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Abstract - The Bayesian classifier is a fundamental classification technique. We also consider 
different concepts regarding Dimensionality Reduction techniques for retrieving lossless data. In this 
paper, we proposed a new architecture for pre-processing the data. Here we improved our Bayesian 
classifier to produce more accurate models with skewed distributions, data sets with missing 
information, and subsets of points having significant overlap with each other, which are known issues 
for clustering algorithms. so, we are interested in combining Dimensionality Reduction technique like 
PCA with Bayesian Classifiers to accelerate computations and evaluate complex mathematical 
equations. The proposed architecture in this project contains the following stages: pre-processing of 
input data, Naïve Bayesian classifier, Bayesian classifier, Principal component analysis, and 
database. Principal Component Analysis(PCA) is the process of reducing components by calculating 
Eigen values and Eigen Vectors. We consider two algorithms in this paper: Bayesian Classifier based 
on KMeans( BKM) and Naïve Bayesian Classifier Algorithm(NB). 
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Abstract - The Bayesian classifier is a fundamental 
classification technique. We also consider different concepts 
regarding Dimensionality Reduction techniques for retrieving 
lossless data. In this paper, we proposed a new architecture 
for pre-processing the data. Here we improved our Bayesian 
classifier to produce more accurate models with skewed 
distributions, data sets with missing information, and subsets 
of points having significant overlap with each other, which are 
known issues for clustering algorithms. so, we are interested in 
combining Dimensionality Reduction technique like PCA with 
Bayesian Classifiers to accelerate computations and evaluate 
complex mathematical equations. The proposed architecture 
in this project contains the following stages: pre-processing of 
input data, Naïve Bayesian classifier, Bayesian classifier, 
Principal component analysis, and database. Principal 
Component Analysis(PCA) is the process of reducing 
components by calculating Eigen values and Eigen Vectors. 
We consider two algorithms in this paper: Bayesian Classifier 
based on KMeans( BKM) and Naïve Bayesian Classifier 
Algorithm(NB). 
Keywords : Dimensionality Reduction, PCA, Classifiers, 
K-means. 

I. Introduction 

n this paper, we focus on programming Bayesian 
classifiers in SQL using Principal Component 
Analysis(PCA). PCA allows us to compute a linear 

transformation that maps data from a high dimensional 
space to a lower dimensional space.PCA “combines” 
the essence of attributes by creating an alternative, 
smaller set of variables. In this paper, We studied two 
complementary aspects: increasing accuracy and 
generating efficient SQL code. We introduce two 
classifiers: Naive Bayes and a classifier based on class 
decomposition using K-means clustering. We consider 
two complementary tasks: model computation and 
scoring a data set. We study several layouts for tables 
and several indexing alternatives. We analyse how to 
transform equations into efficient SQL queries and 
introduce several query optimizations. 

Our contributions are the following: We present 
two efficient SQL implementations of Naı¨ve Bayes for 
numeric and discrete attributes. We introduce a 
classification algorithm that builds one clustering model 
per class, which is a generalization of K-means [1], [4]. 
Our main contribution is a Bayesian classifier 
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programmed in SQL, extending Naı¨ve Bayes, which 
uses K-means to decompose each class into clusters. 
We generalize queries for clustering adding a new 
problem dimension. That is, our novel queries combine 
three dimensions: attribute, cluster, and class 
subscripts. We identify Euclidean distance as the most 
time-consuming computation. Thus, we introduce 
several schemes to efficiently compute distance 
considering different storage layouts for the data. 

II. Definitions 

We focus on computing classification models 
on a data set X={x1 . . . ; xn} with d attributes X1. . . 
..Xd, one discrete attribute G(class or target), and n 
records (points). We assume G has m=2values. Data 
set X represents a d x n matrix, where xi represents a 
column vector. We study two complementary models: 1) 
each class is approximated by a normal distribution or 
histogram and 2) fitting a mixture model with k clusters 
on each class with K-means. We use subscripts I, j, h, g 
as follows: i=1 . . . n; j= 1 . . . k; h=1 . . . d; g=1 . . .m. 
The T superscript indicates matrix transposition. 

Throughout the paper, we will use a small 
running example, where d=4; k=3 (for K-means) and 
m=2 (binary). 

