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An Effcient Algorithm for Mining Association 
Rules in Massive Datasets 

D. Gunaseelan α & P. Uma σ 

Abstract - Data mining, also known as Knowledge Discovery in 
Databases (KDD) is one of the most important and interesting 
research areas in 21st century. Frequent pattern discovery is 
one of the important techniques in data mining. The 
application includes Medicine, Telecommunications and World 
Wide Web. Nowadays frequent pattern discovery research 
focuses on finding co-occurrence relationships between items. 
Apriori algorithm is a classical algorithm for association rule 
mining. Lots of algorithms for mining association rules and 
their mutations are proposed on the basis of Apriori algorithm. 
Most of the previous algorithms Apriori-like algorithm which 
generates candidates and improving algorithm strategy and 
structure but at the same time many of the researchers not 
concentrate on the structure of database. In this research 
paper, it has been proposed an improved algorithm for mining 
frequent patterns in large datasets using transposition of the 
database with minor modification of the Apriori-like algorithm. 
The main advantage of the proposed method is the database 
stores in transposed form and in each iteration database is 
filtered and reduced by generating the transaction id for each 
pattern. The proposed method reduces the huge computing 
time and also decreases the database size. Several 
experiments on real-life data show that the proposed algorithm 
is very much faster than existing Apriori-like algorithms. Hence 
the proposed method is very much suitable for the discovering 
frequent patterns from large datasets.  
Keywords : Data mining, frequent pattern mining, 
transposition of database, Apriori algorithm. 

I. Introduction 

ata mining is one of the most dynamic emerging 
research in today’s database technology and 
Artificial Intelligent research; the main aim is to 

discover valuable patterns from a large collection of 
data for users. In the transaction database, mining 
association rule is one of the important research 
techniques in data mining field. The original problem 
addressed by association rule mining was to find the 
correlation among sales of different items from the 
analysis of a large set of super market data. Right now, 
association rule mining research work is motivated by 
an extensive range of application areas, such as 
banking, manufacturing, health care, medicine, and 
telecommunications. There are two key issues that need 
to be addressed when applying association analysis. 
 
 

Author α σ : College of Computer & Information Systems JAZAN 
University, Kingdom of Saudi Arabia. 

E-mail α : dgseela@yahoo.com        

E-mail σ : prmluma@gmail.com  
 

The first one is that discovering patterns from a 
large dataset can be computationally expensive, thus 
efficient algorithms are needed. The second one is that 
some of the discovered patterns are potentially spurious 
because they may happen simply by chance. Hence, 
some evaluation criteria are required.  

Agrawal and Srikant (1994) proposed the Apriori 
algorithm to solve the problem of mining frequent 
itemsets. Apriori uses a candidate generation method, 
such that the frequent (k+1)-itemset in one iteration can 
be used to construct candidate (k+1)-itemsets for the 
next iteration. Apriori terminates its process when no 
new candidate itemsets can be generated. It is a multi-
pass algorithm. 

Unlike Apriori, the FP-growth method was 
proposed by Han et al. (2000) uses an FP-tree to store 
the frequency information of the transaction database. 
Without candidate generation, FP-growth uses a 
recursive divide-and-conquer method and the database 
projection approach to find the frequent itemsets. 
However, the recursive mining process may decrease 
the mining performance and raise the memory 
requirement.  

Most of the reviews are presented in Section 
2.2.A lot of algorithms were proposed to optimize the 
performance of the Apriori-like algorithm. In this 
research paper it has been presented an efficient and 
improved frequent pattern algorithm for mining 
association rules in large datasets. It is a two-pass 
algorithm. 

The remainder of the paper is organized as 
follows: In Section 2, it has been described in brief an 
Apriori algorithm, and the relative researches of 
association rules. In Section 3 provides definitions for 
the mining method, and detailed steps on the proposed 
algorithm in mining frequent itemsets. An illustration is 
demonstrated in Section 4. In Section 5, the design of 
the experiment and performance analysis is discussed; 
finally, in Section6 offers conclusions.   

