
P a g e |52 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

Improving Software Effort Estimation Using
Neuro-Fuzzy Model with SEER-SEM

Wei Lin Du1, Danny Ho2, Luiz Fernando Capretz 3

Abstract - Accurate software development effort estimation is a
critical part of software projects. Effective development of
software is based on accurate effort estimation. Although many
techniques and algorithmic models have been developed and
implemented by practitioners, accurate software development
effort prediction is still a challenging endeavor in the field of
software engineering, especially in handling uncertain and
imprecise inputs and collinear characteristics. In order to
address these issues, previous researchers developed and
evaluated a novel soft computing framework. The aims of our
research are to evaluate the prediction performance of the
proposed neuro-fuzzy model with System Evaluation and
Estimation of Resource Software Estimation Model (SEER-
SEM) in software estimation practices and to apply the
proposed architecture that combines the neuro-fuzzy technique
with different algorithmic models. In this paper, an approach
combining the neuro-fuzzy technique and the SEER-SEM
effort estimation algorithm is described. This proposed model
possesses positive characteristics such as learning ability,
decreased sensitivity, effective generalization, and knowledge
integration for introducing the neuro-fuzzy technique.
Moreover, continuous rating values and linguistic values can
be inputs of the proposed model for avoiding the large
estimation deviation among similar projects. The performance
of the proposed model is accessed by designing and conducting
evaluation with published projects and industrial data. The
evaluation results indicate that estimation with our proposed
neuro-fuzzy model containing SEER-SEM is improved in
comparison with the estimation results that only use SEER-
SEM algorithm. At the same time, the results of this research
also demonstrate that the general neuro-fuzzy framework can
function with various algorithmic models for improving the
performance of software effort estimation.
Keywords – software estimation, software management,
software effort estimation, neuro-fuzzy software estimation,
SEER-SEM

I. INTRODUCTION

he cost and delivery of software projects and the quality
of products are affected by the accuracy of software

effort estimation. In general, software effort estimation
techniques can be subdivided into experience-based,
parametric model-based, learning-oriented, dynamics-based,
regression-based, and composite techniques (Boehm, Abts,

About1-Wei Lin Du, the Department of Electrical and Computer
Engineering, the University of Western Ontario, London, Ontario, Canada
N6A 5B9(email: wdu6@uwo.ca)
About2 -Danny Ho, NFA Estimation Inc., Richmond Hill, Ontario Canada
L4C 0A2(email: danny@nfa-estimation.com)
About3-Dr. Luiz Fernando Capretz, the Department of Electrical and
Computer Engineering, the University of Western Ontario, London,
Ontario, Canada N6A 5B9 (telephone: 1-519-661-2111 ext. 85482 email:
lcapretz@eng.uwo.ca)

and Chulani 2000). Amongst these methods, model-based
estimation techniques involve the use of mathematical
equations to perform software estimation. The estimation
effort is a function of the number of variables, which are
factors impacting software cost (Boehm 1981). These
model-based estimation techniques comprise the general
form: E = a × Sizeb, where E is the effort, size is the product
size, a is the productivity parameters or factors, and b is the
parameters for economies or diseconomies (Fischman,
McRitchie, and Galorath 2005; Jensen, Putnam, and
Roetzheim 2006). In the past decades, some important
software estimation algorithmic models have been published
by researchers, for instance Constructive Cost Model
(COCOMO) (Boehm et al. 2000), Software Life-cycle
Management (SLIM) (Putnam and Myers 1992), SEER-
SEM (Galorath and Evans 2006), and Function Points
(Albrecht 1979; Jones 1998). Model-based techniques have
several strengths, the most prominent of which are
objectivity, repeatability, the presence of supporting
sensitivity analysis, and the ability to calibrate to previous
experience (Boehm 1981). On the other hand, these models
also have some disadvantages. One of the disadvantages of
algorithmic models is their lack of flexibility in adapting to
new circumstances. The new development environment
usually entails a unique situation, resulting in imprecise
inputs for estimation by an algorithmic model. As a rapidly
changing business, the software industry often faces the
issue of instability and hence algorithmic models can be
quickly outdated. The outputs of algorithmic models are
based on the inputs of size and the ratings of factors or
variables (Boehm 1981). Hence, incorrect inputs to such
models, resulting from outdated information, cause the
estimation to be inaccurate. Another drawback of
algorithmic models is the strong collinearity among
parameters and the complex non-linear relationships
between the outputs and the contributing factors.
SEER-SEM appeals to software practitioners because of its
powerful estimation features. It has been developed with a
combination of estimation functions for performing various
estimations. Created specifically for software effort
estimation, the SEER-SEM model was influenced by the
frameworks of Putnam (Putnam and Myers 1992) and Doty
Associates (Jensen, Putnam, and Roetzheim 2006). As one
of the algorithmic estimation models, SEER-SEM has two
main limitations on effort estimation. First, there are over 50
input parameters related to the various factors of a project,
which increases the complexity of SEER-SEM, especially
for managing the uncertainty from these outputs. Second,
the specific details of SEER-SEM increase the difficulty of
discovering the nonlinear relationship between the

