
Impact of Mediated relations as Confounding Factor on Cohesion1

and Coupling Metrics: For Measuring Fault Proneness in Oo2

Software Quality Assessment3

Amjan.Shaik1, Amjan.Shaik2 and Dr.C.R.K.Reddy34

1 JNTUH, Hyderabad, Andhra Pradesh, India.5

Received: 6 December 2011 Accepted: 1 January 2012 Published: 15 January 20126

7

Abstract8

Mediated class relations and method calls as a confounding factor on coupling and cohesion9

metrics to assess the fault proneness of object oriented software is evaluated and proposed new10

cohesion and coupling metrics labeled as mediated cohesion (MCH) and mediated coupling11

(MCO) proposed. These measures differ from the majority of established metrics in two12

respects: they reflect the degree to which entities are coupled or resemble each other, and they13

take account of mediated relations in couplings or similarities. An empirical comparison of the14

new measures with eight established metrics is described. The new measures are shown to be15

consistently superior at measure the fault proneness.16

17

Index terms—18

1 Introduction19

bject Oriented (OO) design and code, for instance, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. These metrics offer ways to20
evaluate the excellence of software and their use in former phases of software development can help organizations21
in evaluating large software development quickly, at a low cost [3]. But how do we know which metrics are22
functional in capturing important quality attributes such as Degree of Fault prone, effort, efficiency or amount of23
maintenance adaptations. Experiential studies of real systems can provide relevant answers. There have been few24
empirical studies evaluating the effect of objectoriented metrics on software quality and constructing models that25
utilize them in predicting quality attributes in the system, such as [16,17,18,19,5,20,21,22,23,8,12,24]. More data26
based by empirical studies, which are capable of being verified by observation or experiment are needed. The27
evidence gathered through these empirical studies is today considered to be the most powerful support possible28
for testing a given hypothesis.29

A well designed component, in which the functionality has been appropriately distributed to its various30
subcomponents, is more likely to be fault free and will be easier to adapt. Appropriate distribution of function31
underlies two key concepts of object-oriented design: coupling and cohesion. Coupling is the extent to which32
the various subcomponents interact. If they are highly interdependent then changes to one are likely to have33
significant effects on the behavior of others. Hence loose coupling between its subcomponents is a desirable34
characteristic of a component. Cohesion is the extent to which the functions performed by a subsystem are35
related. If a subcomponent is responsible for a number of unrelated functions then the functionality has been36
poorly distributed to subcomponents. Hence high cohesion is a characteristic of a well designed subcomponent.37

Many metrics have been proposed to measure the coupling and cohesion to predict the fault-prone and38
maintainability of software. However, few studies had been done using coupling and cohesion to assess the39
quality of components.40

In this context we therefore analyzed the mediated relations of the classes and method calls as a confounding41
factor for coupling and cohesion metrics and proposing two new metrics called Mediated coupling and Mediated42
cohesion to measure the fault proneness to assess the quality of the software.43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

7 (

The rest of the paper organized as, in section II the traditional cohesion and coupling metrics revealed, which44
followed by section III that explores transitivity as a confounding factor.45

2 II.46

3 The Coupling and Cohesion in OO Programming a) Measur-47

ing Coupling48

The term coupling is usually used in a derogatory manner in design review meetings. Even so, it’s not possible to49
design aefficient OO application without coupling. flexible, less scalable application software. However, coupling50
can be used so that it enables objects to talk to each other while also preserving the scalability and flexibility.51

Though this seems like a difficult task, OO metrics can help you to measure the right level of coupling.52
Coupling between Objects (CBO): CBO is defined as the number of non-inherited classes associated with the53

target class. It is counted as the number of types that are used in attributes, parameters, return types, throws54
clauses, etc. Primitive types and system types (e.g. Java.lang.*) is not counted.55

Data Abstraction Coupling (DAC): DAC is defined as the total number of referring types in attribute56
declarations. Primitive types, system types, and types inherited from the super classes are not counted.57

Method Invocation Coupling (MIC): MIC is defined as the relative number of classes that receive messages58
from a particular class. nMIC is the total number of classes that receive a message from the target class.59

