
© 2012. C.Chandrasekhar & Dr.S.Narayana Reddy. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Graphics & Vision
Volume 12 Issue 12 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Performance Analysis of Modified Lifting Based DWT
Architecture and FPGA Implementation for Speed and Power

 By C.Chandrasekhar & Dr.S.Narayana Reddy
S.V.University, Tirupathi

Abstract - Demand for high speed and low power architecture for DWT computation have led to
design of novel algorithms and architecture. In this paper we design, model and implement a
hardware efficient, high speed and power efficient DWT architecture based on modified lifting
scheme algorithm. The design is interfaced with SIPO and PISO to reduce the number of I/O lines on
the FPGA. The design is implemented on Spartan III device and is compared with lifting scheme
logic. The proposed design operates at frequency of 280 MHz and consumes power less than 42
mW. The pre-synthesis and post-synthesis results are verified and suitable test vectors are used in
verifying the functionality of the design. The design is suitable for real time data processing.

Keywords : Lifting scheme, low power, high speed, FPGA implementation.

GJCST-F Classification: I.4.5

Performance Analysis of Modified Lifting Based DWT Architecture and FPGA Implementation for Speed and Power

Strictly as per the compliance and regulations of:

Performance Analysis of Modified Lifting Based
DWT Architecture and FPGA Implementation for

Speed and Power
C.Chandrasekhar α & Dr.S.Narayana Reddy σ

Abstract - Demand for high speed and low power architecture
for DWT computation have led to design of novel algorithms
and architecture. In this paper we design, model and
implement a hardware efficient, high speed and power
efficient DWT architecture based on modified lifting scheme
algorithm. The design is interfaced with SIPO and PISO to
reduce the number of I/O lines on the FPGA. The design is
implemented on Spartan III device and is compared with lifting
scheme logic. The proposed design operates at frequency of
280 MHz and consumes power less than 42 mW. The pre-
synthesis and post-synthesis results are verified and suitable
test vectors are used in verifying the functionality of the design.
The design is suitable for real time data processing.
Keywords : Lifting scheme, low power, high speed,
FPGA implementation.

I. Introduction

iscrete wavelet transforms (DWT) decomposes
image into multiple subbands of low and high
frequency components. Encoding of subband

components leads to compression of image. DWT along
with encoding technique represents image information
with less number of bits achieving image compression.
Image compression finds application in every discipline
such as entertainment, medical, defense, commercial
and industrial domains. The core of image compression
unit is DWT. Other image processing techniques such
as image enhancement, image restoration and image
filtering also requires DWT and Inverse DWT for
transformations. DWT-IDWT is one of the prominent
transformation techniques that are widely used in signal
processing and communication applications. DWT-
IDWT computes or transforms signal into multiple
resolution sub bands [1][2][3][4][5]. DWT is
computationally very intensive and consumes power
due to large number of mathematical operations.
Latency and throughput are other major limitations of
DWT as there are multiple levels of hierarchy [6][7][8].
DWT has traditionally been implemented by convolution.
Digit serial or parallel representation of input data further
decides the architecture complexity. Such an
implementation demands a large number of
computations and a large storage that are not desirable

Author

α

:

HOD, Dept.of ECE SVCET, CHITTOOR.

E-mail : Umashekar_2000@yahoo.com

Author

σ

: Prof & Head in Dept.of ECE, S.V.University, Tirupathi.