III. Bayesian classifiers programmed in 
sql using principal component 

analysis 

a) Classification 
Classification and prediction are two forms of 

data analysis that can be used to extract models 
describing important data classes or to predict future 
data trends. Such analysis can help provide us with a 
better understanding of the data at large. Whereas 
classification predicts categorical (discrete, unordered) 
labels, prediction models continuous valued functions. 

b) Bayesian Classification 
The Bayesian Classification represents a 

supervised learning method as well as a statistical 
method for classification. It can solve diagnostic and 
predictive problems. 

This Classification is named after Thomas 
Bayes (1702-1761), who proposed the Bayes Theorem. 
Bayesian classification provides practical learning 
algorithms and prior knowledge and observed data can 
be combined. Bayesian Classification provides a useful 
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perspective for understanding and evaluating many 
learning algorithms. It calculates explicit probabilities for 
hypothesis and it is robust to noise in input data. 
Bayesian classification is based on Bayes’ theorem. A 
simple Bayesian classifier is known as the naïve 
Bayesian classifier. Bayesian classifiers have exhibited 
high accuracy and speed when applied to large 
databases. 

c) Naïve Bayesian Classification 
It is based on the Bayesian theorem It is 

particularly suited when the dimensionality of the inputs 
is high. Parameter estimation for naive Bayes models 
uses the method of maximum likelihood. In spite over-
simplified assumptions, it often performs better in many 
complex real world situations 

The main advantage of Naïve Bayesian 
classification is it requires a small amount of training 
data to estimate the parameters. 

d) Data Reduction 
Data reduction techniques can be applied to 

obtain a reduced representation of the data set that is 
much smaller in volume, yet closely maintains the 
integrity of the original data. 
Strategies for data reduction include the following: 

Data cube aggregation 
Attribute subset selection 
Dimensionality reduction 
Numerosity reduction 
Discretization and concept hierarchy generation 

e) Dimensionality reduction 
Data encoding or transformations are applied 

so as to obtain a reduced or “compressed” 
representation of the original data. If the original data 
can be reconstructed from the compressed data without 
any loss of information, the data reduction is called 
lossless. If, instead, we can reconstruct only an 
approximation of the original data, then the data 
reduction is called lossy. Although they are typically 
lossless, they allow only limited manipulation of the 
data. In this section, we instead focus on two popular 
and effective methods of lossy dimensionality reduction: 
wavelet transforms and principal components analysis. 

f) Principal Components Analysis 
PCA allows us to compute a linear 

transformation that maps data from a high dimensional 
space to a lower dimensional space. Suppose that the 
data to be reduced consist of tuples or data vectors 
described by n attributes or dimensions. Principal 
components analysis, or PCA (also called the Karhunen-
Loeve, or K-L, method), searches for k n dimensional 
orthogonal vectors that can best be used to represent 
the data, where k _ n. The original data are thus 
projected onto a much smaller space, resulting in 
dimensionality reduction. Unlike attribute subset 
selection, which reduces the attribute set size by 

retaining a subset of the initial set of attributes, PCA 
“combines” the essence of attributes by creating an 
alternative, smaller set of variables. The initial data can 
then be projected onto this smaller set. 

g) Methodology 
Suppose x1, x2, ..., xM are Nx1 vectors 
 
 
 
Step 1: x = 
Step 2: subtract the mean: Fi = xi - x 
Step 3: form the matrix A = [F1 F2 . . . FM] (NxM matrix), 
then compute:  
 
 

C = = AAT 
(Sample covariance matrix, NxN, characterizes 

the scatter of the data) 
Step 4: compute the Eigen values of C: λ1 >λ2 

> . . . >λN 
Step 5: compute the eigenvectors of C: u1, u2, . . . , uN 

Since C is symmetric, u1, u2, . . . , uN form a 
basis, (i.e., any vector x or actually               , can be 
written as a linear combination of the eigenvectors): 

 
 

       = b1u1 + b2u2 + . . . + bN uN = 

Step 6: (dimensionality reduction step) keep 
only the terms corresponding to the K largest Eigen 
values:    

 
  

  

 
  

 
  
 

 

 
 

 
 

 
 

 
 

 
 

 

  
  
  
 

  
  

©  2012 Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
II 

 I
ss
ue

 X
III

  
V
er
sio

n 
I 

52

  
 

(
DDDD

)
C

  
20

12
Y
e
a
r

                   ( x - )

x -

where K << N.
These are the steps we should follow to perform 

principal component analysis (PCA) to reduce 
dimensionality of the high dimensional data.