Demeter’s Law: Ian Holland first proposed the Law of Demeter. The class form of Demeter’s Law has two60
versions: a strict version and a minimized version. The strict form of the law states that every supplier class61
of a method must be a preferred supplier. The minimization form is more permissive than the first version and62
requires only minimizing the number of acquaintance classes of each method.63

Definition 1 (Client): Method M is a client of method f attached to class C, if in M message f is sent to an64
object of class C , or to C . If f is specialized in one or more subclasses, then M is only a client of f attached to65
the highest class in the hierarchy.66

Method M is a client of some method attached to C . Definition 2 (Supplier): If M is a client of class C then C67
is a supplier to M. In other words, a supplier class to a method is a class whose methods is called in the method.68
In Listing 1, the Product class is a supplier class to the client class Order.69

4 Definition 3 (associate Class70

): A class 1 C is an acquaintance class of method M attached to class 2 C , if 171
C is a supplier to M and 1 C is not one of the following:72
The same as 2 C ; A class used in the declaration of an argument of M A class used in the declaration of an73

instance variable of 2 C74
Definition 4 (Preferred-supplier class): Class B is called a preferred-supplier to method M (attached to the75

class C) if B is a supplier to M and one of the following conditions holds: B is used in the declaration of an76
instance variable of C B is used in the declaration of an argument of M , including C and its super classes. B is77
a preferred acquaintance class of M .78

5 b) Measuring Cohesion79

In OO methodology, classes contain certain data and exhibit certain behaviors. This concept may seem fairly80
obvious, but in practice, creating welldefined and cohesive classes can be tricky. Cohesive means that a certain81
class performs a set of closely related actions. A lack of cohesion, on the other hand, means that a class is82
performing several unrelated tasks. Though lack of cohesion may never have an impact on the overall functionality83
of a particular classor of the application itself-the application software will eventually become unmanageable as84
more and more behaviors become scattered and end up in the wrong places.85

Thus, one of the main goals of OO design is to come up with classes that are highly cohesive. Luckily, there’s86
a metric to help to verify that the designed class is cohesive.87

6 The LCOM Metric: Lack of Cohesion in Methods88

The Lack of Cohesion in Methods metric is available in the following three formats: LCOM1: Take each pair of89
methods in the class and determine the set of fields they each access. If they have disjointed sets of field accesses,90
the count P increases by one. If they share at least one field access, Q increases by one. After considering each91
pair of methods:92

7 (93

) () If the number of methods or variables in a class is zero (0), LCOM2 is undefined as displayed as zero (0).94
LCOM3: This is another improvement on LCOM1 and LCOM2 and is proposed by Henderson-Sellers. It is95
defined as follows:RESULT P Q ? P Q : 0 => ? A low() () () () LCOM3 m sum mA / a / m 196

where m, a, mA, sum mA are as defined in LCOM2.97

2

8 = ? ?98

The following points should be noted about LCOM3:99
The LCOM3 value varies between 0 and 2. LCOM3>1 indicates the shortage of cohesion and is considered a100

kind of alarm.101
If there is only one method in a class, LCOM 3 is undefined and also if there are no attributes in a class102

LCOM3 is also undefined and displayed as zero (0).103
Each of these different measures of LCOM has a unique way to calculate the value of LCOM.104
An extreme lack of cohesion such as LCOM3>1 indicates that the particular class should be split into two or105

more classes.106
If all the member attributes of a class are only accessed outside of the class and never accessed within the107

class, LCOM3 will show a high-value.108
A slightly higher value of LCOM means that you can improve the design by either splitting the classes or109

re-arranging certain methods within a set of classes.110

9 III.111

10 Mediated relations of classes and method calls as confound-112

ing factor a) Confounding Factor113

The term confounding refers to a situation in which an association between an independent variable and a114
dependent variable is thought to be the result of the influence of a third variable [17]. The suggestion is that an115
apparent association between the independent and dependent variables may be partly or completely accounted116
for by a third variable. By the same token, the absence of an apparent association between independent and117
dependent variables may be the result of a failure to account for the effects of a third variable. The third118
variable that distorts the true association between the independent and dependent variables is usually called a119
confounding variable. The distortion that results from perplexing may lead to overestimation or underestimation120
of an association, depending on the direction and magnitude of the relations that the confounding variable has121
with the independent and dependent variables [18].122

