
© 2012. K.Venkat Nagarjuna & P.V Subba Reddy. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 13 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

 By K.Venkat Nagarjuna & P.V Subba Reddy

 QIS College of Engg & Technology Ongole, Andhrapradesh, India

Abstract - The Bayesian classifier is a fundamental classification technique. We also consider
different concepts regarding Dimensionality Reduction techniques for retrieving lossless data. In this
paper, we proposed a new architecture for pre-processing the data. Here we improved our Bayesian
classifier to produce more accurate models with skewed distributions, data sets with missing
information, and subsets of points having significant overlap with each other, which are known issues
for clustering algorithms. so, we are interested in combining Dimensionality Reduction technique like
PCA with Bayesian Classifiers to accelerate computations and evaluate complex mathematical
equations. The proposed architecture in this project contains the following stages: pre-processing of
input data, Naïve Bayesian classifier, Bayesian classifier, Principal component analysis, and
database. Principal Component Analysis(PCA) is the process of reducing components by calculating
Eigen values and Eigen Vectors. We consider two algorithms in this paper: Bayesian Classifier based
on KMeans(BKM) and Naïve Bayesian Classifier Algorithm(NB).

Keywords : Dimensionality Reduction, PCA, Classifiers, K-means.

GJCST-C Classification: H.2.3

Bayesian Classifiers Programmed in Sql Using Pca

Strictly as per the compliance and regulations of:

Bayesian Classifiers Programmed in SQL Using PCA

K.Venkat Nagarjuna α & P.V Subba Reddy σ

Abstract - The Bayesian classifier is a fundamental
classification technique. We also consider different concepts
regarding Dimensionality Reduction techniques for retrieving
lossless data. In this paper, we proposed a new architecture
for pre-processing the data. Here we improved our Bayesian
classifier to produce more accurate models with skewed
distributions, data sets with missing information, and subsets
of points having significant overlap with each other, which are
known issues for clustering algorithms. so, we are interested in
combining Dimensionality Reduction technique like PCA with
Bayesian Classifiers to accelerate computations and evaluate
complex mathematical equations. The proposed architecture
in this project contains the following stages: pre-processing of
input data, Naïve Bayesian classifier, Bayesian classifier,
Principal component analysis, and database. Principal
Component Analysis(PCA) is the process of reducing
components by calculating Eigen values and Eigen Vectors.
We consider two algorithms in this paper: Bayesian Classifier
based on KMeans(BKM) and Naïve Bayesian Classifier
Algorithm(NB).
Keywords : Dimensionality Reduction, PCA, Classifiers,
K-means.

I. Introduction

n this paper, we focus on programming Bayesian
classifiers in SQL using Principal Component
Analysis(PCA). PCA allows us to compute a linear

transformation that maps data from a high dimensional
space to a lower dimensional space.PCA “combines”
the essence of attributes by creating an alternative,
smaller set of variables. In this paper, We studied two
complementary aspects: increasing accuracy and
generating efficient SQL code. We introduce two
classifiers: Naive Bayes and a classifier based on class
decomposition using K-means clustering. We consider
two complementary tasks: model computation and
scoring a data set. We study several layouts for tables
and several indexing alternatives. We analyse how to
transform equations into efficient SQL queries and
introduce several query optimizations.

Our contributions are the following: We present
two efficient SQL implementations of Naı¨ve Bayes for
numeric and discrete attributes. We introduce a
classification algorithm that builds one clustering model
per class, which is a generalization of K-means [1], [4].
Our main contribution is a Bayesian classifier

Author α : M.tech student, Dept of CSE, QIS College of Engg &
Technology Ongole, Andhrapradesh, India.

Author σ : Associate Professor, Dept of CSE, QIS College of Engg &
Technology, Ongole, Andhrapradesh, India.

programmed in SQL, extending Naı¨ve Bayes, which
uses K-means to decompose each class into clusters.
We generalize queries for clustering adding a new
problem dimension. That is, our novel queries combine
three dimensions: attribute, cluster, and class
subscripts. We identify Euclidean distance as the most
time-consuming computation. Thus, we introduce
several schemes to efficiently compute distance
considering different storage layouts for the data.