h) Naı¨ve Bayes
We consider two versions of NB: one for 

numeric attributes and another for discrete attributes. 
Numeric NB will be improved with class decomposition.
NB assumes attributes are independent, and thus, the 
joint class conditional probability can be estimated as 
the product of probabilities of each attribute [2]. We now 
discuss NB based on a multivariate Gaussian. NB has 
no input parameters. Each class is modelled as a single 
normal distribution with mean vector Cg and a diagonal 
variance matrix Rg. Scoring assumes a model is
available and there exists a data set with the same 
attributes in order to predict class G. Variance 
computation based on sufficient statistics [5] in one 
pass can be numerically unstable when the variance is 
much smaller compared to large attribute values or 
when the data set has a mix of very large and very small 
numbers. For ill conditioned data sets, the computed
variance can be significantly different from the actual 
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Figure 3
 
:
 
Architecture of the proposed method

 

IV.
 

Algorithms
 

We consider two algorithms in this paper: 
Bayesian

 
Classifier Based on K-Means(BKM) algorithm 

and Naïve
 
Bayesian classifier algorithm(NB).

 

a)
 

Naïve Bayesian classifier algorithm(NB)
 

NB has no input parameters. Each class is 
modeled as a

 
single normal distribution with mean 

vector (Cg) and a
 

diagonal variance matrix (Rg). 
Therefore, the model is

 
computed in two passes:

 

1.
 

A
 
first pass to get the mean per class and

 

2.
 

Second one to compute the variance per class.
 

b)
 

Bayesian Classifier Based on K-Means
 

We now present BKM, a Bayesian classifier 
based on

 
class decomposition obtained

 
with the K-

means algorithm.
 
BKM is a generalization of NB, where 

NB has one cluster per
 
class and the Bayesian classifier 

has k > 1 clusters per class. L,
 
the linear sum of points; 

L,Q, the Gaussian parameters.
 

We generalize K-means to compute m models, 
fitting a

 
mixture model to each class. K-means is 

initialized, and then,
 
it iterates until it converges on all 

classes.
 

The algorithm is as given below.
 

Initialization:
 

1.
 

Get global N; L;Q and mean and standard deviation
 

2.
 

Get k random points per class to initialize C.
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variance or even become negative. Therefore, the model 
is computed in two passes: a first pass to get the mean 
per class and a second one to compute the variance 
per class. The mean per class is given by Cg = Pxi2Yg 
xi=Ng, where Yg _ X are the records in class g. 
Equation Rg = 1=NgPn xi2Ygðxi _CgÞ∂xi _ CgÞT gives 
a diagonal variance matrix Rg, which is numerically
stable, but requires two passes over the data set.

The SQL implementation for numeric NB follows
the mean and variance equations introduced above. We
compute three aggregations grouping by g with two 
queries. The first query computes the mean Cg of class 
g with a sum ∂XhÞ=count ∂_Þ aggregation and class 
priors _g with a count() aggregation. The second query 
computes Rg with sum(∂Xh _ _hÞ2Þ. Note the joint 
probability computation is not done in this phase. 
Scoring uses the Gaussian parameters as input to 
classify an input point to the most probable class, with 
one query in one pass over X. Each class probability is
evaluated as a Gaussian. To avoid numerical issues 
when a variance is zero, the probability is set to 1 and 
the joint probability is computed with a sum of 
probability logarithms instead of a product of 
probabilities. A CASE statement pivots probabilities and 
avoids a max() aggregation. A final query determines 
the predicted class, being the one with maximum
probability, obtained with a CASE statement. We now 
discuss NB for discrete attributes. For numeric NB, we 
used Gaussians because they work well for large data 
sets and because they are easy to manipulate 
mathematically. That is, NB does not assume any 
specific probability density function (pdf). Assume X1; . . 
.;Xd can be discrete or numeric. If an attribute Xh is 
discrete (categorical) NB simply computes its
histogram: probabilities are derived with counts per 
value divided by the corresponding number of points in 
each class. Otherwise, if the attribute Xh is numeric then 
binning is required. Binning requires two passes over 
the data set, pretty much like numeric NB. In the first 
pass, bin boundaries are determined. On the second 
pass, one dimensional frequency histograms are 
computed on each attribute.