To quantitatively analyze the confounding factor, a number of confounding factor analysis models using various123
modeling techniques, such as linear, logistic, and probity regression, have been developed [16], [17], [19], [20], [21],124
[22]. Among these models, the confounding factor analysis model based on linear regression techniques has been125
widely used in health sciences and epidemiological research [16], [19], [20]. Compared to models based on other126
modeling techniques, the linear-regression-based model has two main advantages: 1) A number of statistical127
methods have been developed for this model to test for a confounding variable [16], [19] and 2) it is easy to128
determine whether a confounding variable leads to overestimation or underestimation of the true association129
between the independent and dependent variables [16], [20].130

11 b) Mediated relation as dependent variable131

The objective of this study is to empirically investigate to identify the cohesion and coupling metrics under132
consideration of mediated class relations and method calls as confounding factors and assessing the association133
between these cohesion and coupling metrics and degree of fault-proneDegree of Fault prone is an important134
external quality attribute and identifying faults-prone classes is very useful because: 1) It enables software135
developers to take focused preventive actions that can reduce maintenance costs and improve quality and 2)136
it helps software managers to allocate resources more effectively. In this study, Degree of Fault prone denotes137
the extent of class responsibility in component failure. We need to select the depth of the transitivity in class138
relations and method calls as the dependent variable for our study.139

12 Mediated coupling between objects[mcbo]140

We begin by regarding any object-oriented software system as a directed graph, in which the vertices are the141
classes comprising the system. Suppose such a system comprises a set of classes C (C |{ 1.. }) i C i m ? ? = .142
Let { } m(C) m(C) () | (1..) j j i j m C i n ? ? =() () 1 m mI mI C C C C j j i i = ? ? = ? a)() () () mI143
C C j i cw C C j i mI C C j ? = ? ?144

, the directed edge weight also can refer as degree of direct coupling (DDC) between two classes cw is always145
between 0 and 1.146

b) Finding a degree of mediated coupling (DMC)147
Based on this degree of direct coupling between two classes, we can generalize the process of detecting the148

degree of mediated coupling mcw between any two classes j C and k C exists such that() 0 mI C C j k ? ? ,149
which follows: 1 1 (,) | | 1 mcw C C p e j k j k cw i i = ? ? ? ? ? ? ? ? ? ? = ? ? () (mI 0) j k C C iff ? ?150
In above equation e j k151

? is the set of DDCs of edges, which are building path p between class j C and k C i cw is DDC of an edge i152
that belongs to j k e ? . p is one of the path out of set of paths P between j153

3

18 MEDIATED COHESION BETWEEN THE METHODS OF A CLASS

13 C and k C c) Applying Confounding factor154

The confounding factor of path p is ()p cf , that155
assessed as follows:| | 1 () (,) | | () e p cf C C p j k e p ? = ?156
Here in the above equation() p157
e is set edges that belongs to the path p .158
Then the generalized degree of mediated coupling between class j C and k C() mcw C C j k ? can be found159

as follows 1 1 () | | () (,) (,) 1 mcw C C P j k mcw cf C C i C C i j k j k i = ? ? ? ? + ? ? ? ? ? ? ? = ? ?160
The following hypothesis is a convention from the empirical study conducted on applications that are confirmed161

as fault prone:162
If ’ mcw ’is the degree of mediated coupling between two objects O objects in application’s fault proneness.163
V.164

14 Mediated cohesion (mch)165

The proposed cohesion metric is based on transitive function calls. The Hypothesis of the proposed cohesion166
metric can be defined as:167

We build a graph based on the function calls between the functions of the same class.168
The edge between any two functions represents thetotal number of similar properties used similar functions169

invoked in both functions. Finding Degree of Direct Cohesion(DDCH)170
The Degree of Direct Cohesion Between two functions that represents the edge weight can be generalized as171

follows:172

15 Year173

If a method A invoking a method B and method B is invoking method C, then the connection between A and174
C can be considerable and their cohesiveness is transitive if and only if A,B and C belongs to a same class or175
classes in an inheritance hierarchy .1 1 () | | () (,) (,) 1 mchw M M P j k mchw cf M M i M M i j k j k i = ?176
? ? ? + ? ? ? ? ? ? ? = ? ?177