T

GJCST Classification (FOR)
 D.2.9, K.6.3, K.6.4

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 53

parameter inputs and the corresponding outputs. Overall,
these two major limitations can lead to a lower accuracy in
effort estimation by SEER-SEM.
The estimation effort is a function of the number of
variables, which are factors impacting software cost (Boehm
1981). These model-based estimation techniques comprise
the general form: E = a × Sizeb, where E is the effort, size is
the product size, a is the productivity parameters or factors,
and b is the parameters for economies or diseconomies
(Fischman, McRitchie, and Galorath 2005; Jensen, Putnam,
and Roetzheim 2006). In the past decades, some important
software estimation algorithmic models have been published
by researchers, for instance Constructive Cost Model
(COCOMO) (Boehm et al. 2000), Software Life-cycle
Model (SLIM) (Putnam and Myers 1992), SEER-SEM
(Galorath and Evans 2006), and Function Points (Albrecht
1979; Jones 1998). Model-based techniques have several
strengths, the most prominent of which are objectivity,
repeatability, the presence of supporting sensitivity analysis,
and the ability to calibrate to previous experience (Boehm
1981). On the other hand, these models also have some
disadvantages. One of the disadvantages of algorithmic
models is their lack of flexibility in adapting to new
circumstances. The new development environment usually
entails a unique situation, resulting in imprecise inputs for
estimation by an algorithmic model. As a rapidly changing
business, the software industry often faces the issue of
instability and hence algorithmic models can be quickly
outdated. The outputs of algorithmic models are based on
the inputs of size and the ratings of factors or variables
(Boehm 1981). Hence, incorrect inputs to such models,
resulting from outdated information, cause the estimation to
be inaccurate. Another drawback of algorithmic models is
the strong collinearity among parameters and the complex
non-linear relationships between the outputs and the
contributing factors.
SEER-SEM appeals to software practitioners because of its
powerful estimation features. It has been developed with a
combination of estimation functions for performing various
estimations. Created specifically for software effort
estimation, the SEER-SEM model was influenced by the
frameworks of Putnam (Putnam and Myers 1992) and Doty
Associates (Jensen, Putnam, and Roetzheim 2006). As one
of the algorithmic estimation models, SEER-SEM has two
main limitations on effort estimation. First, there are over 50
input parameters related to the various factors of a project,
which increases the complexity of SEER-SEM, especially
for managing the uncertainty from these outputs. Second,
the specific details of SEER-SEM increase the difficulty of
discovering the nonlinear relationship between the
parameter inputs and the corresponding outputs. Our study
attempts to reduce the negative impacts of the above major
limitations of the SEER-SEM effort estimation model on
prediction accuracy and make contributions towards
resolving the problems caused by the disadvantages of
algorithmic models. First, for accurately estimating software
effort the neural network and fuzzy logic approaches are
adopted to create a neuro-fuzzy model, which is
subsequently combined with SEER-SEM. The Adaptive

Neuro-Fuzzy Inference System (ANFIS) is used as the
architecture of each neuro-fuzzy sub-model. Second, this
research is another evaluation for effectiveness of the
general model of neuro-fuzzy with algorithmic model
proposed by the previous studies. Third, the published data
and industrial project data are used to evaluate the proposed
neuro-fuzzy model with SEER-SEM. Although the data was
collected specifically for COCOMO 81 and COCOMO 87,
they are transferred from COCOMOs to COCOMO II and
then to the SEER-SEM parameter inputs, utilizing the
guidelines from the University of Southern California (USC)
(Madachy, Boehm, and Wu 2006; USC Center for Software
Engineering 2006). After the transfer of this data, the
estimation performance is verified to ensure its feasibility.

II. BACKGROUND

Soft computing, which is motivated by the characteristics of
human reasoning, has been widely known and utilized since
the 1960s. The overall objective from this field is to achieve
the tolerance of incompleteness and to make decisions under
imprecision, uncertainty, and fuzziness (Nauck, Klawonn,
and Kruse 1997; Nguyen, Prasad, Walker, and Walker
2003). Because of capabilities, soft computing has been
adopted by many fields, including engineering,
manufacturing, science, medicine, and business. The two
most prominent techniques of soft computing are neural
networks and fuzzy systems. The most attractive advantage
of neural networks is the ability to learn from previous
examples, but it is difficult to prove that neural networks are
working as expected. Neural networks are like ―black
boxes‖ to the extent that the method for obtaining the
outputs is not revealed to the users (Chulani 1999; Jang,
Sun, and Mizutani 1997). The obvious advantages of fuzzy
logic are easy to define and understand an intuitive model
by using linguistic mappings and handle imprecise
information (Gray and MacDonell 1997; Jang, Sun, and
Mizutani 1997). On the other hand, the drawback of this
technique is that it is not easy to guarantee that a fuzzy
system with a substantial number of complex rules will have
a proper degree of meaningfulness (Gray and MacDonell
1997). In addition, the structure of fuzzy if-then rules lacks
the adaptability to handle external changes (Jang, Sun, and
Mizutani 1997). Although neural networks and fuzzy logic
have obvious strengths as independent systems, their
disadvantages have prompted researchers to develop a
hybrid neuro-fuzzy system that minimizes these limitations.
Specifically, a neuro-fuzzy system is a fuzzy system that is
trained by a learning algorithm derived from the neural
network theory (Nauck, Klawonn, and Kruse 1997). Jang‘s
(Jang, Sun, and Mizutani 1997; Nauck, Klawonn, and Kruse
1997) ANFIS is one type of hybrid neuro-fuzzy system,
which is composed of a five-layer feed-forward network
architecture.
Soft computing is especially important in software cost
estimation, particularly when dealing with uncertainty and
with complex relationships between inputs and outputs. In
the 1990‘s a soft computing technique was introduced to
build software estimation models and improve prediction
performance (Damiani, Jain, and Madravio 2004). As a

