
Global Journal of Computer Science and Technology Vol. 10 Issue 11 (Ver. 1.0) October 2010 P a g e | 23

An Efficient Word Matching Algorithm For off
Line Text

Sattyam Kishor Mishr1, Manish Pande2

Abstract-Word processing application that are used today perform
a wide variety of jobs; the most challenging of them is to search
for a given sequence of characters of a word is called string
matching. To find all the appearances of the pattern P in the text
T, word matching problem is used. Pattern P neither encloses
white space nor anticipates and pursue by space. It is predicated
that our text is offline. For solving the word matching problem,
word searching algorithm (WSA) has been propounded. WSA
works by splitting the offline text in to number of tables and
search the pattern by using the brute force manner. The main
drawback of WSA algorithm is, to search each appearances of
the pattern by the brute force manner in each table. Due to this
WSA increase the number of comparisons of the word. This
paper proposed an algorithm, that is developed to reduce the
number of comparisons to search the pattern in the offline text.
Keywords- Algorithm; string matching; hashing; offline
searching; word searching

I. INTRODUCTION

n all string matching problems, all the appearances of the
pattern P in the text T are to be reported. Many algorithms

have been proposed for solving the word matching problem.
To find all the appearances of the pattern P in the text T,
word matching problem is used. Pattern P neither encloses
white space nor anticipated and pursue by space. Ibrahiem et
al in 2008[1] has propounded an algorithm called word
searching algorithm (WSA) for solving the word matching
problem by splitting the offline text in to number of tables in
the pre-processing phase. In the searching phase, they
perform character to character comparisons with of the same
length in the table by brute force manner.In existing work
one more algorithm come for solving the word matching
problem called modified word searching algorithm
(MWSA) [2]. In this algorithm they use the efficient hash
function called SDBM hash function [3, 4] for finding the
hash value of each word in the text and the hash value of the
pattern P. In WSA has main problem with the searching
phase, because the searching phase encloses the brute force
manner [1]. In brute force manner they perform character to
character comparisons with the same insearching phase. We
use SDBM hash function due to very length. In MWSA,
they use the SDBM hash function which reduces the time
taken to search the word. SDBM hash function has very less
chance of collision even in a very large text. [2, 3, 4] In this
paper, the modification in WSA algorithm is done by using
the SDBM hash function in pre- processing phase and

About1

- Computer Science and Engineering Department Maulana Azad
National Institute of TechnologyBhopal, India satyam_satyam@live.com
About2

- Computer Science and Engineering Department Maulana Azad
National Institute of TechnologyBhopal, India manishpandey@manit.ac.in

balanced binary search tre less chance of collision even in a
very large text. Proposed algorithm has two phases that
works as follows: In pre-processing phase: whole text T is
read and split into nearly equal sizes. For every part we
create a table. Table enclosesstarting position of each word
in first column and hash value (computed by the SDBM
hash function) of every word in second column for each part
of the text. For each table balanced binary search tree is
created, which include the hash value of every words of
each part in its nodes. The pre-processing phase is done only
once. In searching phase: the hash value H of pattern P is
computed using the same hash function. This hash value H
is searched in the balanced binary search tree. If a match is
found for a hash value, then the appearances of the pattern P
is verified The main drawback of WSA algorithm is that
after splitting the text into number of tables it searches the
pattern in the row corresponding to pattern length by brute
force manner [1, 2]. Drawback of WSA algorithm is
eliminated by proposed algorithm by using the SDBM
function [2] and balanced binary search tree [5, 6]. In
proposed algorithm, only one table in pre-processing phase
and use balanced binary search tree in searching phase. Our
algorithm has taken less number of comparisons than the
WSA algorithm to search the pattern in the offline text.This
paper is organized as follows: In section 2, it is explained
existing word matching algorithms. In section 3 it is
explained our propose algorithm in section 4, simulation and
comparative results are explained. Finally we conclude in
section 5.