Since the class level cohesiveness is significant to predict the fault proneness than the method level cohesiveness.178
The class level confounding factor of a class C measures as follows:() 1 1 | ’ | | | C ccf P mC = ? ? ? ? ? ? ?179
Since the the ration between number paths build in the graph and number of methods exists indicates the180

cohesiveness, if the majority of paths between same classes can be considered as a confounding factor. Hence181
the above equation justifies the measurement of the class level confounding factor. Then the class level mediated182
cohesiveness can be measured as follows:1 1 () | ’| () () 1 mchw C P mchw ccf p C i i = ? ? ? + ? ? ? ? ? =183
? ?184

Here in the above equation185

16 Results analysis186

We conducted experiments on applications build under SDLC standards. We make sure the heterogeneity in of187
classes of the applications considered for experiments. We188

17 Conclusion189

These results clearly demonstrate that the proposed metrics MCBO and MCH for coupling and coherence are190
very good predictors for fault proneness. It is clearly identified that 1. Mediated coupling between two objects191
is having an impact of the number of connections and path length variation as confounding factors.192

18 Mediated Cohesion between the methods of a class193

is having an impact of the number of paths build between any two methods of a class as confounding factors.194
These two metrics MCBO and MCH are measuring as numeric values rather in binary quantity. 1 2195

1© 2012 Global Journals Inc. (US)
2© 2012 Global Journals Inc. (US)Global Journal of Computer Science and Technology

4

Figure 1:

Figure 2:

5

18 MEDIATED COHESION BETWEEN THE METHODS OF A CLASS

Figure 3:

39
Volume XII Issue XIII Version I
D D D D)
(
Global Journal of Computer Science and Technology

Figure 4:

6

then there an edge exists between these two methods. The graph is not a directed graph, since edge weight196
is not changing under any direction of direct connection between the two functions. The DDCH that referred as197
edge weight can be measured as follows:198

Based on this degree of direct Cohesion between two methods, we can generalize the process of detecting the199
degree of mediated cohesion mchw between any two methods j M and k M of same class exists such that200

? is the set of DDCHs of edges, which are building a path p between methods j M and k M i chw is DDCH of201
an edge i that belongs to j k e ? .202

p is one of the path out of set of paths P203

[Chidamber and Kemerer ()] ‘A metrics Suite for Object-Oriented Design’. S Chidamber , C Kemerer . IEEE204
Trans. Software Engineering 1994. 20 (6) p. .205

[Tegarden et al. ()] ‘A Software Complexity Model of Object-Oriented Systems’. D Tegarden , S Sheetz , D206
Monarchi . Decision Support Systems 1995. 13 (3-4) p. .207

[Briand et al. ()] ‘A Unified Framework for Cohesion Measurement in Object-Oriented Systems’. L Briand , J208
Daly , J Wust . Empirical Software Engineering 1998. 3 p. .209

[Briand et al. ()] ‘A Unified Framework for Coupling Measurement in Object-Oriented Systems’. L Briand , J210
Daly , J Wust . IEEE Transactions on software Engineering 1999. 25 p. .211

[Basili et al. ()] ‘A Validation of Object-Oriented Design Metrics as Quality Indicators’. V Basili , L Briand , W212
Melo . IEEE Transactions on Software Engineering 1996. 22 (10) p. .213

[Elemam et al. ()] A Validation of Object-Oriented Metrics, K Elemam , S Benlarbi , N Goel , S Rai . ERB-1063.214
1999. National Research Council of Canada (NRC (Technical Report)215

[Cartwright and Shepperd (2000)] ‘An Empirical Investigation of an Object-Oriented Software System’. M216
Cartwright , M Shepperd . IEEE Transactions of Software Engineering, Aug. 2000. 26 p. .217

[Harrison et al. ()] ‘An Evaluation of MOOD set of Object-Oriented Software Metrics’. R Harrison , S J Counsell218
, R V Nithi . IEEE Trans. Software Engineering 1998. (6) p. .219

[Aggarwal et al. ()] ‘Analysis of Object-Oriented Metrics’. K K Aggarwal , Yogesh Singh , Ruchikamalhotra220
Arvinderkaur . International Workshop on Software Measurement (IWSM), (Montréal, Canada) 2005.221