II. Definitions

We focus on computing classification models
on a data set X={x1 . . . ; xn} with d attributes X1. . .
..Xd, one discrete attribute G(class or target), and n
records (points). We assume G has m=2values. Data
set X represents a d x n matrix, where xi represents a
column vector. We study two complementary models: 1)
each class is approximated by a normal distribution or
histogram and 2) fitting a mixture model with k clusters
on each class with K-means. We use subscripts I, j, h, g
as follows: i=1 . . . n; j= 1 . . . k; h=1 . . . d; g=1 . . .m.
The T superscript indicates matrix transposition.

Throughout the paper, we will use a small
running example, where d=4; k=3 (for K-means) and
m=2 (binary).

III. Bayesian classifiers programmed in
sql using principal component

analysis

a) Classification
Classification and prediction are two forms of

data analysis that can be used to extract models
describing important data classes or to predict future
data trends. Such analysis can help provide us with a
better understanding of the data at large. Whereas
classification predicts categorical (discrete, unordered)
labels, prediction models continuous valued functions.

b) Bayesian Classification
The Bayesian Classification represents a

supervised learning method as well as a statistical
method for classification. It can solve diagnostic and
predictive problems.

This Classification is named after Thomas
Bayes (1702-1761), who proposed the Bayes Theorem.
Bayesian classification provides practical learning
algorithms and prior knowledge and observed data can
be combined. Bayesian Classification provides a useful

I

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

51

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Bayesian Classifiers Programmed in SQL Using
PCA

perspective for understanding and evaluating many
learning algorithms. It calculates explicit probabilities for
hypothesis and it is robust to noise in input data.
Bayesian classification is based on Bayes’ theorem. A
simple Bayesian classifier is known as the naïve
Bayesian classifier. Bayesian classifiers have exhibited
high accuracy and speed when applied to large
databases.

c) Naïve Bayesian Classification
It is based on the Bayesian theorem It is

particularly suited when the dimensionality of the inputs
is high. Parameter estimation for naive Bayes models
uses the method of maximum likelihood. In spite over-
simplified assumptions, it often performs better in many
complex real world situations

The main advantage of Naïve Bayesian
classification is it requires a small amount of training
data to estimate the parameters.

d) Data Reduction
Data reduction techniques can be applied to

obtain a reduced representation of the data set that is
much smaller in volume, yet closely maintains the
integrity of the original data.
Strategies for data reduction include the following:

Data cube aggregation
Attribute subset selection
Dimensionality reduction
Numerosity reduction
Discretization and concept hierarchy generation

e) Dimensionality reduction
Data encoding or transformations are applied

so as to obtain a reduced or “compressed”
representation of the original data. If the original data
can be reconstructed from the compressed data without
any loss of information, the data reduction is called
lossless. If, instead, we can reconstruct only an
approximation of the original data, then the data
reduction is called lossy. Although they are typically
lossless, they allow only limited manipulation of the
data. In this section, we instead focus on two popular
and effective methods of lossy dimensionality reduction:
wavelet transforms and principal components analysis.

f) Principal Components Analysis
PCA allows us to compute a linear

transformation that maps data from a high dimensional
space to a lower dimensional space. Suppose that the
data to be reduced consist of tuples or data vectors
described by n attributes or dimensions. Principal
components analysis, or PCA (also called the Karhunen-
Loeve, or K-L, method), searches for k n dimensional
orthogonal vectors that can best be used to represent
the data, where k _ n. The original data are thus
projected onto a much smaller space, resulting in
dimensionality reduction. Unlike attribute subset
selection, which reduces the attribute set size by

retaining a subset of the initial set of attributes, PCA
“combines” the essence of attributes by creating an
alternative, smaller set of variables. The initial data can
then be projected onto this smaller set.

