
© 2012. D. Gunaseelan & P. Uma. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 13 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

An Effcient Algorithm for Mining Association Rules in Massive
Datasets

 By D. Gunaseelan & P. Uma
 JAZAN University, Kingdom of Saudi Arabia

Abstract - Data mining, also known as Knowledge Discovery in Databases (KDD) is one of the most important
and interesting research areas in 21st century. Frequent pattern discovery is one of the important techniques
in data mining. The application includes Medicine, Telecommunications and World Wide Web. Nowadays
frequent pattern discovery research focuses on finding co-occurrence relationships between items. Apriori
algorithm is a classical algorithm for association rule mining. Lots of algorithms for mining association rules
and their mutations are proposed on the basis of Apriori algorithm. Most of the previous algorithms Apriori-like
algorithm which generates candidates and improving algorithm strategy and structure but at the same time
many of the researchers not concentrate on the structure of database. In this research paper, it has been
proposed an improved algorithm for mining frequent patterns in large datasets using transposition of the
database with minor modification of the Apriori-like algorithm. The main advantage of the proposed method is
the database stores in transposed form and in each iteration database is filtered and reduced by generating
the transaction id for each pattern. The proposed method reduces the huge computing time and also
decreases the database size. Several experiments on real-life data show that the proposed algorithm is very
much faster than existing Apriori-like algorithms. Hence the proposed method is very much suitable for the
discovering frequent patterns from large datasets.

Keywords : Data mining, frequent pattern mining, transposition of database, Apriori algorithm.

GJCST-C Classification: H.2.8

An Effcient Algorithm for Mining Association Rules in Massive Datasets

Strictly as per the compliance and regulations of:

An Effcient Algorithm for Mining Association
Rules in Massive Datasets

D. Gunaseelan α & P. Uma σ

Abstract - Data mining, also known as Knowledge Discovery in
Databases (KDD) is one of the most important and interesting
research areas in 21st century. Frequent pattern discovery is
one of the important techniques in data mining. The
application includes Medicine, Telecommunications and World
Wide Web. Nowadays frequent pattern discovery research
focuses on finding co-occurrence relationships between items.
Apriori algorithm is a classical algorithm for association rule
mining. Lots of algorithms for mining association rules and
their mutations are proposed on the basis of Apriori algorithm.
Most of the previous algorithms Apriori-like algorithm which
generates candidates and improving algorithm strategy and
structure but at the same time many of the researchers not
concentrate on the structure of database. In this research
paper, it has been proposed an improved algorithm for mining
frequent patterns in large datasets using transposition of the
database with minor modification of the Apriori-like algorithm.
The main advantage of the proposed method is the database
stores in transposed form and in each iteration database is
filtered and reduced by generating the transaction id for each
pattern. The proposed method reduces the huge computing
time and also decreases the database size. Several
experiments on real-life data show that the proposed algorithm
is very much faster than existing Apriori-like algorithms. Hence
the proposed method is very much suitable for the discovering
frequent patterns from large datasets.
Keywords : Data mining, frequent pattern mining,
transposition of database, Apriori algorithm.

I. Introduction

ata mining is one of the most dynamic emerging
research in today’s database technology and
Artificial Intelligent research; the main aim is to

discover valuable patterns from a large collection of
data for users. In the transaction database, mining
association rule is one of the important research
techniques in data mining field. The original problem
addressed by association rule mining was to find the
correlation among sales of different items from the
analysis of a large set of super market data. Right now,
association rule mining research work is motivated by
an extensive range of application areas, such as
banking, manufacturing, health care, medicine, and
telecommunications. There are two key issues that need
to be addressed when applying association analysis.

Author α σ : College of Computer & Information Systems JAZAN
University, Kingdom of Saudi Arabia.