II. Background 

At first, the data mining technique for 
association rule mining is the support-confidence 
framework established by Agrawal et al. [AIS 93]. The 
most important time-consuming part of the association 
rule algorithm is to discover large itemsets, while the 
generation of association rules from the given large 
itemsets is straightforward. This paper has been 
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focused on the discovery of large itemsets. For 
description, some well-known methods and notions 
based on this framework is used throughout this paper. 
In this section it has been presented the formal 
statement of association rule mining and the description 
of Apriori algorithm and related research review. 

a) Formal statement of the problem 
The following is a formal statement of 

association rule mining for transactional databases.  
Let I = {i1, i2, i3, … , in} represents a set of ‘n’ 

distinct data items. Generally, a set of items is called an 
itemset, and an itemset with k items is denoted as a k-
itemset. Database D is a set of transactions, where the 
ith transaction Ti denotes a set of items, such as Ti⊆ I. ∣D∣ 
is the total number of transactions in D, and ∣Ti∣ is the 
number of distinct items in transaction Ti. Each 
transaction is associated with a unique identifier, which 
is termed as TID. An association rule is an implication of 
the form X → Y, where X, Y ⊆ I, and X ∩ Y = ϕ. There 
are measures of quality for each rule in support of 
itemset X ∪ Y and confidence of rule X → Y. First, we 
need to calculate the support of itemset X ∪ Y, which is 
the ratio (denoted by s%) of the number of transactions 
that contain the X ∪ Y to ∣D∣. Next, the confidence of rule 
X → Y is the ratio (denoted by c%) of the number of 
transactions containing X ∪ Y to the number of 
transactions that contain X in database D. The problems 
of association mining rules from database D can be 
processed in two important steps: (1) locate all frequent 
itemsets whose supports are not less than the user-
defined minimum support threshold ξ, where ξ ∈ (0, 1), 
and, (2) obtain association rules directly from these 
frequent itemsets with confidences not less than the 
user-defined minimum confidence threshold. The most 
time-consuming part of mining association rules is to 
discover frequent itemsets. 

b) Review of Apriori algorithm 
In conventional Apriori-like methods, the level 

wise process of identifying sets of all frequent itemsets 
is in a combination of smaller, frequent itemsets. In the 
kth level, the Apriori algorithm identifies all frequent k-
itemsets, denoted as Lk. Ck is the set of candidate k-
itemsets obtained from Lk−1, which are suspected 
frequent k-itemsets. For each transaction in D, the 
candidate k-itemsets in Ck contained within the 
transaction are determined, and their support count is 
increased by 1/∣D∣. Following scanning (reading) and 
contrasting with the entire D, when the supports of 
candidate k-itemsets are greater than or equal to user-
defined minimum support threshold ξ, they immediately 
become frequent k-itemsets. At the end of level k, all 
frequent itemsets of length k or less have been 
discovered. During the execution, numerous candidate 
itemsets are generated from single itemsets, and each 
candidate itemset must perform contrasts on the entire 
database, level by level, while searching for frequent 

itemsets. However, the performance is significantly 
affected because the database is repeatedly read to 
contrast each candidate itemset with all transaction 
records of the database. 

c) Related researches of association rules  
In 1995, Savasere et al. proposed the partition 

algorithm to improve the efficiency of Apriori algorithm, it 
does so by efficiently reducing the number of scans in 
the database, however, considerable  time is still wasted 
scanning infrequent candidate itemsets [3]. In 1996, 
Pork et al. proposed an efficient and fast algorithm 
called DHP (direct hashing and pruning) for the initial 
candidate set generation. This method efficiently 
controls the number of candidate 2-itemsets, pruning 
the size of the database [4]. In 1999, Han et al. 
proposed a top-down method, which investigates 
progressively deeper, into the data was developed for 
the efficient mining of multiple-level association rules 
from large transactional databases based on the 
classical Aprioir principle. In 1996, Toivonen proposed a 
sampling algorithm which reduces the number of 
database scan to a single scan, but still wastage 
considerable time on candidate itemsets [9]. In1996, 
Brid et al. proposed the dynamic itemset count (DIC) 
algorithm [5] for finding large itemsets, which uses fewer 
passes over the data than classical algorithms, and yet 
uses fewer candidate itemsets than methods based on 
sampling. In addition, in 1999, Dunkel et al. proposed a 
column-wise apriori algorithm for frequent itemsets and 
in 2001, Berzal et al. proposed a tree based association 
rule mining which transformed the storage structure of 
the data, to reduce the time needed for database scans, 
improving overall efficiency. 

III. Proposed algorithm 

The proposed algorithm improvement mainly 
concentrated on (1) for reducing frequent itemset and 
(2) for reducing storage space as well as the computing 
time.  In the case of large datasets like Wal-Mart 
datasets, the proposed algorithm is very much useful for 
reducing the frequent patterns and also reducing the 
database size for every subsequent passes. For 
example, in the improved algorithm, the number of 
occurrence of frequent k-itemsets when k-itemsets are 
generated from (k-1)-itemsets is computed. If k is 
greater than the size of the database D, there is no need 
to scan database D which is generated by (k-1)-itemsets 
according to the Aprior property and it can be remove 
automatically.  