g) Methodology
Suppose x1, x2, ..., xM are Nx1 vectors

Step 1: x =
Step 2: subtract the mean: Fi = xi - x
Step 3: form the matrix A = [F1 F2 . . . FM] (NxM matrix),
then compute:

C = = AAT
(Sample covariance matrix, NxN, characterizes

the scatter of the data)
Step 4: compute the Eigen values of C: λ1 >λ2

> . . . >λN
Step 5: compute the eigenvectors of C: u1, u2, . . . , uN

Since C is symmetric, u1, u2, . . . , uN form a
basis, (i.e., any vector x or actually , can be
written as a linear combination of the eigenvectors):

 = b1u1 + b2u2 + . . . + bN uN =

Step 6: (dimensionality reduction step) keep
only the terms corresponding to the K largest Eigen
values:

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

52

(
DDDD

)
C

20

12
Y
e
a
r

 (x -)

x -

where K << N.
These are the steps we should follow to perform

principal component analysis (PCA) to reduce
dimensionality of the high dimensional data.

h) Naı¨ve Bayes
We consider two versions of NB: one for

numeric attributes and another for discrete attributes.
Numeric NB will be improved with class decomposition.
NB assumes attributes are independent, and thus, the
joint class conditional probability can be estimated as
the product of probabilities of each attribute [2]. We now
discuss NB based on a multivariate Gaussian. NB has
no input parameters. Each class is modelled as a single
normal distribution with mean vector Cg and a diagonal
variance matrix Rg. Scoring assumes a model is
available and there exists a data set with the same
attributes in order to predict class G. Variance
computation based on sufficient statistics [5] in one
pass can be numerically unstable when the variance is
much smaller compared to large attribute values or
when the data set has a mix of very large and very small
numbers. For ill conditioned data sets, the computed
variance can be significantly different from the actual

- =

Figure 3

:

Architecture of the proposed method

IV.

Algorithms

We consider two algorithms in this paper:
Bayesian

Classifier Based on K-Means(BKM) algorithm

and Naïve

Bayesian classifier algorithm(NB).

a)

Naïve Bayesian classifier algorithm(NB)

NB has no input parameters. Each class is
modeled as a

single normal distribution with mean

vector (Cg) and a

diagonal variance matrix (Rg).
Therefore, the model is

computed in two passes:

1.

A

first pass to get the mean per class and

2.

Second one to compute the variance per class.

b)

Bayesian Classifier Based on K-Means

We now present BKM, a Bayesian classifier
based on

class decomposition obtained

with the K-

means algorithm.

BKM is a generalization of NB, where

NB has one cluster per

class and the Bayesian classifier

has k > 1 clusters per class. L,

the linear sum of points;

L,Q, the Gaussian parameters.

We generalize K-means to compute m models,
fitting a

mixture model to each class. K-means is

initialized, and then,

it iterates until it converges on all

classes.

The algorithm is as given below.

Initialization:

1.

Get global N; L;Q and mean and standard deviation

2.

Get k random points per class to initialize C.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

53

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

variance or even become negative. Therefore, the model
is computed in two passes: a first pass to get the mean
per class and a second one to compute the variance
per class. The mean per class is given by Cg = Pxi2Yg
xi=Ng, where Yg _ X are the records in class g.
Equation Rg = 1=NgPn xi2Ygðxi _CgÞ∂xi _ CgÞT gives
a diagonal variance matrix Rg, which is numerically
stable, but requires two passes over the data set.

