2012   of Ibadan in South West, 
Nigeria was used to develop and test the models. The 
study reveals that FST model can be used as an 
appropriate forecasting tool to predict the rainfall, which 
out performs the ARIMA and Theil’s regression model.  
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