E-mail α : dgseela@yahoo.com

E-mail σ : prmluma@gmail.com

The first one is that discovering patterns from a
large dataset can be computationally expensive, thus
efficient algorithms are needed. The second one is that
some of the discovered patterns are potentially spurious
because they may happen simply by chance. Hence,
some evaluation criteria are required.

Agrawal and Srikant (1994) proposed the Apriori
algorithm to solve the problem of mining frequent
itemsets. Apriori uses a candidate generation method,
such that the frequent (k+1)-itemset in one iteration can
be used to construct candidate (k+1)-itemsets for the
next iteration. Apriori terminates its process when no
new candidate itemsets can be generated. It is a multi-
pass algorithm.

Unlike Apriori, the FP-growth method was
proposed by Han et al. (2000) uses an FP-tree to store
the frequency information of the transaction database.
Without candidate generation, FP-growth uses a
recursive divide-and-conquer method and the database
projection approach to find the frequent itemsets.
However, the recursive mining process may decrease
the mining performance and raise the memory
requirement.

Most of the reviews are presented in Section
2.2.A lot of algorithms were proposed to optimize the
performance of the Apriori-like algorithm. In this
research paper it has been presented an efficient and
improved frequent pattern algorithm for mining
association rules in large datasets. It is a two-pass
algorithm.

The remainder of the paper is organized as
follows: In Section 2, it has been described in brief an
Apriori algorithm, and the relative researches of
association rules. In Section 3 provides definitions for
the mining method, and detailed steps on the proposed
algorithm in mining frequent itemsets. An illustration is
demonstrated in Section 4. In Section 5, the design of
the experiment and performance analysis is discussed;
finally, in Section6 offers conclusions.

II. Background

At first, the data mining technique for
association rule mining is the support-confidence
framework established by Agrawal et al. [AIS 93]. The
most important time-consuming part of the association
rule algorithm is to discover large itemsets, while the
generation of association rules from the given large
itemsets is straightforward. This paper has been

D
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

5

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

http://www.sciencedirect.com/science/article/pii/S0020025509000358#ref_sec1�
http://www.sciencedirect.com/science/article/pii/S0020025509000358#ref_sec2�
http://www.sciencedirect.com/science/article/pii/S0020025509000358#ref_sec3�
http://www.sciencedirect.com/science/article/pii/S0020025509000358#ref_sec4�
http://www.sciencedirect.com/science/article/pii/S0020025509000358#ref_sec5�

focused on the discovery of large itemsets. For
description, some well-known methods and notions
based on this framework is used throughout this paper.
In this section it has been presented the formal
statement of association rule mining and the description
of Apriori algorithm and related research review.

a) Formal statement of the problem
The following is a formal statement of

association rule mining for transactional databases.
Let I = {i1, i2, i3, … , in} represents a set of ‘n’

distinct data items. Generally, a set of items is called an
itemset, and an itemset with k items is denoted as a k-
itemset. Database D is a set of transactions, where the
ith transaction Ti denotes a set of items, such as Ti⊆ I. ∣D∣
is the total number of transactions in D, and ∣Ti∣ is the
number of distinct items in transaction Ti. Each
transaction is associated with a unique identifier, which
is termed as TID. An association rule is an implication of
the form X → Y, where X, Y ⊆ I, and X ∩ Y = ϕ. There
are measures of quality for each rule in support of
itemset X ∪ Y and confidence of rule X → Y. First, we
need to calculate the support of itemset X ∪ Y, which is
the ratio (denoted by s%) of the number of transactions
that contain the X ∪ Y to ∣D∣. Next, the confidence of rule
X → Y is the ratio (denoted by c%) of the number of
transactions containing X ∪ Y to the number of
transactions that contain X in database D. The problems
of association mining rules from database D can be
processed in two important steps: (1) locate all frequent
itemsets whose supports are not less than the user-
defined minimum support threshold ξ, where ξ ∈ (0, 1),
and, (2) obtain association rules directly from these
frequent itemsets with confidences not less than the
user-defined minimum confidence threshold. The most
time-consuming part of mining association rules is to
discover frequent itemsets.