P a g e |54 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

technique containing the advantages of the neural networks
and fuzzy logic, the neuro-fuzzy model was adopted for
software estimation. Researchers developed some models
with the neuro-fuzzy technique and demonstrated their
ability to improve prediction accuracy. Hodgkinson and
Garratt (Hodgkinson and Garratt 1999) introduced the
neuro-fuzzy model for cost estimation as one of the
important methodologies for developing non-algorithmic
models. Their model did not use any of the existing
prediction models, as the inputs are size and duration, and
the output is the estimated project effort. The clear
relationship between Function Points Analysis (FPA)‘s
primary component and effort was demonstrates by Abran
and Robillard‘s study (Abran and Robillard 1996). Huang et
al. (Huang, Ho, Ren, and Capretz 2005 and 2006) proposed
a software effort estimation model that combines a neuro-
fuzzy framework with COCOMO II. The parameter values
of COCOMO II were calibrated by the neuro-fuzzy
technique in order to improve its prediction accuracy. This
study demonstrated that the neuro-fuzzy technique was
capable of integrating numerical data and expert knowledge.
And the performance of PRED(20%) and PRED(30%) were
improved by more than 15% and 11% in comparison with
that of COCOMO 81. Xia et al. (Xia, Capretz, Ho, and
Ahmed 2008) developed a Function Point (FP) calibration
model with the neuro-fuzzy technique, which is known as
the Neuro-Fuzzy Function Point (NFFP) model. The
objectives of this model are to improve the FP complexity
weight systems by fuzzy logic, to calibrate the weight values
of the unadjusted FP through the neural network, and to
produce a calibrated FP count for more accurate
measurements. Overall, the evaluation results demonstrated
that the average improvement for software effort estimation
accuracy is 22%. Wong et al. (Wong, Ho, and Capretz
2008) introduced a combination of neural networks and
fuzzy logic to improve the accuracy of backfiring size
estimates. In this case, the neuro-fuzzy approach was used to
calibrate the conversion ratios with the objective of reducing
the margin of error. The study compared the calibrated
prediction model against the default conversion ratios. As a
result, the calibrated ratios still presented the inverse curve
relationship between the programming languages level and
the SLOC/FP, and the accuracy of the size estimation
experienced a small degree of improvement.

III. A NEURO-FUZZY SEER-SEM MODEL

A. A General Soft Computing Framework for Software
Estimation

This section describes a general soft computing framework
for software estimation, which is based on the unique
architecture of the neuro-fuzzy model described in the
patent US-7328202-B2 (Huang, Ho, Ren, and Capretz 2008)
and was built by Huang et al. (Huang, Ho, Ren, and Capretz
2006). The framework is composed of inputs, a neuro-fuzzy
bank, corresponding values of inputs, an algorithmic model,
and outputs for effort estimation, as depicted in Fig. 1.
Among the components of the proposed framework, the
neuro-fuzzy bank and the algorithmic model are the major

parts of the model. The inputs are rating levels, which can
be continuous values or linguistic terms such as Low,
Nominal, or High. V1, …,Vn are the non-rated values of the
software estimation algorithmic model. On the other hand,
AI0, …, AIm are the corresponding adjusted quantitative
parameter values of the rating inputs, which are the inputs of
the software estimation algorithmic model for estimating
effort as the final output.

Fig.1. A General Soft Computing Framework.

This novel framework has attractive attributes, particularly
the fact that it can be generalized to many different
situations and can be used to create more specific models. In
fact, its generalization is one of the purposes of designing
this framework. Its implementation is not limited to any
specific software estimation algorithmic model. The
algorithmic model in the framework can be one of the
current popular algorithmic models such as COCOMO,
SLIM or SEER-SEM. When various algorithmic models are
implemented into this framework, the inputs and the non-
rating values are different.