E-mail : snreddysvu@yahoo.com

for either high-speed or low-power applications.
Recently, a lifting-based scheme that often requires far
fewer computations has been proposed for the DWT.
The main feature of the lifting based DWT scheme is to
break up the high pass and low pass filters into a
sequence of upper and lower triangular matrices and
convert the filter implementation into banded matrix
multiplications. Since DWT requires intensive
computations, several architectural solutions using
special purpose parallel processor have been
proposed, in order to meet the real time requirement in
many applications. The solutions include parallel filter
architecture, SIMD linear array architecture, SIMD
multigrid architecture, 2-D block based architecture, and
the AWARE’s wavelet transform processor (WTP)
[9][10][11]. Several versions of lifting scheme
architecture have been compared and reported in
literature. In terms of hardware complexity, the folded
architecture in [12] is the simplest and the DSP-based
architecture in [13] is the most complex. All other
architectures have comparable hardware complexity
and primarily differ in the number of registers and
multiplexor circuitry. The control complexity of the
architecture in [14] is very simple. In contrast, the
number of switches, multiplexors and control signals
used in the architectures of [15] is quite large. The
control complexity of the remaining architectures is
moderate. In terms of timing performance, the
architectures in [14, 12, 16–18] are all pipelined, with the
architectures in [17] having the highest throughput
(1/Tm). The architecture in [19] has fewer cycles since it
is RPA based, but its clock period is higher. The
architecture in [17] has the lowest computation delay.

In this paper, we propose, design, model,
implement and compare the performances of three
different DWT architectures. Section II briefly discusses
the Lifting Scheme DWT algorithm for image processing,
Section III discusses modified lifting base DWT and
Section IV presents the FPGA implementation and
compares the results of modified lifting algorithm.
Conclusion is presented in Section VI.

II. Dwt

The influx of sophisticated technologies in the
field of image processing is affiliated with that of

D

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

41

(
DDDD
)

F

20
12

Y
e
a
r

digitization in the computers arena. Image Compression
plays an important role of all the Image Processing
techniques. The compression techniques are of two
types: Lossless and Lossy. The most common image
format that uses a lossy compression scheme is JPEG
(Joint Photographic Experts Group) format. JPEG 2000
structure is wavelet based compression methodology
that provides a number of benefits over the Discrete
Cosine Transformation (DCT) compression method,
which was used in JPEG format. Wavelet compression
converts the image into a series of wavelets that can be
stored more efficiently than pixel blocks. The Wavelet
compression is accomplished through the use of JPEG
2000 encoder as shown in the figure 1.

Figure 1 : JPEG 2000 Block Diagram

The problem statement in the present section deals

Figure 2 : Two-level DWT decomposition [6]

With the design of the modified two-level DWT
architecture for decomposition. The Discrete Wavelet
Transform (DWT), which is based on sub-band coding is
found top yield a fast computation of Wavelet
Transform. It is easy to implement and reduces the
computation time and resources required. In DWT, a
time-scale representation of the digital signal is obtained
using digital filtering techniques [6]. The signal to be
analyzed is passed through filters with different cut-off
frequencies at different scales as shown in figure 2.

Lifting Scheme:
The Lifting Scheme is a well known method for

constructing bi-orthogonal wavelets. The main
difference with the classical construction is that it does
not rely on the Fourier transform. The lifting scheme is
an efficient implementation of a wavelet transform
algorithm. It was primarily developed as a method to
improve wavelet transform, and then it was extended to
a generic method to create so-called second-generation

wavelets. Second-generation wavelets are much more
flexible and powerful than the first generation wavelets.
The lifting scheme is an implementation of the filtering
operations at each level [6]. The figure 3 represents the
classical and lifting based implementations of DWT.

Figure 3 : a) Classical Implementation, b) Lifting scheme
based DWT [6]

Lifting Scheme consists of three steps: SPLIT,
PREDICT and UPDATE, as shown in the figure 3 (b).
• SPLIT: In this step, the data is divided into ODD and

EVEN elements.
• PREDICT: The PREDICT step uses a function that

approximates the data set. The differences between
the approximation and the actual data, replace the
odd elements of the data set. The even elements
are left unchanged and become the input for the
next step in the transform. The PREDICT step,
where the odd value is "predicted" from the even
value is described by the equation [6].