b) Review of Apriori algorithm
In conventional Apriori-like methods, the level

wise process of identifying sets of all frequent itemsets
is in a combination of smaller, frequent itemsets. In the
kth level, the Apriori algorithm identifies all frequent k-
itemsets, denoted as Lk. Ck is the set of candidate k-
itemsets obtained from Lk−1, which are suspected
frequent k-itemsets. For each transaction in D, the
candidate k-itemsets in Ck contained within the
transaction are determined, and their support count is
increased by 1/∣D∣. Following scanning (reading) and
contrasting with the entire D, when the supports of
candidate k-itemsets are greater than or equal to user-
defined minimum support threshold ξ, they immediately
become frequent k-itemsets. At the end of level k, all
frequent itemsets of length k or less have been
discovered. During the execution, numerous candidate
itemsets are generated from single itemsets, and each
candidate itemset must perform contrasts on the entire
database, level by level, while searching for frequent

itemsets. However, the performance is significantly
affected because the database is repeatedly read to
contrast each candidate itemset with all transaction
records of the database.

c) Related researches of association rules
In 1995, Savasere et al. proposed the partition

algorithm to improve the efficiency of Apriori algorithm, it
does so by efficiently reducing the number of scans in
the database, however, considerable time is still wasted
scanning infrequent candidate itemsets [3]. In 1996,
Pork et al. proposed an efficient and fast algorithm
called DHP (direct hashing and pruning) for the initial
candidate set generation. This method efficiently
controls the number of candidate 2-itemsets, pruning
the size of the database [4]. In 1999, Han et al.
proposed a top-down method, which investigates
progressively deeper, into the data was developed for
the efficient mining of multiple-level association rules
from large transactional databases based on the
classical Aprioir principle. In 1996, Toivonen proposed a
sampling algorithm which reduces the number of
database scan to a single scan, but still wastage
considerable time on candidate itemsets [9]. In1996,
Brid et al. proposed the dynamic itemset count (DIC)
algorithm [5] for finding large itemsets, which uses fewer
passes over the data than classical algorithms, and yet
uses fewer candidate itemsets than methods based on
sampling. In addition, in 1999, Dunkel et al. proposed a
column-wise apriori algorithm for frequent itemsets and
in 2001, Berzal et al. proposed a tree based association
rule mining which transformed the storage structure of
the data, to reduce the time needed for database scans,
improving overall efficiency.

III. Proposed algorithm

The proposed algorithm improvement mainly
concentrated on (1) for reducing frequent itemset and
(2) for reducing storage space as well as the computing
time. In the case of large datasets like Wal-Mart
datasets, the proposed algorithm is very much useful for
reducing the frequent patterns and also reducing the
database size for every subsequent passes. For
example, in the improved algorithm, the number of
occurrence of frequent k-itemsets when k-itemsets are
generated from (k-1)-itemsets is computed. If k is
greater than the size of the database D, there is no need
to scan database D which is generated by (k-1)-itemsets
according to the Aprior property and it can be remove
automatically.

Transposition of database: A given database as
a relation between original and transposed
representations of a database is defined in Table 1. The
itemsets are D= {I1, I2, …, In} and transaction ids are
TID = {T1, T2, …, Tm}. A string notation for itemsets is
used, for example, I1I4I5 denotes the itemset {I1, I4, I5}
and T2T4

 denotes the transaction ids set {T2, T4}. This

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

6

(
DDDD

)
C

20

12
Y
e
a
r

dataset is used in all the examples between two sets: a
set of items (attributes) and a set of transactions
(tuples).

