
© 2012. Ch V M K Hari, K S V Krishna Srikanth & N S S S Girish Kumar. This is a research/review paper, distributed under the terms of
the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting
all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 13 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

System Design Principles – Reuse: Online Attendance System
 By Ch V M K Hari, K S V Krishna Srikanth & N S S S Girish Kumar

 Institute of Technology GITAM University

Abstract - Software engineering is an engineering approach for software development. In order to
develop large software several phases has to be followed by the developer to achieve good quality
software; cost effectively. System Design is the most important activity in software development
which reflects reusability. System Design specifies what a new or modified system is going to do. To
achieve good quality software, the primary characteristics of neat module decomposition are low
coupling {data coupling}, high cohesion {functional cohesion} and top-down approach has to be
followed. We applied these principles on developing Online Attendance System and observed
reusability of code. The system has been successfully tested in our institute. Effective design
principles always lead to an effective reusability which in turn benefited with Return on Investment
(ROI).

Keyterms : Design, Coupling, Cohesion, Reusability, Online Attendance System.

GJCST-C Classification: D.2.0

System Design Principles Reuse Online Attendance System

Strictly as per the compliance and regulations of:

System Design Principles – Reuse: Online
Attendance System

Ch V M K Hari α, K S V Krishna Srikanth σ & N S S S Girish Kumar ρ

Abstract - Software engineering is an engineering approach for
software development. In order to develop large software
several phases has to be followed by the developer to achieve
good quality software; cost effectively. System Design is the
most important activity in software development which reflects
reusability. System Design specifies what a new or modified
system is going to do. To achieve good quality software, the
primary characteristics of neat module decomposition are low
coupling {data coupling}, high cohesion {functional
cohesion} and top-down approach has to be followed. We
applied these principles on developing Online Attendance
System and observed reusability of code. The system has
been successfully tested in our institute. Effective design
principles always lead to an effective reusability which in turn
benefited with Return on Investment (ROI).
Keyterms : Design, Coupling, Cohesion, Reusability,
Online Attendance System.

I. Introduction

oftware engineering is the application of a
systematic, disciplined, quantifiable approach to
the development, operation, maintenance and

retirement of software [1]. The use of the term
systematic approach implies that methodologies are
used for developing software. Software engineering
includes process, managing techniques, technical
methods, and use of tools. Software engineering deals
with the problem of developing ‘large’ software.
Software engineering helps to reduce the programming
complexity. Software engineering principles or
methodologies use two important techniques (1)
abstraction and (2) decomposition to reduce problem
complexity. The principle of abstraction implies that a
problem can be simplified by omitting irrelevant details.
The principle of decomposition states that a complex
problem is divided into several smaller problems and
then smaller problems are solved one by one.

The goal of software engineering is to develop
high quality software with low cost i.e., within time and
budget constraints. New software systems are built from
the old ones and all must interoperate and cooperate
with each other.

Software is meant to solve some problem of the
client (the people whose needs are to be satisfied by the

Author

α

:

Department of IT GITAM Institute of Technology GITAM
University. E-mail : kurmahari@gmail.com

Author

σ

: Department of IT GITAM Institute of Technology GITAM
University. E-mail : ksvksrikanth@gmail.com

Author

ρ

: Department of IT GITAM Institute of Technology GITAM
University. E-mail : girishnsss@hotmail.com

software). The problem is to develop software
systematically to satisfy the needs of clients [2]. There
are some factors for basic problem which affect the
approaches selected to solve the problem and these
factors are the primary forces that drive the progress
and development in the field of software engineering.
 Software Development Life Cycle activities will
have several stages where in one identifies the problem
to be solved, develop a design, writes the code and so
on. Software life cycle defines entry and exit criteria for
every phase. A phase can start only if its phase-entry
criteria have been satisfied. Without software life cycle it
becomes difficult for software project managers to
monitor the progress of the project. The software life-
cycle [5, 6] consists of: feasibility study, requirements
analysis, design, construction, testing (validation),
deployment and maintenance. The development
process tends to run iteratively through these phases
rather than linearly.
 Upon successfully demonstrating the feasibility
of a project, the requirements analysis begins. The
design starts after the requirements analysis is
complete, and coding begins after the design is
complete. Once the programming is completed, the
code is integrated and testing is done. Upon successful
completion of testing, the system is installed. After this,
the regular operation and maintenance of the system
takes place.