• UPDATE: The UPDATE step replaces the even
elements with an average. These results in a
smoother input for the next step of the wavelet
transform. The odd elements also represent an
approximation of the original data set, which allows
filters to be constructed. The UPDATE phase follows
the PREDICT phase. The original values of the odd
elements have been overwritten by the difference
between the odd element and its even "predictor".
So in calculating an average the UPDATE phase
must operate on the differences that are stored in
the odd elements [6]:

The equations for the lifting based
implementation of the bi-orthogonal wavelet are:

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

42

(
DDDD

)
F

20

12
Y
e
a
r

(a)

(b)

Oddj+1, i = oddj, i – P (evenj, i)

(oddj+1, i)Evenj+1, i = evenj, i + U

Predict P1: di
1 = α (x2i + x2i+2) +x2i+1

Update U1: ai
1 = β (di

1+di-1
1) + x2i

Predict P2: di
2 = γ (ai1 + ai+1) +x2i+1

Update U2: ai
2 = δ (di

2+di-1
2) + ai

1

The figure 4 shows the lifting scheme
architecture to realise the equations shown above.

Figure 4 : Lifting Scheme Architecture

The input data x is first split into even and odd
samples and each of the samples are taken through
predict and update stages as per the architecture
shown above. As the data moves from first stage to the
last stage, data switching occurs at the input and output
of every stage. Every stage consists of multipliers and
adders. For the given set of Predict and Update stages,
assuming the value of i = 0, the equation can be
finalized.

III. Modified lifting scheme

By re-arranging all the values and the constant
co-efficient, the final equation can be derived.

Being a dedicated DWT core for JPEG 2000,
the filter coefficients are fixed. The filter coefficients are:
α = 1.586134342, β = 0.05298011854, γ =
0.8829110762, δ =0.4435068522, ζ = 1.149604398. By
substituting the above values in the modified equation,
the coefficient values obtained then are also decimals,
by multiplying them with constants they form integers
as: 1 * 32 = 57, 2 * 256 = 6, 3 * 64 = 30, 4 * 32 = 35,
5 * 256 = 12, 6 * 32 = 26, 7 * 32 = 50.

Thus the above integers are the values of the
underlined coefficients in above equations. From the
equations it is observed that there are common lifting
coefficients to compute ai and di coefficients and there
are input terms. The architecture realised by the above
equations considering the constant coefficients is
shown in the figure 5.

Figure 5 : Modified Lifting Scheme Architecture for DWT

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

43

(
DDDD
)

F

20
12

Y
e
a
r

Scale G1: ai = ζ ai
2

Scale G1: di = di
2/ζ

ai= (3 * γ.β.δ.ζ + δ.ζ + β.ζ) [α (x0 + x2) + x1 + α (x0 +
x-2) + x-1] + ζ.δ.β.γ [α(x2 + x4) + x3 + α(x-2 + x-4)
+ x-3] + ζ.δ.γ (x0 + x2 + x0 + x-2) + ζ * x0

di= 1/ζ [(2 * γ.β +1){ α (x0 + x2) + x1} + γ.β { α (x0 +
x-2) + x-1 + α(x2 + x4) + x3} +γ(x0 + x2)].

The FPGA implementation of the modified lifting
based DWT is designed based on the following:
• The input data X should be of 8 bit signed data.
• Output should be of 16 bit signed representation

(including ai and di).
• The lifting coefficients should be of 8 bit signed

representation.
• The architecture should work on the streaming input

sequence (Serial input).
• The intermediate outputs should be stored in a

memory.
• The input data flows into the architecture through

one input line and the output should be read out
through one output line.

Thus by considering the above design
specifications the architecture shown in the figure 5 is
designed as per the requirements.
 The blocks from X -4 to X +4 resemble the input 9

samples designed in form of SIPO, each of 8-bit
signed representation (serial in parallel out).

 Here the input stream is given through the single
input line to 9 SIPOs. The outputs of those are taken
in parallel to perform the addition and multiplication
operations.

 The addition and multiplication operations are of 8
bit signed operators.

 The intermediate results of these addition and
multiplication operations are stored in registers than
preferring memory, as the data can be stored in
registers with ease and in random, but in memory
the storage (write operation in particular) should be
done in orderly fashion.

 These intermediate registers are of PIPO structure
and of 8 bit signed representation.

 Though final outputs ai and di are single bit, those
are stored in the registers of PISO structure as the
output should be taken for 8 bits.