B. SEER-SEM Effort Estimation Model

SEER-SEM stemmed from the Jensen software model in the
late 1970s, where it was developed at the Hughes Aircraft
Company‘s Space and Communications Group (Fischman,
McRitchie, and Galorath 2005; Galorath and Evans 2006;
Jensen, Putnam, and Roetzheim 2006). In 1988, Galorath
Inc. (GAI) started developing SEER-SEM (Galorath and
Evans 2006), and in 1990, GAI trademarked this model. The
SEER-SEM model was motivated by Putnam‘s SLIM and
Boehm‘s COCOMO (Fischman, McRitchie, and Galorath
2005; Galorath and Evans 2006; Jensen, Putnam, and
Roetzheim 2006). Over the span of a decade, SEER-SEM
has been developed into a powerful and sophisticated model,
which contains a variety of tools for performing different
estimations that are not limited to software effort. SEER-
SEM includes the breakdown structures for various tasks,
project life cycles, platforms, and applications. It also
includes the most development languages, such as the third
and fourth generation programming languages, in the
estimation. Furthermore, the users can select different
knowledge bases (KBs) for Platform, Application,
Acquisition Method, Development Method, Development
Standard, and Class based on the requirements of their
projects. SEER-SEM provides the baseline settings for
parameters according to the KB inputs; there are over 50
parameters that impact the estimation outputs. Among them,
34 parameters are used by SEER-SEM effort estimation

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 55

model (Galorath Incorporated 2001 and 2006).
Nevertheless, the SEER-SEM model contains some
disadvantages. For instance, the efforts spent on pre-
specification phases, such as requirements collection, are not
included in the effort estimation. In SEER-SEM effort
estimation, each parameter has sensitivity inputs, with the
ratings ranging from Very Low (VLo-) to Extra High
(EHi+). Each main rating level is divided into three sub-
ratings, such as VLo-, VLo, VLo+. These ratings are
translated to the corresponding quantitative value used by
the effort estimation calculation. The SEER-SEM effort
estimation is calculated by the following equations:

KE 393469.0 (1)

 (2)

 (3)

ctbx =
ACAPAEXPAPPLMODPPCAPTOOLTERM
 (4)
ParmAdjustment=
LANGLEXPTSYSTEXPDSYSDEXPPSYSPEXPS
IBRREUSMULTRDEDRLOCDSVLPSVLRV
OLSPECTESTQUALRHST(HOST)DISPME
MCTIMCRTIMSECRTSVL (5)

where,
E is the development effort (in person years),
K is the total Life-cycle effort (in person years) including
development and maintenance,

The elements included in equations (4) and (5) are
parameters or combined parameters; the formulas for
calculating combined parameters are shown below:
AEXPAPPL =
0.82+(0.47*EXP(-0.95977*(AEXP/APPL))) (6)

LANGLEXP =
1+((1.11+0.085*LANG)-1)*EXP(-LEXP/(LANG/3)) (7)
TSYSTEXP =
1+(0.035+0.025*TSYS)*EXP(-3*TEXP/TSYS) (8)
DSYSDEXP =
1+(0.06+0.05*DSYS)*EXP(-3*DEXP/DSYS) (9)

PSYSPEXP

0,1
0 PSYS

 .833, /PSYS)) 0̂PEXP*EXP(-3*PSYS*0.23PSYS(0.91^

PSYSwhen
when

 (10)
SIBRREUS =
SIBR*REUS +1

 (11)

C. A Neuro-Fuzzy Model with SEER-SEM

a) Overview

This section will describe the proposed framework of the
neuro-fuzzy model with SEER-SEM, based on the general
structure in the section III.A, as depicted in Fig. 2. The
inputs consist of two parts: non-rating inputs and the rating
levels of parameters, which include 34 technology and
environment parameters and 1 complexity or staffing
parameter. Among the technology and environment
parameters, there is one parameter (SIBR), which is not
rated by the linguistic term. SIBR is decided by users,
through inputting the percentage. Hence, similar to the
input of size, SIBR is a non-rating value. While the other
parameters are labeled as PR1 to PR34, SIBR is labeled PR35.

Fig.2. A Neuro-Fuzzy Model with SEER-SEM.

Each parameter PRi (i = 1, …, 34) can be a linguistic term
or a continuous rating value. The linguistic inputs are from
18 rating levels (r =1, …, 18), which include Very Low–
(VLo-), Very Low (VLo), Very Low+ (VLo+), Low–, Low,
Low+, Nominal- (Nom-), Nominal (Nom), Nominal+
(Nom+), High – (Hi-), High (Hi), High+ (Hi+), Very High–
(VHi-), Very High (VHi), Very High+ (VHi+), Extra High–
(EHi-), Extra High (EHi), and Extra High+ (EHi+). In these
ratings, there are 6 main levels, VLo, Low, Nom, Hi, VHi,
and EHi, and each main rating level has three sub-levels:
minus, plus or neutral (Galorath Incorporated 2006 be
2005). NFi (i = 1, …, 34) is a neuro-fuzzy bank, which is
composed of thirty-four NFi sub-models. The rating levels
of each parameter PRi (i = 1, …, 34) are the input of each
NFi . Through these sub-models, the rating level of a
parameter is translated into the corresponding quantitative
value (Pi , i = 1, …, 34) as the inputs of the SEER-SEM
effort estimation as introduced in the section III.B, from

TURN

ctbx

C tb 5
11.4

ln70945.3
exp2000

mentParmAdjust
te

e CC
C
S

DK tb
te,)(

2.1

4.0

P a g e |56 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

equations (1) to (11). The output of the proposed model is
the software effort estimation.

b) Structure of NFi

Fig.3. Structure of NFi.