Fig. 1 : Software Life Cycle

S

Feasibility Study

Requirement

Analysis

System Design

Construction

Testing

Deployment

Maintenance

Feasibility Report

SRS Document

System Design Document

Programs

Test Plan

User Manuals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

23

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

 System Design is the process of defining
architecture, modules, interfaces and data for a system
to specify the requirements of proposed system. The
design of a system is essentially a blueprint or a plan for
a solution for the system. It specifies what components
are needed for the system, their behavior and how they
should be interconnected [2, 3]. The design activity
begins when the SRS document is available. During
design we further refine the architecture. The goal is to
transform the requirements specified in the document
into a structure that is suitable for implementation in
some programming language.
 Design focuses on the module view. A module
of a system can be considered a system, with its own
modules. A system as set of modules with defined
behavior interacts with each other in a defined manner
may produce some behavior or services for its
environment. A good software design can be arrived
infrequently by using single step procedure but rather
through several iterations through a series of steps.

The design characteristics include the following:
1. Top-down approach: A top-down design approach

starts by identifying the major components of the
system, decomposing them into their lower-level
components and iterating until the desired level of
detail is achieved.

2. Coupling: Coupling between modules is the
strength of interconnections between modules or a
measure of the degree of interdependence between
two modules. Classification of different types of
coupling will help to estimate the degree between
modules. The classification starts from low to high:

a. Data Coupling: Two modules are said to be data
coupled, if communication of modules is through
a parameter.

b. Stamp Coupling: Two modules are said to be
stamp coupled provided, if communication of
modules is through composite parameters.

c. Control Coupling: Two modules are said to be
control coupled when one module controls the
execution behavior of another module.

d. Common Coupling: Two modules are said to be
common coupled, if they share data through
some global data items.

e. Content Coupling: Two modules are said to be
content coupled provided one module refers to a
piece of information defined in other module.

3. Cohesion: Cohesion of a module represents how
the internal elements of the module are tightly
bound to one another. Cohesion of a module gives
the designer an idea about the different functions in
it and how they belong together in the same
module.

 The different classes of cohesion that a module
may possess from high to low are:

a. Functional Cohesion: It is the highest. In this, all
the elements of the module contribute to achieve
a single function.

b. Sequential Cohesion: When the elements are
together in a module, the output of one element
forms the input to another.

c. Communication Cohesion: In this, the elements
are together and they operate on the same input
or output data.

d. Procedural Cohesion: In this, a module contains
number of functions in which certain sequences
have to be carried out for achieving an objective.

e. Temporal Cohesion: In this, elements of the
module are executed in the same time span.

f. Logical Cohesion: It occurs if all the elements of a
module have some logical relationship between
them and perform similar operations.

g. Coincidental Cohesion: It is the lowest. A module
is said to be coincidental cohesive, if it performs
set of tasks that relate to each other very loosely
and functions put in are out of pure coincidence
without any design.

4. Span of Control: Number of subordinate modules
under given modules.

5. Size: Indicates the overall code size.
6. Sharability of modules: Identify the commonalities

with the program.

 A module with high cohesion and low coupling
is said to be functionally independent of other modules
i.e., cohesive module performs a single task or function
and has minimal interaction with other modules.
Functional independence is a sign to a good design as
it reduces error propagation; reuse of a module
becomes possible; and the complexity of the design is
reduced.

II. Proposed design principles

a) Top-down Approach
 The top-down approach starts from the higher
levels and decompose downwards to lower levels,
identifying connections/collaborations at every stage.
The top-down approach (also called stepwise design)
starts from high level design description and break it
down into different sub design or systems to gain
observation into its composed sub systems. This gives
good understanding of the problem. This starts with
system specifications. It specifies/defines a module to
implement the specifications. It specifies subordinate
modules and then treats each specified module as the
problem. Top-down design methods result in some form
of elaboration where we reach to a level when no more
refinement is needed and the design can be
implemented directly. The top-down approach
published by many researchers is found to be extremely
useful for design. Most design methodologies are based
on the top-down approach.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

24

(
DDDD

)
C

20

12
Y
e
a
r

b) Coupling
 Coupling is a measure of the relationship (i.e.,
dependency) between two modules. Coupling
measures the degree to which each program module
depends on each one of the other modules [3, 7].
Coupling is a measure of interconnection among
modules in a program structure. Coupling captures the
notion of dependence. Coupling tries to capture how
strongly modules are interconnected. Coupling depends
on type of information flow.
 If two modules interchange large amounts of
data, then they are highly independent. The degree of
coupling depends on their interface complexity. The
interface complexity is determined by number of types
of parameters that are interchanged while invoking the
functions of the module. Low coupling is often a note of
good design as it supports goals of high readability and
maintainability.
 Data Coupling : Data coupling occurs between
two modules when data are passed by parameters
using a simple argument list and every item in the list is
used. An example is an elementary data item (which
should be problem related) passed as parameter
between two modules. Example can be an integer, a
character, a string etc.