Table 1 : Database D and transposition Database DT

D

DT

Table 2 : Notations used

Notations Description
D Given database

DT Transposed database

CT Candidate transaction IDs

CT1
 Candidate transaction IDs of size-1

LT1
 Large transaction IDs of size-1

CTk-1
 Candidate transaction IDs of size-k-1

LTk-1
 Large transaction IDs of size-k-1

s Minimum support

c Minimum confidence

Count Frequency

At first, the given transaction database file D is
transposed to database DT and count the number of
item and number of transaction string generated for
each item and sort the item numbers. Now apply Apriori-
like algorithm in which first calculate the frequent
transactions CT1. It reduces infrequent transactions and
its item details. For the subsequent passes Apriori-gen
has been applied and finds the subsequent frequent
transactions.

Lemma 1:

All the subsets of a frequent
transaction must also frequent. In other words, all the
supersets of a frequent transaction must also infrequent.

Improved Algorithmic steps are described as
below:

1.

First the function apriori-gen(LTk-1) is called and to
generate candidate k-transaction set by frequent k-
transactions.

2.

Checking whether candidate transactions CT

are
joined into candidate k-transactions or not. It
proceeds by calling function recursively
has_infrequent_transactions(ct, LTk-1). If it is true, it
means the set of transactions are not frequent and
should be removed. Otherwise, scan database DT.

3. The occurrence of frequent k-transaction is
computed by generating (k-1)-transactions from k-
transactions. If k-transaction is greater than the size
of database DT, it is not needed to scan database
DT which is generated by (k-1)-transactions based
on the lemma 1, and it can be deleted.

4. If the size of database DT is greater than or equal to
k, then call function subset(CTk, dt), which computes
frequent pattern using a subsequent iterative level-
wise approach based on candidate generation.

Algorithm 1: Improved Algorithm
Input: A transposed database DT and the user

defined minimum support threshold s.
Output: The complete set of frequent patterns

Step 1: Convert Database D into transpose form DT
Step 2: Compute CT1 candidate transaction sets of size-
1 and finds the support count.
Step 3:Compute the large transaction sets (LT) of size-1.
 (i.e., for all CT1 is greater than or equal to
minimum support.)

LT1 = {Large 1-transaction set (LT)};
For (k=2; LTk-1 = 0; k++) do
 Begin
CTk = Apriori-gen(LTk-1, ct); // new candidate transaction
sets
 End
Return LT = ∪kLTk;

Algorithm 2: Apriori-gen (LTk-1), Generate candidate sets
For all transactions p ∈ LTk-1 do begin
 For all transactions q ∈ LTk-1 do begin
 If p.transaction1=q.transaction,…,
p.transactionk-2=q.transactionk-2,
p.transactionk-1< q.transactionk-1 then begin
ct=p ∞ q;
If has_infrequent_subset(ct, LTk-1) then
delete ct;
Else
For all transaction set t∈ DT do begin
If count(t) <k then delete t;
Else begin
Ct=subset(CTk, t);
End
End
For all candidate transactions ct∈CTi do begin
CT.count = CT.count + 1;
End; End;
LTk = {ct∈CTk | CT.count ≥ s};
End; End;
End;
End;
Return CTk;
Algorithms 3: has_infrequent_subset(ct, LTk-1)

// checking the elements of candidate generation
For all (k-1)-sub transaction set of ct do

Transaction IDs Items

T1 I1, I2, I3

T2 I2, I3, I4

T3 I1, I3, I4

.. …

Items Transaction IDs

I1 TI, T3

I2 TI, T2

I3 T1, T2, T3

I4 T2, T3

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

7

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Begin
If t ∈ LTk-1 then
return true;
Else
return false;
End.

The main advantage of the proposed algorithm
for frequent patterns discovery are, it reduces the size
of the database after second pass and, the storage
space and saves the computing time.

IV. Performance evaluation

The following is an example shows the
processing steps of the proposed algorithm

Figure 1 shows the original Database D and the
transposed database DT. There are 15 transaction IDs in
the database DT, that is |DT| = 9 and minimum support
s = 20%. The improved algorithm for mining frequent
patterns in DT is used.
1. Scan the database DT for support count of each

candidate transactions.