II. EXISTING WORD MATCHING ALGORITHMS

1) Word Searching Algorithm (WSA)

In this section we explain the recent optimal word searching
algorithms (WSA) and modified word searching algorithm
(MWSA) [1, 2]. In WSA algorithm, the given text is
predicated to be offline. This algorithm has two phases that
works as follows: The first phase which is pre-processing
phase starts with reading and splitting the text T into k
number of equal parts depending on size of the text T and
constructing k number of tables with two columns for each
part of the text. The first column contains length of the word
and the second contain the starting position of each word in
the text. The start positions of the words will be in the same
row for the same length. Once the table is constructed, it is
sorted in ascending order using the length of the words as a
key for sorting. This phase is done once. The second phase
is searching for a specific pattern. The algorithm calculates
the length of the pattern and search for the same length in

I

GJCST Classification (FOR)
 F.2.2 , E.2, K.8.1

P a g e |24 Vol. 10 Issue 11 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

the tables starting from the first table. If the length does not
exist in the first table then the algorithm searches for the
word in the next table and so on. If the current table is the
last table, then a message will indicate that the pattern does
not exist. On the other side if the length finds in the table,
then the algorithm will report the words in the text using the
stored start position in the table and begin to compare. If a
full match occurred then occurrence of the pattern is
reported. But if word does not find the same character, then
the algorithm will move to the next start position and
compare again. [1]

2) Modified Word Searching Algorithm (MWSA)

The main drawback of WSA algorithm was that it searches
each appearances of the pattern by the brute force manner in
each table. To improve WSA algorithm, MWSA algorithm
was proposed. In MWSA, the whole text T is splits in to k
equal parts according to size of the text T. For each part two
tables A and B are created. Tables A and B have two
column in each. In pre-processing phase: each part of the
text is read. While reading, lengths of the words are
computed and according to length of the words, starting
positions of the words are stored in the table A and each
starting position in table A is mapped to a corresponding
hash value in table B. Starting position and hash value of all
words of same length are stored in same row corresponding
to length of the word in its table. Table B is sorted row wise
using insertion sort with hash value H as the key to sort and
perform corresponding change in table A, as hash value is
mapped to a unique starting position in table. In the
searching phase: When a pattern P is read its hash value H is
computed using same hash function and its length is
computed. This hash value H is searched in each tables in
rows that corresponds to words of same length. Binary
search is used to search the hash value in table B. When the
hash value of pattern matches with the hash value of a word
in table B, then using starting position of word in table A,
the word is matched character to character with the pattern
P. If a complete match occurs, the occurrence of pattern P in
text T is reported. [2, 3, 4]

III. PROPOSED ALGORITHM

In this section, we explain the proposed algorithm for
modification of algorithm explained in section 2. In our
proposed algorithm: it is predicated that text is offline.
Proposed algorithm works in two phases as follows.

1) Preprocessing Phase

The whole text splits into k equal parts according to size of
the text T. For each part, one table having two columns is
created. In the pre-processing phase: each part of the text is
read. While reading starting position, hash value of words
are computed and stored in the table. The SDBM hash
function based on bit shifting is used to compute the hash
value H of the words in text T and pattern P. In SDBM hash
function the hash value H is computed as follows:

H = (H<<6) + (H<<16) - H + ch
Where ch is the ASCII value of each characters in the word
w, H is initialized as zero, “<<” is a bitwise left shift

operator. The SDBM is a standard hash function which has
very less chances of collision, even in a very large text. The
SDBM implementation is based on an algorithm by P.A.
Larson known as “Dynamic Hashing” [4]. Algorithm 1
shows the preprocessing phase.