Fig. 2 : illustrates the module that retrieves student
information using student id

 Strengths of data coupling are: a module sees
only the data elements it requires. Weakness of data
coupling is, a module can be difficult to maintain if many
data elements are passed.

c) Cohesion
 Cohesion considers maximizing relationship
between elements of same module. Cohesion is the
measure of functional strength of a module [4, 7]. High
cohesion is a mark for associating desirable features of
software including robustness, reliability, reusability and
understandability.
 Functional Cohesion : Functional cohesion is
the strongest cohesion. In a functionally bound module,
all the elements of the module are related to performing
a single function. By function, we mean modules
accomplishing a single goal. A functionally cohesive
module performs one and only one problem related
task. Functionally cohesive modules may be simple and
perform one task, such as Read Customer Record.
 For example, a module containing all the
functions required to manage employees’ pay-roll
exhibits functional cohesion. When a module exhibits
functional cohesion, then we could be able to describe it
using a single sentence.

Strengths of functional cohesion are functionally
cohesive modules are good candidates for re-use,
systems built with functionally cohesive modules are
easily understood and, therefore, easier to maintain.
Weakness of functional cohesion is designers should
guard against designing over-simplified modules or
methods. If functional cohesion is taken too far in
structured design, the system design consists of
hundreds of modules comprised of two or three lines of
code.

d) Span of Control
 Span of Control is a measure of the number of
modules directly controlled by a higher-level routine. It is
the number of sub-modules under a module. The
number of subordinate modules for a project can be in 3
or 5 modules or levels.

Fig. 3 : illustrates the span of control for OAS main
module as 4

e) Size
 The size indicates the overall code size.
Example, 50 lines of code.

f) Sharability of modules
 Identify the commonalities with the program and
identify reuse components before development.

III. Case study: online attendance
system

 Online Attendance System is software
developed for daily student attendance in colleges and
institutes. It facilitates to access the attendance
information of a particular student in a particular class.
The attendance information is sorted by the system,
which will be provided by the faculty for a particular
class. This system will also help in evaluating
attendance eligibility criteria of a student [8]. This helps
faculty marks student’s class attendance easily and
quickly.
 The purpose of developing online attendance
system is to produce a computerized solution to manual
attendance procedure as manual process is time
consuming & mostly not effective and another purpose
is to generate the report automatically at the end of the
session, and also at end of the academic.
 This attendance system lets faculty and
administration do the following easily:
 Prints class attendance sheets when needed.
 Faculty checks student attendance instantly.

Retrieve student
details

Retrieve student
attendance Student ID

Student information

Main Module
[OAS]

Admin Faculty Head Student

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

25

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

 The Head of the department or institution can check
the attendance monthly, date-wise, at end of the
academic and also check the summarized
attendance of particular student when required.

 The scope of the project is this system is
intended for engineering institutions which is a web
application. In this system there are mainly four entities;
admin, faculty, HOD and student. The admin is the main
secretary of the system who enters the data into the
system.

a) Admin Module
 The first entity is Admin who is the powerful in
the system. The admin has the possibility to add new
students, new faculty, new subjects and new courses;
edit and delete the existing ones. The admin can update
details of multiple students where students can be
promoted to next class or semester easily.
 The admin can allocate subjects to faculty for a
particular class, so that the attendance registers are
created dynamically. If allocation for a subject is
updated with new faculty, the created registers are
transferred to that particular faculty. The admin can view
the allocations and registers as and when required.
 For faculties to take attendance of an
academic, the admin has the possibility to set
attendance start date and end date. For new academic,
the existing dates are deleted and added again.

To send the attendance report of the student to
their parents, the admin gets the absentees’ details of all
the classes on the given date and details of the students
whose attendance is less than the required percentage
for the given month.

b)

Faculty Module

The second entity is Faculty who plays an

important role in the system. The Faculty takes the
attendance of the students in this module.

The Faculty when selects the date, period and
the register, navigates to the selected register where the
attendance is taken to the students and saves the
details which cannot be updated. When selecting the
date, the faculty can give attendance from the
mentioned start date and end date added by the admin.

To view the register of the subjects handled by
the Faculty, the faculty selects the register, and views
the attendance details of all the students till date. The
Faculty can also view the overall number of classes,
total attended classes and the percentage.

c)

HOD Module

The HOD module also plays a major role in the

system. This module is exceptionally used to view the
attendance reports of the student. The user of this
module can be Head of the Department or Head of the
Institution.