The bin boundaries (interval ranges) may 
impact the accuracy of NB due to skewed distributions 
or extreme values. Thus, we consider two techniques to 
bin attributes: 1) creating k uniform intervals between 
min and max and 2) taking intervals around the mean 
based on multiples of the standard deviation, thus 
getting more evenly populated bins. We do not study 
other binning schemes such as quantiles (i.e., 
equidepth binning).The implementation in SQL of 
discrete NB is Straight forward. For discrete attributes, 
no pre-processing is required. For numeric attributes, 
the minimum, maximum, and mean can be determined 
in one pass in a single query. The variance for all 
numeric attributes is computed on a second pass to 
avoid numerical issues. Then, each attribute is

discretized finding the interval for each value. Once we 
have a binned version of X, then we compute 
histograms on each attribute with SQL aggregations. 
Probabilities are obtained dividing by the number of 
records in each class. Scoring requires determining the 
interval for each attribute value and retrieving its 
probability. Each class probability is also computed by 
adding logarithms. NB has an advantage over other 
classifiers: it can handle a data set with mixed attribute
types (i.e.,discrete and numerical).be in single-column 
format and must be centered.



While not all m models converge: 
1. E step: get k distances j per g; find nearest cluster j 

per g;update N; L;Q per class. 
2. M step: update W;C;R from N; L;Q per class; 

compute model quality per g; monitor convergence. 

V. Experimental evaluation 

We analyze three major aspects: 1) 
classification accuracy, 2) query optimization, and 3) 
time complexity and speed. We compare the accuracy 
of NB, BKM, and decision trees (DTs). 

a) Setup 
We used the Teradata DBMS running on a 

server with a 3.2 GHz CPU, 2 GB of RAM, and a 750 GB 
disk. Parameters were set as follows: We set €= 0:001 
for K-means. The number of clusters per class was k=4 
(setting experimentally justified). All query optimizations 
were turned on by default (they do not affect model 
accuracy).experiments with DTs were performed using a 
data mining tool. We used real data sets to test 
classification accuracy (from the UCI repository) and 
synthetic data sets to analyze speed (varying d; n). Real 
data sets include pima (d = 6; n = 768), spam (d = 7; n 
= 4.601), bscale (d = 4; n = 625), and wbcancer (d 
=7; n = 569). Categorical attributes (≥3 values) were 
transformed into binary attributes. 

b) Model Accuracy 
In this section, we measure the accuracy of 

predictions when using Bayesian classification models. 
We used 5-fold cross validation for each run, the data 
set was partitioned into a training set and a test set. The 
training set was used to compute the model, whereas 
the test set was used to independently measure 
accuracy. The training set size was 80 percent and the 
test set was 20 percent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BKM ran until K-means converged on all 
classes. Decision trees used the CN5.0 algorithm 
splitting nodes until they reached a minimum 
percentage of purity or became too small. Pruning was 
applied to reduce over fit. The number of clusters for 
BKM by default was k = 4. 

c) Query Optimization 
Our best distance strategy is two orders of 

magnitude faster than the worst strategy and it is one 
order of magnitude faster than its closest rival. The 
explanation is that I/O is minimized to n operations and 
computations happen in main memory for each row 
through SQL arithmetic expressions. Note a standard 
aggregation on the pivoted version of X (XV) is faster 
than the horizontal nested query variant .Table 6 
compares SQL with UDFs to score the data 
set(computing distance and finding nearest cluster per 
class). We exploit scalar UDFs [5]. Since finding the 
nearest cluster is straight forward in the UDF, this 
comparison considers both computations as one. This 
experiment favors the UDF since SQL requires 
accessing large tables in separate queries. As we can 
see, SQL (with arithmetic expressions) turned out be 
faster than the UDF. This was interesting because both 
approaches used the same table as input and 
performed the same I/O reading a large table. We 
expected SQL to be slower because it required a join 
and XH and XD were accessed. The explanation was 
that the UDF has overhead to pass each point and 
model as parameters in each call. 
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d) Speed and Time Complexity 

We compare SQL and C++ running on the 
same computer. We also comp are the time to export 
with ODBC. C++ worked on flat files exported from the 
DBMS. We used binary files in order to get maximum 
performance in C++. Also, we shut down the DBMS 
when C++ was running. In short, we conducted a fair 
comparison. Table 7 compares SQL, C++, and ODBC 
varying n. Clearly, ODBC is a bottleneck. Overall, both 
languages scale linearly. We can see SQL performs 
better as n grows because DBMS overhead becomes 
less important. However, C++ is about four times 
faster. Fig. 1 shows BKM time complexity varying n; d 
with large datasets. Time is measured for one iteration. 
BKM is linear in n and d , highlighting its scalability. 