The neuro-fuzzy bank fulfills an important function in the
proposed neuro-fuzzy model with SEER-SEM effort
estimation model. NFi produces fuzzy sets and rules for
training datasets. It translates the rating levels of a parameter
into a quantitative value and calibrates the value by using
actual project data. According to fuzzy logic techniques,
linguistic terms can be presented as a fuzzy set. There are
18 rating levels for each parameter in linguistic terms, which
are used to define a fuzzy set in this research. The selected
membership function translates the linguistic terms in this
fuzzy set to membership values. Each NFi uses the structure
of the Adaptive Neuro-Fuzzy Inference System (ANFIS),
which is a five-layer hybrid neuro-fuzzy system, as depicted
in Fig. 3.

 Input and Output of NFi
There is one input and one corresponding output for each
NF. The input of each NFi (PRi , i = 1, …, 34) is the rating
level of a parameter for SEER-SEM effort estimation model,
such as Very Low (VLo) or High (Hi). On the other hand,
the output is the corresponding quantitative value of this
parameter (Pi , i = 1, …, 34), such as 1.30.

 Fuzzy Rule
Based on the features of ANFIS and the structure shown in
Fig. 3, this work refers to the form of the fuzzy if-then rule
proposed by Takagi and Sugeno (Takagi and Sugeno 1986).
The rth fuzzy rule of the proposed model is defined as
below:
Fuzzy Rule r: IF PRi is Air THEN Pi = Pir ,
r =1, 2, …, 18
where Air is a rating level of the fuzzy set that ranges from
Very Low- to Extra High+ for the ith parameter and is
characterized by the selected membership function, and Pir
is the corresponding quantitative value of the rth rating level
for the ith parameter. Furthermore, with this fuzzy rule, the
premise part is the fuzzy set and the consequent part is the
non-fuzzy value. Overall, the fuzzy rules build the links
between a linguistic rating level and the corresponding
quantitative value of a parameter.

 Functions of Each Layer
Layer 1: In this layer, the membership function of fuzzy set
A translates the input, PRi, to the membership grade. The
output of this layer is the membership grade of PRi , which is
the premise part of fuzzy rules. Also, the membership
function of the nodes in this layer is utilized as the activation

function; in our proposed model, all the membership
functions of each node in Layer 1 are the same. In
subsequent sections, the selected membership function will
be discussed in detail.

 for i = 1, 2, …, 34

 r =1, 2, …, 18 (12)

where is the membership grade of Air (=VLo-, VLo,
VLo+, Low-, Low, Low+, Nom-, Nom, Nom+, Hi-, Hi, Hi+,
VHi-, VHi, VHi+, EHi-, EHi, or EHi+) with the input PRi
or continuous number []19,0∈x ; is the membership
function of Air .
Layer 2: Producing the firing strength is the primary
function of this layer. The outputs of Layer 1 are the inputs
of each node in this layer. In each node, Label Π multiplies
all inputs to produce the outputs according to the defined
fuzzy rule for this node. Consequently, the outputs of this
layer are the firing strength of a rule. The premise part in the
defined fuzzy rule of our proposed model is only based on
one condition. Therefore, the output of this layer, the firing
strength, is not changed and is thus the same as the inputs,
or membership grade.

 (13)

Layer 3: The function of this layer is to normalize the
firing strengths for each node. For each node, labeled
"N", the ratio of the rth rule’s firing strength to the sum of
all rules’ firing strengths related to PRi is calculated. The
resulting outputs are known as normalized firing strengths.

 (14)

Layer 4: An adaptive result of Pi is calculated with the
Layer 3 outputs and the original input of Pi in the fuzzy
rules by multiplying . The outputs are referred to as
consequent parameters.
 (15)

Layer 5: This layer aims to compute the overall output with
the sum of all reasoning results from Layer 4.

 (16)

 Membership Function
This section describes the triangular membership function
utilized in this work; this particular function is depicted in
Fig. 4. Each rating level has the corresponding triangular
membership function. This membership function is a
piecewise-linear function. Throughout the learning process,
the membership function is maintained in a fixed state. The
following calculation defines the triangular membership
function:

Oi

k

µAir

)(12 PROwO ir rr Air
µ===

)(1 PRO ir Air
µ=

∑
=

== 18

1

3

r
r

r
rr

w
wwO

wr

PwO irrr=
4

PwPOO ir
r

ri
r

rr ∑∑ === 45

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 57

 for r =1, 2, …, 18
(17)

where x = PRi or
[]19,0∈x

Fig.4. Triangular Membership Function

There are several factors that influenced our selection of the
triangular membership function; first, the nature of the NFi
outputs was the most crucial reason. Pir is a piecewise-linear
interpolation

between parameter values (Pi1, … Pi18) of the ith parameter,
Pi. Hence, the selection of the triangular function can be
derived from the same results as a linear interpolation.
Secondly, one of the purposes of this research is to evaluate
the extent to which Huang’s proposed soft computing
framework can be generalized. Therefore, it was important
to use the same membership function as that utilized in
Huang’s research in order to perform validation with a
similar fuzzy logic technique (Huang 2003). Finally, the
triangular membership function is easy to calculate.