2) Searching Phase

In pre-processing phase we construct a table and store the
starting position and hash value in the table. Table is stored
row wise. In a split part if same hash value is found then
starting positions are stored in same row for same hash
value. In searching phase, balanced binary search tree is
constructed for the hash value stored in table. When a
pattern P is read then its hash value H is computed using
SDBM hash function. While computing the hash value of
pattern P, same hash function is used which used to compute
the hash value of words stored in the table. Hash value H of
the pattern P is searched in the balanced binary search tree.
When the hash value H of the pattern matches with the hash
value of a word in tree, then using starting position of word
in table, the word is matched character to character with the
pattern P. If complete match occurs, the occurrence of
pattern P in text T is reported. A pattern may exist any
number of times in the text so we solve this problem while
reading the text. We store the starting position of words of
same hash value in the same row of the table. For each hash
value of same word matches with hash value of the pattern
P, character to character comparison is done and occurrence
is reported, if complete match occurs. If hash value of the
pattern is not found then it moves to the next table and same
process is performed. Algorithm 2 shows the searching
phase.The drawback of WSA algorithm given by Ibrahiem
et al [1] was that when a pattern P is to be searched, they
compute the pattern length and search the table in row
corresponds to same length in a brute force approach (i.e.
every word in a row in a table is compared character to
character which is very inefficient way of searching). In
proposed algorithm, it is optimized the searching by tree
searching the hash value instead of character comparison
[2]. WSA is optimized in proposed algorithm by using a
single table in pre-processing phase and balanced binary
search tree in searching phase. Our proposed algorithm has
less complexity than previous algorithms and requires very
less number of character comparisons than the previous one.
Figure.1 shows the flow chart of the proposed algorithm.

3) SDBM Hash Function

In proposed algorithm for word searching problem, we use
key distribution for every words in the text. For key
distribution we use SDBM hash function. We use SDBM
hash function in our proposed algorithm because it has very
less chance of collision, even in a very large text.SDBM
hash function is based on bit shifting. In SDBM hash
function the hash value H is computed as follows:

H = (H<<6) + (H<<16) - H + ch
Where ch is the ASCII value of each characters in the word
w, H is initialized as zero, “<<” is a bitwise left shift
operator.The SDBM hash function has a good overall
distribution for many different data sets. It works well in

Global Journal of Computer Science and Technology Vol. 10 Issue 11 (Ver. 1.0) October 2010 P a g e | 25

situations where there is a high variance in the MSBs of the

elements in a data set. It was found to do well in scrambling

bits, causing better distribution of the keys and fewer splits.

It also happens to be a good general hashing function with

good distribution. [2]The SDBM implementation is based

on an algorithm by P.A. Larson known as “Dynamic

Hashing” [4].

Algorithm 1 Pre-processing phase: Table creation using

starting position and hash value

Input: Offline text T
1. BEGIN

2. Split _text (Ki, T)

3. FOR i=0 to n

4. Creat_table (Ki [x][y])

5. FOR x=0 to n

6. FOR y=0 to n

7. INSERT (Ki[x][y]=starting
position(wi),hashvalue(wi))

8. END FOR

9. Creat_Binary_search_tree(hash value (wi))

10. END FOR

Algorithm 2 Searching phase: search pattern through

hash value

Input: pattern (P)

1 compute_hash_value (pattern(P))

2 search (hash value (P))

3 IF (hash value (P)=hash value(wi)) THEN

4 GOTO creat_table (Ki [x][y])

5 FIND starting position(wi)

6 MATCH (pattern(P) with Word(wi))

7 ELSEIF

8 GOTO (Creat_Binary_search_tree(hash
value(wi)))

9 HALT

 No

 No

 No
Yes

Figure.1 Flow chart of proposed algorithm

 Start

Create n Table
(Starting position, Hash value)

Read the text T and fill the table

(Starting position, Hash value)

Construct Balanced Binary Search

Tree for hash value from table

Enter Pattern P and

compute the hash value H

Search the same hash value H in

Balanced binary search tree

Is the hash

value exist?

Compare word using

Starting Position

Is complete

match occur?

Occurrence of the

Pattern is

reported

Is it in the

last table?