VI. Related work 

The most widely used approach to integrate 
data mining Algorithms into a DBMS is to modify the 
internal source code. Scalable K-means (SKM) [1] and 
O-cluster [3] are two examples of clustering algorithms 
internally integrated with a DBMS. A discrete Naive 
Bayes classifier has been internally integrated with the 
SQL Server DBMS. On the other hand, the two main 
mechanisms to integrate data mining algorithms without 
modifying the DBMS source code are SQL queries and 
UDFs. A discrete Naı¨ve Bayes classifier programmed 
in SQL is introduced in [6]. We summarize differences 
with ours. The data set is assumed to have discrete 
attributes: binning numeric attributes is not considered. 
Ituses an inefficient large pivoted intermediate table, 
whereas our discrete NB model can directly work on a 
horizontal layout. Our proposal extends clustering 
algorithms in SQL [4] to perform classification, 
generalizing Naı¨ve Bayes [2]. K-means clustering was 
programmed with SQL queries introducing three 
variants [4]: standard, optimized, and incremental. We 
generalized the optimized variant. Note that 
classification represents a significantly harder problem 
than clustering. User-Defined Functions are identified as 
an important extensibility mechanism to integrate data 
mining algorithms [5], [8]. Atlas [8] extends SQL syntax 

with object-oriented constructs to define aggregate and 
table functions (with initialize, iterate, and terminate 
clauses), providing a user friendly interface to the SQL 
standard. We point out several differences with our 
work. First, we propose to generate SQL code from a 
host language, thus achieving Turing-completeness in 
SQL (similar to embedded SQL). We showed the 
Bayesian classifier can be solved more efficiently with 
SQL queries than with UDFs. Even further, SQL code 
provides better portability and Atlas requires modifying 
the DBMS source code. Class decomposition with 
clustering is shown to improve NB accuracy [7]. The 
classifier can adapt to skewed distributions and 
overlapping subsets of points by building better local 
models. In [7], EM was the algorithm to fit a mixture per 
class. Instead, we decided to use K-means because it is 
faster, simpler, better understood in database research 
and has less numeric issues. 

VII. Conclusions 

We presented two Bayesian classifiers 
programmed in SQL: the Naı¨ve Bayes classifier (with 
discrete and numeric Versions) and a generalization of 
Naı¨ve Bayes (BKM), based on decomposing classes 
with K-means clustering. We studied two 
complementary aspects: increasing accuracy and 
generating efficient SQL code. We introduced query 
optimizations to generate fast SQL code. The best 
physical storage layout and primary index for large 
tables is based on the point subscript. Sufficient 
statistics are stored on denormalized tables. The 
Euclidean distance computation uses a flattened 
(horizontal) version of the cluster centroids matrix, which 
enables arithmetic expressions. The nearest cluster per 
class, required by Kmeans, is efficiently determined 
avoiding joins and aggregations. Experiments with real 
data sets compared NB, BKM, and decision trees. The 
numeric and discrete versions of NB had similar 
accuracy.BKM was more accurate than NB and was 
similar to decision trees in global accuracy. However, 
BKM was more accurate when computing a breakdown 
of accuracy per class. A low number of clusters 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
II 

 I
ss
ue

 X
III

  
V
er
sio

n 
I 

  
  
 

  

55

  
 

(
DDDD

)
C

  
20

12
Y
e
a
r

© 2012 Global Journals Inc.  (US)1

Fig. 1 : BKM Classifier: Time Complexity; (default d=4, 
k=4, n=100k)



produced good results in most cases. We compared 
Equivalent implementations of NB in SQL and C++ with 
large data sets: SQL was four times slower. SQL queries 
were faster than UDFs to score, highlighting the 
importance of our optimizations. NB and BKM exhibited 
linear scalability in data set size and dimensionality. 
There are many opportunities for future work. We want 
to derive incremental versions or sample-based 
methods to accelerate the Bayesian classifier. We want 
to improve our Bayesian classifier to produce more 
accurate models with skewed distributions, data sets 
with missing information, and subsets of points having 
significant overlap with each other, which are known 
issues for clustering algorithms. We are interested in 
combining dimensionality reduction techniques like PCA 
or factor analysis with Bayesian classifiers. UDFs need 
further study to accelerate computations and evaluate 
complex mathematical equations. 
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