In the first iteration of the improved algorithm, all
transaction sets are the member of the set of candidate
1-transactions, CT1. The proposed method scans all the
itemsets in DT and count the number of occurrences of
each itemset.

2. Compute the support count with minimum support.

The user defined minimum support s is 20%,
that the required support count is 2. Based on the
minimum support, we can determine the set of frequent
set of 1-transaction IDs(LT1). That means all the
candidate 1-transaction IDs are satisfied with user
defined minimum support s.

3. Generate all candidate transactions of size-2 i.e.,
CT2 from LT1 and count the support count.

The algorithm generates candidate transactions
CT2 from large transaction set of size-1, LT1. Compute
the number of occurrences in each transaction set by
scanning the database DT. Accumulate the total number
of sub-transaction IDs with their support count.

4. Compare the number of occurrences of candidate
transaction IDs with their minimum support s.

The Large transaction ID sets of size-2, LT2 are
determined by computing the number of occurrences of
each candidate transaction IDs CT2 with the minimum
support s. Based on LT2, we can determined a new
modified transposed database DT

2.

5. Generate candidate transactions of size-3 from LT2
by scanning new modified database DT

2 and finds
the support count of CT3.

First, combine the large transactions of size-2,
LT2 with LT2 to determine CT3. Based on the lemma 1,

we can determine the four letter candidate transaction
IDs C3 cannot possibly be frequent transactions and
therefore prune from CT3. This is one of the advantages
of saving time to count the number of occurrence of
transaction IDs unnecessarily during the subsequent
scan of DT

2 for finding LT3.

6. Compare the support count of candidate
transaction IDs with minimum support.

The modified database DT
2 is scanned by

computing LT3. i.e., the large transaction IDsof size-3,
LT3 are determined by computing the number of
occurrences of each candidate transaction IDs CT3 with
the minimum support s.

7. Repeat the steps 4 to 6 until no more candidate
transaction IDs are generated.

That is the algorithm terminates, having found
all of the frequent transaction IDs. Also, it creates the
modified database DT

3, DT
4, etc., based the size of the

transaction IDs.
The following are the explanation of the

proposed algorithm with an example.

Original Database D

Transposed Database |DT| = 15

Now apply the improved algorithm;

Transaction ID Item ID
T1 1, 14

T2 2, 4, 6, 7, 13, 15

T3 4, 6, 10, 11, 12, 14

T4 2, 3, 6, 13

T5 1, 3, 5, 8, 10, 11, 12, 14

T6 1, 5, 7, 12, 13, 14

T7 3, 5, 7, 10, 11, 12, 13, 14

T8 1, 2, 9, 12

T9 7, 15

Item ID Transaction ID
1 T1, T5, T6, T8
2 T2, T4, T8

 3 T4, T5, T7
4 T2, T3
5 T5, T6, T7
6 T2, T3, T4
7 T2, T6, T7, T9
8 T5
9 T8
10 T3, T5, T7
11 T3, T5, T7
12 T3, T5, T6, T7, T8
13 T2, T4, T6, T7
14 T1, T3, T4, T5, T6, T7
15 T2, T9