The Reports include:
1) Subject-Wise Report, where faculty is selected, and

obtains the list of registers of the particular faculty.
This is similar to the register view of the faculty
module.

2) Student-Wise Report, where the student ID is given
to get the cumulative attendance report of the
student for all subjects where report contains total
classes, attended classes and the percentage of
the attendance.

3) Date-Wise Report, where particular class and date
are selected to view the attendance of the given
date for all periods.

4) Monthly Report, where particular class and month
are selected to view the attendance report in a
cumulative format for all subjects with total classes,
attended classes and percentage.

5) Semester-Wise Report, where particular class is
selected to view the overall attendance report of the
semester or academic up to the attendance end
date. This report will be generated only after the
attendance end date. This report is also similar to
the cumulative format of monthly report.

d) Student Module
 The final entity is the Student where he/she can
get details that include the profile, and attendance
report. The attendance details contain the total classes,
attended classes. To get the percentage of the
attendance to the classes attended, it is generated only
after the attendance end date. This is also similar to
Student-Wise report in the HOD module.
 The four entities or modules mentioned above
can access the features given to them in the system,
where they have to login with their own username and
password.
 The Online Attendance System applies the
proposed design principles, where the operations
performed by each entity satisfy the characteristics of
design low coupling and high cohesion which provides
an efficient system for ease of usage. The top-down
approach when used illustrated the software
engineering principle decomposition where the system
is broken into different sub-modules so that the module
required to start is easily identified and implemented
from that level. When applying system design principles
to the application, application quality has improved and
is operated at high level of efficiency and the
requirements of the system specified are satisfied.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

26

(
DDDD

)
C

20

12
Y
e
a
r

IV. Screen shots

Fig. 4 : Online Attendance System Home Screen

Fig. 5 : Faculty Module - Opening Attendance Register

Fig. 6 : Faculty Module - Taking student Attendance for
the selected Register

Fig. 7 : Attendance Register View

Fig. 8 : HOD Module – Selection Interface for Monthly
Report

Fig. 9 : Cumulative Report for selected Month with all
subjects

Fig. 10 : HOD Module – Selection Interface for
Semester-Wise Attendance Report

Fig. 11 : Cumulative Semester Wise Report with all
subjects

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

27

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Fig. 12 : Attendance Report Viewed by Student

V. Conclusion

 This paper mainly elaborates basic principles of
System Design and enumerates reusability is best
practice for deliver product facility. The Online
Attendance System that is developed meets the design
objectives of the system design for which it has been
developed. The users associated with the system
understand its advantage and easily navigates with the
user interface. It was intended to solve as requirement
specification. The current system can be a good
reference when implementing a similar system in other
institutions as the system is proved to be workable and
effective.

References Références Referencias

1. Software Engineering: A Practitioner's Approach –
Roger S Pressman

2. An Integrated Approach for Software Engineering –
Pankaj Jalote

3. Data Coupling Design Principle: http://it. toolbox.
com/blogs/enterprise-solutions/ design-principles-
coupling-data-and-otherwise-160 61

4. Functional Cohesion Design Principle: http:// it.
toolbox.com/blogs/enterprise-solutions/ design-
principles-cohesion-16069

5. Nabil.M.A.M and A.Govardhan, A Comparison
Between Five Models of Software Engineering, IJCSI
International Journal of Computer Science Issues,
Vol. 7, Issue 5, pp: 94-102,September 2010.

6. Sanjana Taya and Shaveta Gupta, Comparative
Analysis of Software Development Life Cycle
Models, IJCST Vol. 2, Issue 4, pp:536-539, Oct . -
Dec. 2011.

7. Imran Baig, Measuring Cohesion and Coupling of
Object-Oriented Systems, Master Thesis Software
Engineering, Thesis no: MSE-2004:29, Month:
August Year: 2004

8. H.C. Ting and T.O. Ting, An Online Attendance
Record System, ICEED 2009, Month: December
Year: 2009

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

28

(
DDDD

)
C

20

12
Y
e
a
r

	System Design Principles – Reuse: Online Attendance System
	Author's
	Keyterms
	I. Introduction
	II. Proposed design principles
	a) Top-down Approach
	b) Coupling
	c) Cohesion
	d) Span of Control
	e) Size
	f) Sharability of modules

	III. Case study: online attendancesystem
	a) Admin Module
	b) Faculty Module
	c) HOD Module
	d) Student Module

	IV. Screen shots
	V. Conclusion
	References Références Referencias