The inputs can be 8-bit signed at any point of
time. But the outputs should not be a signed number
and can be more than 8-bits as every time the adders
create an extra bit and the multipliers create more than
one bit of data. That might be the major cause for the
failure of the hardware; the architecture might not work
properly. In order to minimize the error, suitable
modifications are carried out.

Modifications to minimize the Errors:

The few possible modifications that can be
done for the calculations which can minimize the errors
are:

1.

An adder performs the addition of two 8-bit
numbers and gives the result as a 9-bit number.
Instead of a 9-bit number the LSB is discarded. As
the Least Significant Bit is discarded the value of the
number might not change drastically and the output

still is an 8-bit data which is used for further
operations.

2. The multiplier performs multiplication of one 8-bit
number and the other is coefficient numbers. For
each multiplication the hardware will be different so
the final architecture requires a lot of multipliers
which are of different width and again gives different
output values.

3. The lifting co-efficient which should be of 8-bit
signed number goes in decimal numbers like 0.458
so that the computation will become very difficult.
For multiplying this number multiplier takes more
time to compute and the final output would be a
decimal as 57.35.

The lifting coefficient is multiplied with an integer
as 57 so that representing it might be much easier.
These coefficients should be multiplied such that the
final values should be obtained as 8-bit signed number
and it should not have any decimal value as 57.000.
This can be achieved by taking only the positive values
and discarding all other decimal point values
(e.g.XY.xy). Thus the values of all the lifting coefficients
have integer without any decimal values so that the
calculations can be much easier. From the architectural
calculations, the values of ai and di are 65 and 39
respectively, and match with theoretical calculations.

By comparing those values we can come to know that:
1. The architecturally calculated values are of 8-bit

singed representation while theoretically calculated
are unsigned.

2. The architectural values do not have any decimal
values.

3. The architectural values do not exceed more than 8-
bit.

4. The intermediate calculations will be always 8-bit
and signed instead of 9 or more bits.

5. The outputs of the adder in architectural
calculations are 8-bit by discarding the LSB than
having 9-bits which will be continued to increase for
next level of addition.

Estimation of Power, Area and Delay of Sub-
Blocks of Architecture:

The main sub-blocks of the modified lifting
scheme architecture are:
 Adders
 Multipliers (Constant Coefficient-IP Cores)
 Registers

The table 1 represent the estimation of Power,
Delay and Area of these sub blocks.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

44

(
DDDD

)
F

20

12
Y
e
a
r

Table 1 : Estimation of Power, Delay and Area of sub
blocks

 The table 1 represents the estimation of Power,

Delay and Area of the Sub-blocks. Here every block is of
8 bit signed representation from +127 to -128. As
observed from the table there are one type of adder,
multipliers of 7 types of constant coefficient type to
reduce the complexity of multiplication the IP cores in
XILINX are used. Of all the sub-blocks the Adder has the
highest delay and the highest utilisation of the
resources. Thus by instantiating these sub-blocks the
area utilised by the DWT architecture is 12% and the
delay is 3.313ns. From the table 1 the delays of
individual blocks are known. Almost all work at different
clock frequencies, as the delay mentioned in the table is
the minimum period of the design clock. But the whole
or the top level design should work at one clock
frequency, thus the concept of synchronising the clocks

 arise. The clock frequency of top level architecture
should synchronise with the sub modules, in general the
problem of Synchronisation is addressed by any of
these below:

 •

Increase system clock period (usually not feasible).
 •

Decrease tcomb (use no combinational logic).

 •

Decrease tsu (use fast flip-flops)
 •

Increase synchroniser clock period.

The figure 6 represents the clock synchroniser.

Figure 6

:

Clock Synchroniser

In applying the same for the implementation of
the present top-level design architecture, the DCM is
used. The Divide-by-N counter block in the figure 7 can
be replicated by using DCM. The figure 2.8 represents
how to configure the DCM.

Figure 7 : Configuring DCM [2]

Thus by configuring the DCM in the frequency
mode the tool generates the instantiation template and
thus that instantiation template is used in the design to
make the design run on same clock. The operating
frequency of the present design runs at 280MHz.