 Learning Algorithm
With ANFIS, there is a two-pass learning cycle: the forward
pass and the backward pass. The pass that is selected
depends on the trained parameters in ANFIS. In our
proposed model, when the error exists between the actual
effort and the estimated effort, the outputs are fixed and the
inputs are trained. Hence, the backward pass is the type of
learning algorithm that this study uses. It is generally a
hybrid method of Least Square Estimate (LSE) and Back

Propagation, which is calculated using a gradient decent
algorithm that minimizes the error. For the learning
algorithm, the parameters of the premise part and the
consequent part are defined in two sets, as illustrated below:

X = {x1, x2, ... , xn}
 = {PR1, PR2, ... , PRN, SIBR, Size} (18)
P = {{P11, P21, …, PN1}, {P12, P22, …, PN2}, …, {P1M, P2M, …,
PNM}} (19)

where N = 34 and M =18; X represents the inputs of the
model, which are the rating levels, SIBR and Size; and P is
the parameter values of the parameters.

The output of each NF can be defined when substituting
(13) and (14) into (16):

for i = 1, 2, …, 34 (20)

Pi is the weighted sum of inputs X for PRi .
In the section III.B, the equations for the SEER-SEM Effort
Estimation are described in detail. The equations (1), (2),
(3), (4), and (5) can be re-written as follows with the
parameters symbols:

 (21)

ctbx = P1  P2-25  P8  P3  P9  P11 (22) ParmAdjustment
=P23-4P31-6P24-5P26-7P35-22  P12…P21P27…
P30P33P32 (23)

Vl o-
1

Vl o
2

Vl o+
3

Low-
4

Low
5

Low+
6

Nom-
7

Nom
8

Nom+
9

Hi -
10

Hi
11

Hi +
12

Vhi -
13

Vhi
14

Vhi +
15

Ehi -
16

Ehi
17

Ehi +
18

Me
mb

er
sh

ip
 D

eg
re

e 1

0








+ ≤≤−+
≤≤−−−

=
otherwise

rxrxr
rxrrx

xAir

,0
 1,)1(

1),1(
)(µ

xx
xx

yy
yy

01

0

01

0

−
=

−
−−

() ()∑∑
=

===
18

1
182,1 ,...,

r
iriir

r
riiii PxPwPPPfP ANF iri

µ

mentParmAdjust

P

ctbx
SizePEffort 2.1

2.1

2.1

2.1
4.0

34

105
11.4

ln70945.3
exp2000

393469.0 ×

×

×



















×







×−

×=

P a g e |58 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

Utilizing equations (18) to (21), the proposed neuro-fuzzy
model can be written:

 (24)

If there are NN project data points, the inputs and outputs
can be presented as (Xn, Eacn), where n = 1, 2,…, NN, Xn
contains 34 parameters as well as SIBR and Size, Eaen is the
actual effort with Xn inputs for project n. The learning
procedure involves adopting the gradient descent method to
adjust the parameter values of rating levels that minimizes
the error, E. According to LSE, the error, E, on the output
layer is defined as follows:

 (25)

where wn is the weight of project n and Een is the estimation
of the output for project n.
 (26)

The following steps are used to perform gradient descent
according to the Back Propagation learning algorithm.
According to the SEER-SEM effort estimation model
presented by equations (21) to (23), the results of the partial
derivative of Een with respect to

Pir,
 , are different.

 (27)

for i = 1, 2, …, 34 (28)

 (29)

After is calculated out, equation (30) is used to

calculate the adjusted parameter values.

 (30)

where α > 0 is the learning rate and l is the current iteration
index.

 Monotonic Constraints
A monotonic function is a function that preserves the given
order. The parameter values of SEER-SEM are either
monotonic increasing or monotonic decreasing. The
relationship between the monotonic functions and the rating
levels have been accepted by the practitioners as a common
sense practice. For instance, the values of ACAP are
monotonic decreasing from VLo- to EHi+, which is
reasonable because the higher the analysts’ capability, the
less spent on project efforts. As for TEST, its values are
monotonic increasing because the higher test level causes
more effort to be spent on projects. After calibrating
parameter values by the proposed model, the trained results
of these values may contravene the monotonic orders, so
that the trained values are changed to a non-monotonic
order. For instance, the parameter value of the ACAP rating
Hi can be greater than the value of the corresponding rating,
EHi. This discrepancy can lead to unreasonable inputs for
performing estimation and can impact the overall accuracy.
Therefore, monotonic constraints are used by our model in
order to maintain consistency with the rating levels.