 End

Jump to the

next table

P a g e |26 Vol. 10 Issue 11 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

IV. SIMULATION AND RESULTS

We have implemented both algorithms WSA and proposed
algorithm in C, compiled with GCC 4.2.4 compilers on
COREtm 2 duo 2.66 GHz machine with 4 GB RAM, running
Open suse 11.0 Comparison between word matching
algorithm. The pattern and text are chosen from ASCII
character set randomly.

1) Simulation

For the comparison, we compare WSA algorithm with
propose algorithm. Now, we will make a comparison
between the proposed algorithm one of the most famous
algorithm in such area which is the WSA algorithm to find
out the improvement in the number of character
comparisons that is done in each algorithm. As an example,
we‟ll take the next paragraph to apply the algorithm with the
patterns; "sensor", "processing". Wireless sensor network
have emerged as an important application of
1 10 17 25 30 38 41 44 54 66
The ad hoc networks paradigm like monitoring physical
environment and
69 73 76 80 89 98 103 114 123 135
These sensor networks have limitations of system resources
like battery
137 143 150 159 164 176 179 186 196 201
Power communication range and processing capability
Lowprocessing power and
209 215 229 235 239 250 261 265 276 282
In first phase of the simulation each line of this paragraph
forming one part of the text, so we have four parts and each
part have one table. Each table has two columns. First
column has hash value of each word, which is computed by
the SDBM hash function and second column has starting
position of each word. This is called Preprocessing Phase of
the algorithm. The tables will be as following:

Table1. 1st part of the text

Hash Value Starting Position
3249753982
4180602746
1691730926
385796840
2805811025
6363218
6363213
3634954210
220492368
7281591

1
10
17
25
30
38
41
44
54
66

Table2. 2nd part of the text

Hash Value Starting Position
700788817
6363203
866478108
2492020741
2065330219
3573516087
1595209896
2646868407
187585459
808581975

69
73
76
80
89
98
103
114
123
135

Table3. 3rd part of the text

Hash Value Starting Position
1652765827
4180602746
2492020741
385796840
1325831833
7281591
817658959
506364869
3573516087
1906312109

137
143
150
159
164
176
179
186
196
201

Table4. 4th part of the text

Hash Value Starting Position
2706407781
4119183190
384379389
808581975
2081762867
1028192824
635155988
517759365

209
215
229
235, 282
239, 265
250
261
276

In second phase of the simulation, a pattern “sensor” is
taken to search in the text. The hash value of the pattern H is
computed by using the SDBM hash function. Now H make
searched with the each hash value in each table by using
balanced binary search tree. At the time of searching the
every comparison is counted. Balanced binary search tree is
generated for each table one by one. As the hash value is
found the pointer go to the starting position to match the
pattern. If the pattern is matched the match report is
displayed otherwise negative report is displayed and pointer
move to the next comparison in the tree.
Case I. If we have same hash value of the word in the same
table then in preprocessing phase the starting position of
each hash value will be saved in the same row as shown in
Table4. In Table4, Hash value 808581975 has two different
starting positions in the same table but saved at the same
row.

Global Journal of Computer Science and Technology Vol. 10 Issue 11 (Ver. 1.0) October 2010 P a g e | 27

Case II. If any case pattern does not match with the word at
the same starting position then the negative report is
displayed and the pointer will be moved to next starting
position in the same row.
Case III. Number of comparisons are counted as the pointer
move to the next to next node of the balanced binary search
tree for searching the hash value of the pattern as well as the
number of pattern match at the different starting positions
for the same hash value.

2) Comprative Results

As a comparative illustration between the proposed algorithm
and WSA algorithm, the character comparison is taken as a
parameter. We show the output results as show in the next
figure2 and figure3 for the pattern “sensor” and “processing”.
The results show that how much comparison is done for
given patterns. 20 and 40 maximum characters have been
taken for the first and second illustration respectively.For the
pattern “sensor” which has hash value 4180602746, only 2
comparisons have been taken in proposed algorithm for the
first search and 7 comparisons have been done in WSA
algorithm for the first search within 20 maximum characters.
After taken 40 maximum characters, 10 comparisons and 26
comparisons have been done in propose algorithm and WSA
algorithm respectively.For the pattern “processing” which has
hash value 2081762867, is not find with in 20 maximum
characters comparisons , but after taken 40 maximum
characters, 16 and 17 character comparisons have been done
for first and full pattern search in proposed algorithm and 41
and 42 comparisons have been done for first and full pattern
search in WSA algorithm.