Observations:
• The equation of the lifting scheme for two-level DWT

is simplified based on the basic equations
mentioned.

• The simplified equation is made into an architecture
such that both the ai and di is implemented using
the same architecture.

• The mathematical and the architectural computation
of the equation are computed and compared, and
observed that the architectural computations are the
modified version of the mathematical, where the
discarding of the LSBs result to scaling down of the
original values.

• The power, area and the delay of the sub-blocks are
observed and noticed that the Adder takes the
maximum delay i.e. 3.39ns and maximum utilisation
of resources i.e. 13%, and registers SIPO and PIPO
takes the least delay and least utilisation of
resources i.e. 1%

IV. Hdl modeling and fpga
implementation

The top level module or block of the DWT
architecture is shown in the figure 8. The figure explains
the input and output ports. The input ports are clk, en,
piso_load, rst and ser_in and the output ports are ai and
di. The input 9 samples each of 8 bit signed data is
entered into the design through the ser_in input. The rst
signal is used to reset the design when the signal is
high. When the en signal is high, loading of the input
data in all the 9- 8 bit registers for 280 clock cycles is
done. The piso_load signal is used to take the output at
ai and di, and this signal is kept high for 8 clock cycles

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

45

(
DDDD
)

F

20
12

Y
e
a
r

Sl
No

Sub Block Power
(W)

Area(no of
slices,utiliz
ation of
slice%)

Delay(n
S)

1) Adder 0.142 5(1%) 3.369
2) Multiplier(50) 0.007 9 (1%) 1.999
3) Multiplier(30) 0.037 7(1%) 0.881
4) Multiplier(12) 0.037 6(1%) 0.881
5) Multiplier(35) 0.037 13(1%) 0.881
6) Multiplier(57) 0.037 11(1%) 0.881
7) Multiplier(6) 0.037 6(0%) 0.881
8) Multiplier(26) 0.037 7(1%) 0.881
9) PISO 0.011 5(1%) 1.216
10) SIPO 0.037 36(1%) 0.915
11) PIPO 0.037 1(0%) 0.916

as the 8 bit is to be taken out through the single line. The
HDL models of the sub-block can be understood from
the internal hardware of the RTL schematic shown in the
figure 9. The figure 9 represents the schematic of the
DWT architecture where all the sub blocks can be
viewed. Thus the sub blocks are modelled in such a way
that the multipliers used are the IP cores from the XILINX
library, and the adder that is designed for 8 bit signed
addition is instantiated wherever necessary. The
simulation of the top level module is shown in the figure
10 where the intermediate signals gives the
performance of the sub blocks in the total simulation.

Figure 8

:

Top-level DWT architecture

Figure 9 : RTL schematic of DWT showing sub-block

The figure explains the integration of the sub
blocks in the main top level architecture. Initially the sub
blocks are designed by considering the DWT equation,
the multiplier used in the design is a constant coefficient
multiplier as it is faster than any other for the application
required. For the present design, the constant
coefficient multipliers are taken as a IP core from the
XILINX library for different coefficients. The adder is 8-bit
signed operator designed or modelled in the HDL and
instantiated where it is necessary. The registers that are
used in the design covers all the types SIPO, PIPO,

PISO. SIPO at the initial stage while giving the inputs,
PIPO while performing the operations intermediately,
and the PISO at the output stage to take the outputs
serially i.e. one bit for 8 clocks, as the required is two
outputs of 8 bits taking serially. From the figure 9, the
top level ports are shown; the serial input data is given
in a random way. This is loaded inthe registers (SIPO),
when enable signal is high, after 72 clock cycles the
enable is made low, and for four clock cycles the
operation is performed and the output is taken when the
piso_load signal is high for 8 clock cycles as the output

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

46

(
DDDD

)
F

20

12
Y
e
a
r

is taken for 8 bit. Thus the same procedure follows for 8
(load)+ 4 (operation) + 8 (output) = 22 clocks. To
program a single device using iMPACT, all needed is a
bitstream file. To program several devices in a daisy
chain configuration, or to program devices using a

PROM, iMPACT is used to create a PROM file. iMPACT
accepts any number of bitstream and creates one or
more PROM files containing one or more daisy chain
configurations.