IV. EVALUATION

For evaluating the neuro-fuzzy SEER-SEM model, in total,
data from 99 studies is collected, including 93 published
COCOMO 81 projects and 6 industry studies in the format
of COCOMO 87 (Ho 1996; Panlilio-Yap and Ho 2000). An
algorithmic estimation model, E = a×Sizeb comprises the
general form of COCOMO and SEER-SEM (Fischman,
McRitchie, and Galorath 2005; Jensen, Putnam, and
Roetzheim 2006). Specifically, this model enables us to use
the COCOMO database for evaluating the proposed SEER-
SEM model in spite of the difference between COCOMO
and SEER-SEM. In fact, various studies have revealed the
similar estimation performances of COCOMO and SEER-
SEM (Madachy, Boehm, and Wu 2006; USC Center for
Software Engineering 2006).

()PXfEffort NF ,=

∑
=










 −
=

NN

n acn

acnen
n E

EEwE
1

2

2
1

()PXfEffortE nnNFnen ,==

P
E

ir

en

∂
∂

()∑ ∂
∂

∂
∂

=

−=
NN

n ir

en
acnen

en

n

ir P
EEEE

w
P
E

1
2

P
P

P
PXf

P
P

P
E

P
E

ir

i

i

nnNF

ir

i

i

en

ir

en

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ ==

))((,

()xP
Px

P
Pf

P
P

i
iririr

i

A

irirAirirNFi
ir

µ
µ

===
∂

∂

∂

∂

∂
∂))(())((

P
E

ir

en

∂
∂

P
EPP

ir

l
ir

l
ir ∂

∂−=+ α1

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 59

Fig.5. Main Evaluation Steps.

Fig. 5 shows the main steps of our evaluation. First, in order
to use both published COCOMO 81 and industrial project
data in the evaluation, the information was translated into
the corresponding format of SEER-SEM data. Second, there
are four cases for evaluating the prediction performance of
our neuro-fuzzy model.
1) Performance Evaluation Metrics

The following evaluation metrics are adapted to assess and
evaluate the performance of the effort estimation models.

 Relative Error (RE)
()

rtActualEffo
rtActualEffoEffortEstimationRE −

=

The RE is used to calculate the estimation accuracy.

 Magnitude of Relative Error (MRE)

rtActualEffo
rtActualEffoEffortEstimation

MRE
−

=

 Mean Magnitude of Relative Error (MMRE)

The MMRE calculates the mean for the sum of the MRE of
n projects. Specifically, it is used to evaluate the prediction
performance of an estimation model.

 Prediction Level (PRED)
()

n
kLPRED =

where L is the maximum MRE of a selected range, n is the
total number of projects, and k is number of projects in a
set of n projects whose MRE <= L. PRED calculates the
ratio of projects’ MREs that falls into the selected range (L)
out of the total projects.
(e.g. n = 100, k =80, where L= MRE <= 30%: PRED(30%)
= 80/100 = 80%)

2) Dataset

There are two major steps in transferring data from
COCOMO 81 to SEER-SEM: first, information is converted
from COCOMO 81 to COCOMO II and then from
COCOMO II to SEER-SEM. The main guidelines are
referred to (Madachy, Boehm, and Wu 2006; Reifer,
Boehm, and Chulani 1999). In the method of the second
step, 20 of the 34 SEER-SEM technical parameters can be
directly mapped to 14 COCOMO II cost drivers and 1 scale
factors, 1 COCOMO 81 cost driver, and 2 COCOMO 87
cost drivers. The remainder of the SEER-SEM parameters
cannot be transferred to the COCOMO model, and as a
result, they are set up as nominal in SEER-SEM. After
transferring 93 COCOMO 81 project data points, the
estimation performance with transferred data are evaluated
with the estimation performance metrics. Table 1 presents
the details of the prediction performance of COCOMO 81,
COCOMO II, and SEER-SEM.

Table 1. Estimation Performance with Transferred Data.

 Cocomo 81 Cocomo II Seer-sem
Mmre (%) 56.46 48.63 84.39
Pred(20%) 36.56 37.63 36.56
Pred(30%) 51.61 54.84 45.16
Pred(50%) 76.34 78.49 56.99
Pred(100%) 92.47 94.62 81.72
of Outliers 22 20 39

The data transferring from COCOMO 81 to COCOMO II
keeps the very close performance with little improvement
when doing COCOMO II estimation with the transferred
data. The transferring from COCOMO II to SEER-SEM
causes the MMRE decreasing and the outliers increasing.
Most of the new outliers come from the embedded projects
whose MREs are lower than 50% before being transferred to
SEER-SEM. The PRED is still stable and there is not a huge
change. Overall, transferring from COCOMO 81 to SEER-
SEM is feasible for our evaluation, especially when the
actual project data in the format of SEER-SEM are difficult
to obtain. We use the online calculator of the USC Center
for Software Engineering to perform COCOMO 81 and