Transposition of database: A given database as 
a relation between original and transposed 
representations of a database is defined in Table 1. The 
itemsets are D= {I1, I2, …, In} and transaction ids are 
TID = {T1, T2, …, Tm}. A string notation for itemsets is 
used, for example, I1I4I5 denotes the itemset {I1, I4, I5} 
and T2T4

 denotes the transaction ids set {T2, T4}. This 
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dataset is used in all the examples between two sets: a 
set of items (attributes) and a set of transactions 
(tuples). 

Table 1 : Database D and transposition Database DT 

D
 

 

 
 
 
 
 

DT
 

 
 
 
 
 

 

Table 2 : Notations used 

Notations Description 
D Given database 

DT Transposed database 

CT Candidate transaction IDs 

CT1
 Candidate transaction IDs of size-1 

LT1
 Large transaction IDs of size-1 

CTk-1
 Candidate transaction IDs of size-k-1 

LTk-1
 Large transaction IDs of size-k-1 

s Minimum support  

c Minimum confidence 

Count Frequency  
 

At first, the given transaction database file D is 
transposed to database DT and count the number of 
item and number of transaction string generated for 
each item and sort the item numbers. Now apply Apriori-
like algorithm in which first calculate the frequent 
transactions CT1. It reduces infrequent transactions and 
its item details. For the subsequent passes Apriori-gen 
has been applied and finds the subsequent frequent 
transactions.  

Lemma 1:
 

All the subsets of a frequent 
transaction must also frequent. In other words, all the 
supersets of a frequent transaction must also infrequent.

 

Improved Algorithmic steps are described as 
below:

 

1.
 

First the function apriori-gen(LTk-1) is called and to 
generate candidate k-transaction set by frequent k-
transactions.

 

2.
 

Checking whether candidate transactions CT
 

are 
joined into candidate k-transactions or not. It 
proceeds by calling function recursively 
has_infrequent_transactions(ct, LTk-1). If it is true, it 
means the set of transactions are not frequent and 
should be removed. Otherwise, scan database DT.

 

3. The occurrence of frequent k-transaction is 
computed by generating (k-1)-transactions from k-
transactions. If k-transaction is greater than the size 
of database DT, it is not needed to scan database 
DT which is generated by (k-1)-transactions based 
on the lemma 1, and it can be deleted. 

4. If the size of database DT is greater than or equal to 
k, then call function subset(CTk, dt), which computes 
frequent pattern using a subsequent iterative level-
wise approach based on candidate generation.  

Algorithm 1: Improved Algorithm 
Input: A transposed database DT and the user 

defined minimum support threshold s. 
Output: The complete set of frequent patterns 

Step 1: Convert Database D into transpose form DT 
Step 2: Compute CT1 candidate transaction sets of size-
1 and finds the support count. 
Step 3:Compute the large transaction sets (LT ) of size-1. 
             (i.e., for all CT1 is greater than or equal to 
minimum support.) 

LT1 = {Large 1-transaction set (LT )}; 
For (k=2; LTk-1 = 0; k++) do  
      Begin 
CTk = Apriori-gen(LTk-1, ct ); // new candidate transaction 
sets 
      End 
Return LT = ∪kLTk; 

Algorithm 2: Apriori-gen (LTk-1), Generate candidate sets 
For all transactions p ∈ LTk-1 do begin 
      For all transactions q ∈ LTk-1 do begin 
                If p.transaction1=q.transaction,…, 
p.transactionk-2=q.transactionk-2,  
p.transactionk-1< q.transactionk-1 then begin 
ct=p ∞ q; 
If has_infrequent_subset(ct, LTk-1) then 
delete ct; 
Else  
For all transaction set t∈ DT do begin 
If count(t) <k then delete t; 
Else begin  
Ct=subset(CTk, t); 
End 
End 
For all candidate transactions ct∈CTi do begin 
CT.count = CT.count + 1; 
End; End; 
LTk = {ct∈CTk | CT.count ≥ s}; 
End; End; 
End; 
End; 
Return CTk; 
Algorithms 3: has_infrequent_subset(ct, LTk-1) 

// checking the elements of candidate generation 
For all (k-1)-sub transaction set of ct do  

Transaction IDs Items 

T1 I1, I2, I3 

T2 I2, I3, I4 

T3 I1, I3, I4 

.. … 

Items Transaction IDs 

I1 TI, T3 

I2 TI, T2 

I3 T1, T2, T3 

I4 T2, T3 
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Begin 
If t ∈ LTk-1 then  
return true; 
Else 
return false; 
End. 