 Figure 10

:

Simulation results for the DWT architecture

 Figure 11

:

Program downloaded into FPGA

Comparison of Post and Pre- Synthesis results:

The Post-synthesis result is that obtained after
the place and route process has done. Here the delays
of the LUTs and also the interconnection delay are
added. But the Pre-Synthesis is nothing but the
behavioral simulation. The comparison between the
Post and Pre Synthesis results is shown in the figure 12
and 13.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

47

(
DDDD
)

F

20
12

Y
e
a
r

Figure 12 : Post-Synthesis simulation

Figure 13 : Pre-Synthesis Simulation

Logic Utilization
Number of Slice Flip Flops: 247 out of 1,536
Number of 4 input LUTs: 295 out of 1,536

Logic Distribution

Number of occupied Slices: 245 out of 768

Number of Slices containing only related logic:
245 out of 245

Number of Slices containing unrelated logic: 0
out of 245

Total Number of 4 input LUTs: 314 out of 1,536
Number used as logic: 295

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

48

(
DDDD

)
F

20

12
Y
e
a
r

Number used as a route-thru: 19
Number of bonded IOBs: 6 out of 140
Number of GCLKs: 1 out of 4

Number of GCLKIOBs: 1 out of 4

Place and Route
Placement and routing is performed by the PAR

program. Place and route is the most important and
time consuming step of the implementation. It defines
how device resources are located and interconnected
inside an FPGA. Placement is even more important than
routing, because bad placement would make good
routing impossible. In order to provide possibility for
FPGA designers to tweak placement, PAR has a
"starting cost table" option. PAR accounts for timing
constraints set up by the FPGA designer. If at least one
constraint can't be met, PAR returns an error. The output
of the PAR program is also stored in the NCD format.
The device utilization summary of the architecture is
given below.

Device Utilization Summary
• Number of GCLKs: 1 out of 4 25%
• Number of External GCLKIOBs: 1 out of 4 25%
• Number of LOCed GCLKIOBs : 0 out of 1 0%
• Number of External IOBs: 6 out of 140 4%
• Number of LOCed IOBs: 0 out of 6 0%
• Number of SLICEs: 245 out of 768 31%

Table 2 : Performance comparison of DWT architecture

V. Conclusion

In this work a modified lifting based DWT
architecture is proposed, designed, modeled and
verified. The design is modeled using HDL and is
implemented on FPGA. The interfaces requried for data
processing are also designed and is used to
synchronize the data transfer operation. The HDL
models and simulation of the sub blocks have been
done to model the top-level design architecture. The
test-bench to verify the functionality and performance of
the sub modules and the top level architecture have
been done. Implemented the design on FPGA and
verified and debugged through the Chip-Scope. The Pre

and Post Synthesis have been done and compared. The
design can be further optimized for video signal
processing.

References références referencias

1. N. Jayant and P. Noll, Digital Coding of Waveforms:
Principles and Applications to Speech and Video.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

2. C. Diou, L. Torres, and M. Robert, “A wavelet core
for video processing,” presented at the IEEE Int.
Conf. Image Process., Sept. 2000.

3. N. Jayant, J. Johnston, and R. Safranek, “Signal
compression based on models of human
perception,” Proc. IEEE, vol. 81, pp. 1385–1422,
Oct. 1993.

4. B. Zovko-Cihlar, S. Grgic, and D. Modric, “Coding
techniques in multimedia communications,” in Proc.
2nd Int. Workshop Image and Signal Processing,
IWISP’95, Budapest, Hungary, 1995, pp. 24–32.

5. Digital Compression and Coding of Continuous
Tone Still Images, ISO/IEC IS 10918, 1991.

6. I. Daubechies, Ten Lectures on Wavelets.
Philadelphia, PA: SIAM, 1992.

7. S. Mallat, “A theory of multiresolutio n signal
decomposition: The wavelet representation,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 11, pp.
674–693, July 1989.