The SQL implementation for numeric NB follows
the mean and variance equations introduced above. We
compute three aggregations grouping by g with two
queries. The first query computes the mean Cg of class
g with a sum ∂XhÞ=count ∂_Þ aggregation and class
priors _g with a count() aggregation. The second query
computes Rg with sum(∂Xh _ _hÞ2Þ. Note the joint
probability computation is not done in this phase.
Scoring uses the Gaussian parameters as input to
classify an input point to the most probable class, with
one query in one pass over X. Each class probability is
evaluated as a Gaussian. To avoid numerical issues
when a variance is zero, the probability is set to 1 and
the joint probability is computed with a sum of
probability logarithms instead of a product of
probabilities. A CASE statement pivots probabilities and
avoids a max() aggregation. A final query determines
the predicted class, being the one with maximum
probability, obtained with a CASE statement. We now
discuss NB for discrete attributes. For numeric NB, we
used Gaussians because they work well for large data
sets and because they are easy to manipulate
mathematically. That is, NB does not assume any
specific probability density function (pdf). Assume X1; . .
.;Xd can be discrete or numeric. If an attribute Xh is
discrete (categorical) NB simply computes its
histogram: probabilities are derived with counts per
value divided by the corresponding number of points in
each class. Otherwise, if the attribute Xh is numeric then
binning is required. Binning requires two passes over
the data set, pretty much like numeric NB. In the first
pass, bin boundaries are determined. On the second
pass, one dimensional frequency histograms are
computed on each attribute.

The bin boundaries (interval ranges) may
impact the accuracy of NB due to skewed distributions
or extreme values. Thus, we consider two techniques to
bin attributes: 1) creating k uniform intervals between
min and max and 2) taking intervals around the mean
based on multiples of the standard deviation, thus
getting more evenly populated bins. We do not study
other binning schemes such as quantiles (i.e.,
equidepth binning).The implementation in SQL of
discrete NB is Straight forward. For discrete attributes,
no pre-processing is required. For numeric attributes,
the minimum, maximum, and mean can be determined
in one pass in a single query. The variance for all
numeric attributes is computed on a second pass to
avoid numerical issues. Then, each attribute is

discretized finding the interval for each value. Once we
have a binned version of X, then we compute
histograms on each attribute with SQL aggregations.
Probabilities are obtained dividing by the number of
records in each class. Scoring requires determining the
interval for each attribute value and retrieving its
probability. Each class probability is also computed by
adding logarithms. NB has an advantage over other
classifiers: it can handle a data set with mixed attribute
types (i.e.,discrete and numerical).be in single-column
format and must be centered.

While not all m models converge:
1. E step: get k distances j per g; find nearest cluster j

per g;update N; L;Q per class.
2. M step: update W;C;R from N; L;Q per class;

compute model quality per g; monitor convergence.

V. Experimental evaluation

We analyze three major aspects: 1)
classification accuracy, 2) query optimization, and 3)
time complexity and speed. We compare the accuracy
of NB, BKM, and decision trees (DTs).

a) Setup
We used the Teradata DBMS running on a

server with a 3.2 GHz CPU, 2 GB of RAM, and a 750 GB
disk. Parameters were set as follows: We set €= 0:001
for K-means. The number of clusters per class was k=4
(setting experimentally justified). All query optimizations
were turned on by default (they do not affect model
accuracy).experiments with DTs were performed using a
data mining tool. We used real data sets to test
classification accuracy (from the UCI repository) and
synthetic data sets to analyze speed (varying d; n). Real
data sets include pima (d = 6; n = 768), spam (d = 7; n
= 4.601), bscale (d = 4; n = 625), and wbcancer (d
=7; n = 569). Categorical attributes (≥3 values) were
transformed into binary attributes.

b) Model Accuracy
In this section, we measure the accuracy of

predictions when using Bayesian classification models.
We used 5-fold cross validation for each run, the data
set was partitioned into a training set and a test set. The
training set was used to compute the model, whereas
the test set was used to independently measure
accuracy. The training set size was 80 percent and the
test set was 20 percent.