The main advantage of the proposed algorithm 
for frequent patterns discovery are, it  reduces the size 
of the database after second pass and, the storage 
space and saves the computing time.  

IV. Performance evaluation 

The following is an example shows the 
processing steps of the proposed algorithm 

Figure 1 shows the original Database D and the 
transposed database DT. There are 15 transaction IDs in 
the database DT, that is |DT| = 9 and minimum support 
s = 20%. The improved algorithm for mining frequent 
patterns in DT is used. 
1. Scan the database DT for support count of each 

candidate transactions. 

In the first iteration of the improved algorithm, all 
transaction sets are the member of the set of candidate 
1-transactions, CT1. The proposed method scans all the 
itemsets in DT and count the number of occurrences of 
each itemset. 

2. Compute the support count with minimum support.  

The user defined minimum support s is 20%, 
that the required support count is 2. Based on the 
minimum support, we can determine the set of frequent 
set of 1-transaction IDs(LT1). That means all the 
candidate 1-transaction IDs are satisfied with user 
defined minimum support s. 

3. Generate all candidate transactions of size-2 i.e., 
CT2 from LT1 and count the support count. 

The algorithm generates candidate transactions 
CT2 from large transaction set of size-1, LT1. Compute 
the number of occurrences in each transaction set by 
scanning the database DT. Accumulate the total number 
of sub-transaction IDs with their support count. 

4. Compare the number of occurrences of candidate 
transaction IDs with their minimum support s. 

The Large transaction ID sets of size-2, LT2 are 
determined by computing the number of occurrences of 
each candidate transaction IDs CT2 with the minimum 
support s. Based on LT2, we can determined a new 
modified transposed database DT

2. 

5. Generate candidate transactions of size-3 from LT2 
by scanning new modified database DT

2 and finds 
the support count of CT3. 

First, combine the large transactions of size-2, 
LT2 with LT2 to determine CT3. Based on the lemma 1, 

we can determine the four letter candidate transaction 
IDs C3 cannot possibly be frequent transactions and 
therefore prune from CT3. This is one of the advantages 
of saving time to count the number of occurrence of 
transaction IDs unnecessarily during the subsequent 
scan of DT

2 for finding LT3.  

6. Compare the support count of candidate 
transaction IDs with minimum support. 

The modified database DT
2 is scanned by 

computing LT3. i.e., the large transaction IDsof size-3, 
LT3 are determined by computing the number of 
occurrences of each candidate transaction IDs CT3 with 
the minimum support s.  

7. Repeat the steps 4 to 6 until no more candidate 
transaction IDs are generated. 

That is the algorithm terminates, having found 
all of the frequent transaction IDs. Also, it creates the 
modified database DT

3, DT
4, etc., based the size of the 

transaction IDs. 
The following are the explanation of the 

proposed algorithm with an example. 

 
 
 
 
 
 
 
 
 

 

Original Database D  

Transposed Database |DT| = 15 

Now apply the improved algorithm; 

 

 

 

 

 

 

 

 

 

 

 

 

Transaction ID Item ID 
T1 1, 14 

T2 2, 4, 6, 7, 13, 15 

T3 4, 6, 10, 11, 12, 14 

T4 2, 3, 6, 13 

T5 1, 3, 5, 8, 10, 11, 12, 14 

T6 1, 5, 7, 12, 13, 14 

T7 3, 5, 7, 10, 11, 12, 13, 14 

T8 1, 2, 9, 12 

T9 7, 15 

Item ID Transaction ID 
1 T1, T5, T6, T8 
2 T2, T4, T8 

 3 T4, T5, T7 
4 T2, T3 
5 T5, T6, T7 
6 T2, T3, T4 
7 T2, T6, T7, T9 
8 T5 
9 T8 
10 T3, T5, T7 
11 T3, T5, T7 
12 T3, T5, T6, T7, T8 
13 T2, T4, T6, T7 
14 T1, T3, T4, T5, T6, T7 
15 T2, T9 
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Minimum Support (s)=20% 

Pass 1: Generate candidates for k=1 

 