8. M. Nagabushanam, Cyril Prasanna Raj P, S.
Ramachandran, Design and Implementation of
Parallel and Pipelined Distributive Arithmetic Based
Discrete Wavelet Transform IP Core, European
Journal of Scientific Research ISSN 1450-216X
Vol.35 No.3 (2009), pp.378-392.

9. M. Vishwanath, R. Owens, and M. J. Irwin, “VLSI
architectures for the discrete wavelet transform,”
IEEE Trans. Circuits Syst. II, vol. 42, pp. 305–316,
May 1995.

10. J. S. Fridman and E. S. Manolakos, “Discrete
wavelet transform: Data dependence analysis and
synthesis of distributed memory and control array
architectures,” IEEE Trans. Signal Processing, vol.
45, pp. 1291–1308, May 1997.

11. T. Acharya, “A high speed systolic architecture for
discrete wavelet transforms,” in Proc. IEEE Global
Telecommun. Conf., vol. 2, 1997, pp. 669–673.

12. C.J Lian, K.F. Chen, H.H. Chen, and L.G. Chen,
“Lifting Based Discrete Wavelet Transform
Architecture for JPEG2000,” in IEEE International
Symposium on Circuits and Systems, Sydney,
Australia, 2001, pp. 445–448.

13. M. Martina, G. Masera, G. Piccinini, and M.
Zamboni, “Novel JPEG 2000 Compliant DWT and
IWT VLSI Implementations,” Journal of VLSI Signal
Processing, vol. 34, 2003, pp. 137– 153.

14. C.C. Liu,Y.H. Shiau, and J.M. Jou, “Design and
Implementation of a Progressive Image Coding

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

49

(
DDDD
)

F

20
12

Y
e
a
r

Parameters
DWT

[9]

Lifting

DWT

[18][19]

Modified Lifting

DWT

No of Slices
432 out
of 1536

358 out
of 1536 247 out of 1536

No of gates 37K 27K 15K

Clock Speed
72

MHZ 156 MHz 268 MHz

Power

dissipation
81 mW 67 mW 42 mW

Chip Based on the Lifted Wavelet Transform,” in
Proc. of the 11th VLSI Design/CAD Symposium,
Taiwan, 2000.

15. H. Liao, M.K. Mandal, and B.F. Cockburn, “Efficient
Architectures for 1-D and 2-D Lifting-BasedWavelet
Transform,” IEEE Transactions on Signal
Processing, vol. 52, no. 5, 2004, pp. 1315–1326.

16. W.H. Chang, Y.S. Lee,W.S. Peng, and C.Y. Lee, “A
Line-Based, Memory Efficient and Programmable
Architecture for 2D DWT Using Lifting Scheme,” in
IEEE International Symposium on Circuits and
Systems, Sydney, Australia, 2001, pp. 330–333.

17. C.T. Huang, P.C. Tseng, and L.G. Chen, “Flipping
Structure: An Efficient VLSI Architecture for Lifting-
Based Discrete Wavelet Transform,” in IEEE
Transactions on Signal Processing, 2004, pp. 1080–
1089.

18. K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI
Architecture for Lifting-Based Forward and
InverseWavelet Transform,” IEEE Trans. of Signal
Processing, vol. 50, no. 4, 2002, pp. 966–977.

19. H. Liao, M.K. Mandal, and B.F. Cockburn, “Novel
Architectures for Lifting-Based Discrete Wavelet
Transform,” in Electronics Letters, vol. 38, no. 18,
2002, pp. 1010–1012.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
II

 V
er
sio

n
I

50

(
DDDD

)
F

20

12
Y
e
a
r

	Performance Analysis of Modified Lifting Based DWTArchitecture and FPGA Implementation for Speed and Power
	Author's

	Keywords
	I. Introduction
	II. Dwt
	III. Modified lifting scheme
	IV. Hdl modeling and fpgaimplementation
	V. Conclusion
	References références referencias