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

8

(
DDDD

)
C

20

12
Y
e
a
r

Minimum Support (s)=20%

Pass 1: Generate candidates for k=1

C1={ T1, T2, T3, T4, T5, T6, T7, T8, T9}

C1 T1 T2 T3 T4 T5 T6 T7 T8 T9
Support 2 6 6 4 8 6 8 4 2

L1 = {T2:6, T3:6, T4:4, T5:8, T6:6, T7:8, T8:4}

Pass 2: Generate candidates for k=2

C2 = {(T2,T3), (T2,T4), (T2,T5), (T2,T6), (T2,T7),
(T2,T8), (T3,T4), (T3,T5),

(T3,T6), (T3,T7), (T3,T8), (T4,T5), (T4,T6),

(T4,T7), (T4,T8), (T5,T6),
 (T5,T7), (T5,T8), (T6,T7), (T6,T8), (T7,T8) } - 21

candidate sets

After applying improved algorithm

C1 T2T3 T2T4 T2T5 T2T6 T2T7 T2T8 T3T4 T3 T5 T3T6 T3T7 T3T8
Sup 2 3 0 2 2 1 2 4 2 4 1

C1 T4T5 T4T6 T4T7 T4T8 T5T6 T5T7 T5T8 T6T7 T6T8 T7T8

Sup 2 2 3 1 4 3 2 4 2 1

L2 = {(T2T4):3, (T3T5):4, (T3T7):4, (T4T7):3,
(T5T6):4, (T5T7):3, (T6T7):3}
 – 7 large transaction sets only

|DT| = 11

Based on L2, we can prune infrequent
transaction sets from the transposed database DT. After
pruning, the new modified transposed database DT

2
 with

number of itemsets is 11 only. Previously it was 15.

Pass 3: Generate candidates for k=3

C3

= {(T3 T5 T7), (T5 T6 T7)}

L3

= {(T3 T5 T7), (T5 T6 T7)}

Based on L3, we can prune infrequent
transaction sets from the transposed database DT. After
pruning, the new modified transposed database DT

3

with

number of itemsets is 7 only. Previously it was 11.

 |DT
3| = 8

Pass 4: Generate candidates for k=4

V. Experimental results

C4 = { (T3 T5 T6 T7): 1 }

L4 = {ϕ}

To evaluate the efficiency and effectiveness of
the improved algorithm, we performed an extensive
study of two algorithms: Apriori-like and improved
algorithm, on both real time synthetic data sets with
different ranges. All the experiments were examined on
Pentium IV machine 1GB RAM, running Microsoft
Windows 7. Two algorithms, Apriori and Improved
algorithm were implemented in Java 2.0.

Also we got the real time medical database with
2280 itemsets and 4200 elements. The running time
comparison between improved algorithm and Apriori
algorithm are shown in the Figure 1 with minimum
support ranges from 1 percentage (%) to 5 percentages
(%).

The importance of improved algorithm is to
reduce the number of items in each and every scan and
also reduce the size of the original dataset. There are

Item ID Transaction ID
1 T1, T5, T6, T8
2 T2, T4, T8
3 T5, T7
5 T5, T6, T7
6 T2, T3, T4
7 T2, T6, T7, T9
10 T3, T4, T5, T7
11 T3, T4, T5, T7
12 T3, T4, T5, T6, T7, T8
13 T2, T6, T7
14 T1, T3, T4, T5, T6, T7

C3

T3 T5 T7

T5 T6 T7

Support

4

3
 G

lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

9

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Item ID Transaction ID
1 T1, T5, T6, T8

5 T5, T6, T7

7 T2, T6, T7, T9

10 T3, T4, T5, T7

11 T3, T4, T5, T7

12 T3, T4, T5, T6, T7, T8

13 T2,T6, T7

14 T1, T3, T4, T5, T7

three aspects to make this algorithm better than the
original one.

Figure 1: Running time between Apriori and improved
algorithm

Firstly, when the candidates are being
produced, instead of dealing with all the items of the
previous large set, only the elements which having the
same transaction ids are crossed. At the same time,
generating frequent patterns, it may reduce the
computing time dramatically and the size of the
database is reduced. Secondly, by pruning, the number
of elements in the candidate sets is decreased once
more based on modified database. Finally, the
computing time and storage space are saved.