C1={ T1, T2, T3, T4, T5, T6, T7, T8, T9} 

C1 T1 T2 T3 T4 T5 T6 T7 T8 T9 
Support 2 6 6 4 8 6 8 4 2 

 
L1 = {T2:6, T3:6, T4:4, T5:8, T6:6, T7:8, T8:4} 

Pass 2: Generate candidates for k=2 

C2 = {(T2,T3), (T2,T4), (T2,T5), (T2,T6), (T2,T7), 
(T2,T8), (T3,T4), (T3,T5),  

 
(T3,T6), (T3,T7), (T3,T8), (T4,T5), (T4,T6), 

(T4,T7), (T4,T8), (T5,T6), 
 (T5,T7), (T5,T8), (T6,T7), (T6,T8), (T7,T8) }   - 21 

candidate sets 

After applying improved algorithm 

C1 T2T3 T2T4 T2T5 T2T6 T2T7 T2T8 T3T4 T3 T5 T3T6 T3T7 T3T8 
Sup 2 3 0 2 2 1 2 4 2 4 1 

 
C1 T4T5 T4T6 T4T7 T4T8 T5T6 T5T7 T5T8 T6T7 T6T8 T7T8 

Sup 2 2 3 1 4 3 2 4 2 1 
 

L2 = {(T2T4):3, (T3T5):4, (T3T7):4, (T4T7):3, 
(T5T6):4, (T5T7):3, (T6T7):3} 
              – 7 large transaction sets only 

|DT| = 11 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on L2, we can prune infrequent 
transaction sets from the transposed database DT. After 
pruning, the new modified transposed database DT

2
 with 

number of itemsets is 11 only. Previously it was 15.  

Pass 3: Generate candidates for k=3 

C3

 
= {(T3 T5 T7), (T5 T6 T7)}

 

 

 

L3

 
= {(T3 T5 T7), (T5 T6 T7)}

 

Based on L3, we can prune infrequent 
transaction sets from the transposed database DT. After 
pruning, the new modified transposed database DT

3

 
with 

number of itemsets is 7 only. Previously it was 11. 
 

 

                      |DT
3| = 8 

 
 
 
 
 
 
 
 
 
 
 
Pass 4: Generate candidates for k=4 

V. Experimental results 

C4 = { (T3 T5 T6 T7): 1 }  

L4 =  {ϕ} 

To evaluate the efficiency and effectiveness of 
the improved algorithm, we performed an extensive 
study of two algorithms: Apriori-like and improved 
algorithm, on both real time synthetic data sets with 
different ranges. All the experiments were examined on 
Pentium IV machine 1GB RAM, running Microsoft 
Windows 7. Two algorithms, Apriori and Improved 
algorithm were implemented in Java 2.0.  

Also we got the real time medical database with 
2280 itemsets and 4200 elements. The running time 
comparison between improved algorithm and Apriori 
algorithm are shown in the Figure 1 with minimum 
support ranges from 1 percentage (%) to 5 percentages 
(%). 

The importance of improved algorithm is to 
reduce the number of items in each and every scan and 
also reduce the size of the original dataset. There are 

Item ID Transaction ID 
1 T1, T5, T6, T8 
2 T2, T4, T8 
3 T5, T7 
5 T5, T6, T7 
6 T2, T3, T4 
7 T2, T6, T7, T9 
10 T3, T4, T5, T7 
11 T3, T4, T5, T7 
12 T3, T4, T5, T6, T7, T8 
13 T2, T6, T7 
14 T1, T3, T4, T5, T6, T7 

C3

 
T3 T5 T7

 
T5 T6 T7

 

Support
 

4
 

3
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Item ID Transaction ID
1 T1, T5, T6, T8

5 T5, T6, T7

7 T2, T6, T7, T9

10 T3, T4, T5, T7

11 T3, T4, T5, T7

12 T3, T4, T5, T6, T7, T8

13 T2,T6, T7

14 T1, T3, T4, T5, T7



three aspects to make this algorithm better than the 
original one. 
 

 
 

Figure 1: Running time between Apriori and improved 
algorithm 

Firstly, when the candidates are being 
produced, instead of dealing with all the items of the 
previous large set, only the elements which having the 
same transaction ids are crossed. At the same time, 
generating frequent patterns, it may reduce the 
computing time dramatically and the size of the 
database is reduced. Secondly, by pruning, the number 
of elements in the candidate sets is decreased once 
more based on modified database. Finally, the 
computing time and storage space are saved. 

VI. Conclusion 

In this research paper, it has been proposed an 
improved algorithm for mining frequent pattern based 
on Apriori-like algorithm. The main advantages of an 
improved algorithm are that it can  reduce the number of 
scanning by the transposed database DT, redundancy 
by the time of generating sub-transaction set tests and 
verifying them in the database. In order to discover 
frequent patterns in massive datasets with more 
columns than rows, it has been presented a complete 
framework for the transposition; the item set in the 
transposed database of the transposition of many 
classical transactions is given. Also it has been 
compared the classical Apriori algorithm with an 
improved algorithm. It has been presented the 
experimental results, using synthetic data, showing that 
the proposed algorithm always outperform Apriori 
algorithm. Hence, the proposed algorithm is very much 
suitable for a massive datasets. 
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