Table5.Comparative results after number of character
comparison

Algorithm comparison based on character
comparison

Pattern Algorithms

Number of
comparisons

First
pattern

comparis
on

Full
patterns

compariso
n

1 “sensor”

Word
Searching
Algorithm

(WSA)

7 26

Proposed
Algorithm 2 10

2 “processi
ng”

 Word
Searching
Algorithm

(WSA)

41 42

Proposed
Algorithm 16 17

Figure2. Character comparisons in view point of number of
character comparisons (Y axis) against maximum number
of words in the text
 (X axis) for the pattern “sensor”.

Figure2. Character comparisons in view point of number of
charactercomparisons (Y axis) against maximum number of
words in the text (X axis) for the pattern “processing”.

V. CONCLUSIONS

We introduce a new algorithm, which reduces the
comparison of word searching algorithm (WSA). From
above result it is clear that the proposed algorithm has taken
less comparison to find the pattern than word searching
algorithms (WSA). In future work proposed algorithm can
be compared with the modified word searching algorithm
(MWSA) and other pattern matching algorithms.

VI. REFERENCES

1) Ibrahiem M. M. Emary and Mohammed S. M.

Jaber, “A New Approach for Solving String
Matching Problem through Splitting the
Unchangeable Text”, World Applied Sciences
Journal 4 (5): 626-633, 2008.

2) Bharat Singh, Ishadutta Yadav, Suneeta Agarwal,
Rajesh Prasad, “An Efficient Word Searching
Algorithm through Splitting and Hashing the
Offline Text”, artcom, pp.387-389, 2009

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s

Maximum number of words in the text

Character Comparisons

Proposed
Algorithm

Word Searching
Algorithm
(WSA)

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s

Maximum number of words in the text

Character Comparisons

Proposed
Algorithm

Word Searching
Algorithm
(WSA)

P a g e |28 Vol. 10 Issue 11 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

International Conference on Advances in Recent
Technologies in Communication and Computing,
2009.

3) R. J. Enbody and H. C. Du, “Dynamic Hashing
Schemes”, ACM Computing Surveys, vol. 20, no.
2, 85-113, 1988.

4) P. A. Larson, “Dynamic Hashing”, BIT, vol. 18,
184-201, 1978.

5) Sorting and Searching Algorithms,
http://www.epaperpress.com

6) Donald E. Knuth, “Sorting and Searching, volume
3 of: The Art of Computer programming”, Addison
Wesley, 1981.

7) R. S. Boyer, and J. S. Moore, “A fast string-
searching algorithm”, Communication of ACM,
20(10), pp. 762-772, 1977.

8) A.V.Aho, and M.J. Corasick, “ Efficient String
Matching: An aid to bibliographic search”,
Communication of ACM 18(6), pp. 333-340, 1975.

9) R. Prasad and S. Agarwal, “An Efficient String
Matching by using Super Alphabet” proc. of the
first International Conference on Emerging Trends
in Engineering and Technology (available on IEEE
Xplore), Nagpur, India., pp. 1181-1186, July 16-18,
2008.

	An Efficient Word Matching Algorithm For offLine Text
	Authors
	Abstract
	Keywords
	I. INTRODUCTION
	II. EXISTING WORD MATCHING ALGORITHMS
	1) Word Searching Algorithm (WSA)
	2) Modified Word Searching Algorithm (MWSA)

	III. PROPOSED ALGORITHM
	1) Preprocessing Phase
	2) Searching Phase
	3) SDBM Hash Function

	IV. SIMULATION AND RESULTS
	1) Simulation
	2) Comprative Results

	V. CONCLUSIONS
	VI. REFERENCES