VI. Conclusion

In this research paper, it has been proposed an
improved algorithm for mining frequent pattern based
on Apriori-like algorithm. The main advantages of an
improved algorithm are that it can reduce the number of
scanning by the transposed database DT, redundancy
by the time of generating sub-transaction set tests and
verifying them in the database. In order to discover
frequent patterns in massive datasets with more
columns than rows, it has been presented a complete
framework for the transposition; the item set in the
transposed database of the transposition of many
classical transactions is given. Also it has been
compared the classical Apriori algorithm with an
improved algorithm. It has been presented the
experimental results, using synthetic data, showing that
the proposed algorithm always outperform Apriori
algorithm. Hence, the proposed algorithm is very much
suitable for a massive datasets.

VII. Acknowledgements

The authors are extremely express gratitude to
Dr. Omar Sayed Al-Mushayt, College Dean and Dr.
Saeed Q Al-Khalidi, Vice Dean, College of Computer

Science and Information Systems, JAZAN University,
Kingdom of Saudi Arabia for having noble and
continuous encouragement to complete this research.
The special thanks also to the University President,
JAZAN University, Kingdom of Saudi Arabia for
inspiration and persistent support directly or indirectly
for the completion of this research.

References Références Referencias

1. Agrawal, R. and Srikant, R., 1994. Fast algorithms
for mining association rules in large databases.
VLDB '94: Proceedings of the 20th International
Conference on Very Large Data Bases, San
Francisco, USA, pp. 487-499.

2. Barabasi, A. and Albert, R., 1999. Emergence of
scaling in random networks. Science, Vol. 286, pp.
509-512.

3. Bayardo, R. J., 1998. Efficiently mining long patterns
from databases. SIGMOD '98: Proceedings of the
1998 ACM SIGMOD international conference on
Management of data, Seattle, USA, pp. 85-93.

4. Brin, S. et al, 1997. Dynamic itemset counting and
implication rules for market basket data. SIGMOD
'97: Proceedings of the 1997 ACM SIGMOD
international conference on Management of data,
Tucson, USA, pp. 255-264.

5. Cooper, C., 2006. The age specific degree
distribution of web-graphs. Combinatorics,
Probability and Computing, Vol. 15, No. 5, pp. 637-
661.

6. Han, J. et al, 2000. Mining frequent patterns without
candidate generation. SIGMOD '00: Proceedings of
the 2000 ACM SIGMOD international conference on
Management of data, Dallas, USA, pp. 1-12.

7. Han, J., Kamber, M and Pei. Data Mining Concepts
and Techniques, The Morgan Kaufmann Series in
Data Management Systems, Morgan Kaufmann
Publishers, July 2011.

8. Purdom, P. W. et al, 2004. Average-case
performance of the apriori algorithm. SIAM J. on
Comput., Vol. 33, pp. 1223-1260.

9. Watts, D. J. 2004. The "new" science of networks.
Annual Review of Sociology, Vol. 30, pp. 243-270.

10. Zaki, M. J. and Ogihara, M., 1998. Theoretical
foundations of association rules. Proc. 3rd SIGMOD
Worksh. Research Issues in Data Mining and
Knowledge Discovery, Seattle, USA, pp. 1-8.

11. Zheng, Z. et al, 2001. Real world performance of
association rule algorithms. KDD '01: Proceedings
of the seventh ACM SIGKDD international
conference on Knowledge discovery and data
mining, San Francisco, USA, pp. 401-406.

0
200
400
600
800

12345 R
un

ni
ng

 T
im

e

(in

Se
co

nd
s)

Minimum Support (in %)

Apriori vs Improved Algorithm

Improved Apriori

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

10

(
DDDD

)
C

20

12
Y
e
a
r

	An Effcient Algorithm for Mining Association Rules in MassiveDatasets
	Author's

	Keywords
	I. Introduction
	II. Background
	a) Formal statement of the problem
	b) Review of Apriori algorithm
	c) Related researches of association rules

	III. Proposed algorithm
	IV. Performance evaluation
	V. Experimental results
	VI. Conclusion
	VII. Acknowledgements
	References Références Referencias