BKM ran until K-means converged on all
classes. Decision trees used the CN5.0 algorithm
splitting nodes until they reached a minimum
percentage of purity or became too small. Pruning was
applied to reduce over fit. The number of clusters for
BKM by default was k = 4.

c) Query Optimization
Our best distance strategy is two orders of

magnitude faster than the worst strategy and it is one
order of magnitude faster than its closest rival. The
explanation is that I/O is minimized to n operations and
computations happen in main memory for each row
through SQL arithmetic expressions. Note a standard
aggregation on the pivoted version of X (XV) is faster
than the horizontal nested query variant .Table 6
compares SQL with UDFs to score the data
set(computing distance and finding nearest cluster per
class). We exploit scalar UDFs [5]. Since finding the
nearest cluster is straight forward in the UDF, this
comparison considers both computations as one. This
experiment favors the UDF since SQL requires
accessing large tables in separate queries. As we can
see, SQL (with arithmetic expressions) turned out be
faster than the UDF. This was interesting because both
approaches used the same table as input and
performed the same I/O reading a large table. We
expected SQL to be slower because it required a join
and XH and XD were accessed. The explanation was
that the UDF has overhead to pass each point and
model as parameters in each call.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

54

(
DDDD

)
C

20

12
Y
e
a
r

d) Speed and Time Complexity

We compare SQL and C++ running on the
same computer. We also comp are the time to export
with ODBC. C++ worked on flat files exported from the
DBMS. We used binary files in order to get maximum
performance in C++. Also, we shut down the DBMS
when C++ was running. In short, we conducted a fair
comparison. Table 7 compares SQL, C++, and ODBC
varying n. Clearly, ODBC is a bottleneck. Overall, both
languages scale linearly. We can see SQL performs
better as n grows because DBMS overhead becomes
less important. However, C++ is about four times
faster. Fig. 1 shows BKM time complexity varying n; d
with large datasets. Time is measured for one iteration.
BKM is linear in n and d , highlighting its scalability.

VI. Related work

The most widely used approach to integrate
data mining Algorithms into a DBMS is to modify the
internal source code. Scalable K-means (SKM) [1] and
O-cluster [3] are two examples of clustering algorithms
internally integrated with a DBMS. A discrete Naive
Bayes classifier has been internally integrated with the
SQL Server DBMS. On the other hand, the two main
mechanisms to integrate data mining algorithms without
modifying the DBMS source code are SQL queries and
UDFs. A discrete Naı¨ve Bayes classifier programmed
in SQL is introduced in [6]. We summarize differences
with ours. The data set is assumed to have discrete
attributes: binning numeric attributes is not considered.
Ituses an inefficient large pivoted intermediate table,
whereas our discrete NB model can directly work on a
horizontal layout. Our proposal extends clustering
algorithms in SQL [4] to perform classification,
generalizing Naı¨ve Bayes [2]. K-means clustering was
programmed with SQL queries introducing three
variants [4]: standard, optimized, and incremental. We
generalized the optimized variant. Note that
classification represents a significantly harder problem
than clustering. User-Defined Functions are identified as
an important extensibility mechanism to integrate data
mining algorithms [5], [8]. Atlas [8] extends SQL syntax

with object-oriented constructs to define aggregate and
table functions (with initialize, iterate, and terminate
clauses), providing a user friendly interface to the SQL
standard. We point out several differences with our
work. First, we propose to generate SQL code from a
host language, thus achieving Turing-completeness in
SQL (similar to embedded SQL). We showed the
Bayesian classifier can be solved more efficiently with
SQL queries than with UDFs. Even further, SQL code
provides better portability and Atlas requires modifying
the DBMS source code. Class decomposition with
clustering is shown to improve NB accuracy [7]. The
classifier can adapt to skewed distributions and
overlapping subsets of points by building better local
models. In [7], EM was the algorithm to fit a mixture per
class. Instead, we decided to use K-means because it is
faster, simpler, better understood in database research
and has less numeric issues.