[Bieman and Kang ()] ‘Cohesion and Reuse in an Object-Oriented System’. J Bieman , B Kang . Proc. CM Symp.222
Software Reusability (SSR’94), (CM Symp. Software Reusability (SSR’94)) 1995. p. .223

[Gyimothy et al. (2005)] ‘Empirical validation of object-oriented metrics on open source software for fault224
prediction’. T Gyimothy , R Ferenc , I Siket . IEEE Trans. Software Engineering Oct. 2005. 31 p. .225

[Briand et al. ()] ‘Exploring the relationships between design measures and software quality’. L Briand , J Daly226
, V Porter , J Wust . Journal of Systems and Software 2000. 5 p. .227

[Chidamber et al. ()] ‘Managerial use of Metrics for Object-Oriented Software: An Exploratory Analysis’. S228
Chidamber , D Darcy , C Kemerer . IEEE Transactions on Software Engineering 1998. 24 (8) p. .229

[Hitz and Montazeri ()] ‘Measuring Coupling and Cohesion in Object-Oriented Systems’. M Hitz , B Montazeri230
. Proc. Int. Symposium on Applied Corporate Computing, (Int. Symposium on Applied Corporate Comput-231
ingMonterrey, Mexico) 1995.232

[Lee et al. ()] ‘Measuring the Coupling and Cohesion of an Object-Oriented program based on Information flow’.233
Y Lee , B Liang , S Wu , F Wang . International Conference on Software Quality, (Maribor, Slovenia) 1995.234

[Li and Henry ()] ‘Object-Oriented Metrics that Predict Maintainability’. W Li , S Henry . Journal of Systems235
and Software 1993. 23 (2) p. .236

[Henderson-Sellers ()] Object-Oriented Metrics, Measures of Complexity, B Henderson-Sellers . 1996. Prentice237
Hall.238

[Lorenz and Kidd ()] Object-Oriented Software Metrics, M Lorenz , J Kidd . 1994. Prentice-Hall.239

[Ping and Xiaoxing ()] Predicting Degree of Fault prone using OO Metrics: An Industrial Case Study, Yu Ping240
, Ma Xiaoxing , Lujian . 2002. Budapest, Hungary. p. .241

[Briand et al. ()] ‘Replicated Case Studies for Investigating Quality Factors in Object-Oriented Designs’. L Briand242
, J Wüst , H Lounis . Empirical Software Engineering: An International Journal 2001. 6 p. .243

[Elemam et al. ()] ‘The Prediction of Faulty Classes Using Object-Oriented Design Metrics’. K Elemam , W Melo244
, J Machado . Journal of Systems and Software 2001. 56 p. .245

[Chidamber and Kemerer ()] ‘Towards a Metrics Suite for Object Oriented design’. S Chidamber , C Kemerer246
. Proc. Conference on Object-Oriented Programming: Systems, Languages and Applications (OOPSLA’91),247
(Conference on Object-Oriented Programming: Systems, Languages and Applications (OOPSLA’91)) 1991.248
26 p. . (Published in SIGPLAN Notices)249

[Lake and Cook ()] ‘Use of factor analysis to develop OOP software complexity metrics’. A Lake , C Cook . Proc.250
6th Annual Oregon Workshop on Software Metrics, (6th Annual Oregon Workshop on Software MetricsSilver251
Falls, Oregon) 1994.252

[Binkley and Schach ()] ‘Validation of the Coupling Dependency Metric as a risk Predictor’. A Binkley , S Schach253
. International Conference on Software Engineering (ICSE), 1998. p. .254

7

	1 Introduction
	2 II.
	3 The Coupling and Cohesion in OO Programming a) Measuring Coupling
	4 Definition 3 (associate Class
	5 b) Measuring Cohesion
	6 The LCOM Metric: Lack of Cohesion in Methods
	7 (
	8 = ? ?
	9 III.
	10 Mediated relations of classes and method calls as confounding factor a) Confounding Factor
	11 b) Mediated relation as dependent variable
	12 Mediated coupling between objects[mcbo]
	13 C and k C c) Applying Confounding factor
	14 Mediated cohesion (mch)
	15 Year
	16 Results analysis
	17 Conclusion
	18 Mediated Cohesion between the methods of a class