VII. Conclusions

We presented two Bayesian classifiers
programmed in SQL: the Naı¨ve Bayes classifier (with
discrete and numeric Versions) and a generalization of
Naı¨ve Bayes (BKM), based on decomposing classes
with K-means clustering. We studied two
complementary aspects: increasing accuracy and
generating efficient SQL code. We introduced query
optimizations to generate fast SQL code. The best
physical storage layout and primary index for large
tables is based on the point subscript. Sufficient
statistics are stored on denormalized tables. The
Euclidean distance computation uses a flattened
(horizontal) version of the cluster centroids matrix, which
enables arithmetic expressions. The nearest cluster per
class, required by Kmeans, is efficiently determined
avoiding joins and aggregations. Experiments with real
data sets compared NB, BKM, and decision trees. The
numeric and discrete versions of NB had similar
accuracy.BKM was more accurate than NB and was
similar to decision trees in global accuracy. However,
BKM was more accurate when computing a breakdown
of accuracy per class. A low number of clusters

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

55

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Fig. 1 : BKM Classifier: Time Complexity; (default d=4,
k=4, n=100k)

produced good results in most cases. We compared
Equivalent implementations of NB in SQL and C++ with
large data sets: SQL was four times slower. SQL queries
were faster than UDFs to score, highlighting the
importance of our optimizations. NB and BKM exhibited
linear scalability in data set size and dimensionality.
There are many opportunities for future work. We want
to derive incremental versions or sample-based
methods to accelerate the Bayesian classifier. We want
to improve our Bayesian classifier to produce more
accurate models with skewed distributions, data sets
with missing information, and subsets of points having
significant overlap with each other, which are known
issues for clustering algorithms. We are interested in
combining dimensionality reduction techniques like PCA
or factor analysis with Bayesian classifiers. UDFs need
further study to accelerate computations and evaluate
complex mathematical equations.

References Références Referencias

1. P. Bradley, U. Fayyad, and C. Reina, “Scaling
Clustering Algorithms to Large Databases,” Proc.
ACM Knowledge Discovery and Data Mining (KDD)
Conf., pp. 9-15, 1998.

2. T. Hastie, R. Tibshirani, and J.H. Friedman, The
Elements of Statistical Learning, first ed. Springer,
2001.

3. B.L. Milenova and M.M. Campos, “O-Cluster:
Scalable Clustering of Large High Dimensional Data
Sets,” Proc. IEEE Int’l Conf. Data Mining (ICDM), pp.
290-297, 2002.

4. C. Ordonez, “Integrating K-Means Clustering with a
Relational DBMS Using SQL,” IEEE Trans.
Knowledge and Data Eng., vol. 18, no. 2, pp. 188-
201, Feb. 2006.

5. C. Ordonez, “Building Statistical Models and
Scoring with UDFs,” Proc. ACM SIGMOD, pp. 1005-
1016, 2007.

6. S. Thomas and M.M. Campos, SQL-Based Naive
Bayes Model Building and Scoring, US Patent
7,051,037, US Patent and Trade Office, 2006.

7. R. Vilalta and I. Rish, “A Decomposition of Classes
via Clustering to Explain and Improve Naive Bayes,”
Proc. European Conf. Machine Learning (ECML),
pp. 444-455, 2003.

8. H. Wang, C. Zaniolo, and C.R. Luo, “ATLaS: A Small
but Complete SQLExtension for Data Mining and
Data Streams ”

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

56

(
DDDD

)
C

20

12
Y
e
a
r

	Bayesian Classifiers Programmed in SQL Using PCA
	Author's

	Keywords
	I. Introduction
	II. Definitions
	III. Bayesian classifiers programmed insql using principal componentanalysis
	a) Classification
	b) Bayesian Classification
	c) Naïve Bayesian Classification
	d) Data Reduction
	e) Dimensionality reduction
	f) Principal Components Analysis
	g) Methodology
	h) Naı¨ve Bayes

	IV. Algorithms
	a) Naïve Bayesian classifier algorithm(NB)
	b) Bayesian Classifier Based on K-Means

	V. Experimental evaluation
	a) Setup
	b) Model Accuracy
	c) Query Optimization
	d) Speed and Time Complexity

	VI. Related work
	VII. Conclusions
	References Références Referencias