P a g e |60 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

COCOMO II estimation. We do SEER-SEM effort
estimation by two methods. One is performed by the SEEM-
SEM tool (SEER-SEM for Software 7.3) which is offered
by GAI, and the other is done manually by Microsoft Excel
with the equations of SEER-SEM effort estimation model as
presented in the section III.B. The SEER-SEM effort
estimation model is also implemented as part of our research
because it is part of our proposed model. The estimation
performance by the SEER-SEM tool and Excel are very
close. This is a way to make sure the algorithm of SEER-
SEM effort estimation presented in this paper to be correct.
We select the results done manually to avoid the impact
from other parameters settings in the SEER-SEM tool.
The dataset of 6industrial project data points is from the
COCOMO 87 model, which is slightly different than
COCOMO 81, as the effort multipliers RUSE, VMVH (Host
Volatility), and VMVT (Target Volatility) are not used in
COCOMO 81. However, RUSE can be transferred to
COCOMO II directly because it is one of the COCOMO II
cost drivers, and VMVH and VMVT can be transferred to
the SEER-SEM parameters DSVL and TSVL. The rest of
COCOMO 87 cost drivers are matched to the corresponding
cost drivers of COCOMO 81. Then, they are transferred to
COCOMO II and SEER-SEM.

3) Evaluation Cases

After transferring the data, we conducted four main case
studies to evaluate our model. These cases, which used
different datasets from 93 projects, were utilized to perform
training on the parameter values. The 93 project data points
and the 6 industrial project data points were adopted for
testing purposes. The original SEER-SEM parameter values
are trained in each case. The learned parameter values of the
four cases are different. This reason causes the prediction
performance difference amongst the cases and the SEER-
SEM. In order to assess the prediction performance of the
neuro-fuzzy model, we compared SEER-SEM effort
estimation model with our framework. Several performance
metrics were used for the analysis of each case, including
MRE, MMRE, and PRED. Accordingly, Table 2 presents
the MMRE results from Cases 1 to 4, and Table 3 shows the
MMRE results of the industrial project data points. Table 4

shows the PRED results of Cases 1, 2, and 3. The PRED
results of Case 4 are presented in Table 5.In the tables
presenting the analysis results, we have included a column
named Change‖, which is used to indicate the performance
difference between SEER-SEM effort estimation model and
our neuro-fuzzy model. For the MMRE, the prediction
performance improves as the value becomes closer to zero;
therefore, if the change for these performance metrics is a
negative value, the MMRE for the neuro-fuzzy model is
improved in comparison with SEER-SEM. Additionally,
the PRED(L)‖ in Table 4 represent the prediction level of
the selected range, referring to the definition presented in
the section IV.A; a higher prediction level indicates a
greater level of performance for PRED. For PRED, a
negative value for the Change‖ indicates that our model
shows a decreased level of performance as compared to
SEER-SEM. Finally, the results for both MMRE and PRED
are shown in a percentage format.

Table 2. MMRE of 93 Published Data Points.

Case ID SEER-SEM Validation Change
C1 84.39 61.05 -23.35

C2 84.39 59.11 -25.28

C3 84.39 59.07 -25.32

C4-1 50.49 39.51 -10.98

C4-2 42.05 29.01 -13.04

Table 3. MMRE of Industrial Project Data Points.

Case ID
MMRE (%)

SEER-SEM Industrial Average Change

C1 37.54 35.54 -2

C2 37.54 47.57 10.03

C3 37.54 47.16 9.62

C4-1 37.54 33.20 -4.34

C4-2 37.54 30.39 -7.15

Table 4. PRED of Cases 1, 2 and 3.

 SEER-SEM Neuro-Fuzzy Model

PRED(L) PRED (%) C1 C2 C3
 PRED (%) Change PRED (%) Change PRED (%) Change
PRED(20%) 36.65 29.03 -7.62 15.05 -21.6 15.05 -21.6
PRED(30%) 45.16 37.63 -7.53 18.28 -26.88 18.28 -26.88
PRED(50%) 56.99 64.52 7.53 36.56 -20.43 38.71 -18.28
PRED(100%) 81.72 92.47 10.75 97.85 16.13 97.85 16.13

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 61

Case 1 (C1): Learning with project data points excluding all outliers

This case involved training the parameters of projects where
the MREs are lower than or equal to 50%. There are 54
projects that meet this requirement. Since we wanted to
perform learning without any impact from the outliers, the
learning was done with 54 project data points, while 93 pieces
of project data and the 6 industrial project data points were
used for testing. When using the neuro-fuzzy model, the
MMRE decreased from 84.39% to 61.05%, with an overall
improvement of 23.35%. After testing data from the 93
projects, we used the 6 industrial project data points to
perform testing. The results of this evaluation present the
same tendency as the testing results with the 93 project data
points: the MMRE of the neuro-fuzzy model is lower than the
MMRE of SEER-SEM by 2%. With the neuro-fuzzy model,
PRED(20%) and PRED(30%) decreased by 7.62% and 7.53%
in comparison to the same values using SEER-SEM; however,
PRED(50%) and PRED(100%) improved with the neuro-
fuzzy model by a factor of 7.53% and 10.75% respectively,
which indicates that the MRE of the neuro-fuzzy model, in
comparison with that of SEER-SEM, contained more outliers
that were less than 100% or 50%. Furthermore, the MMRE
was significantly improved with the neuro-fuzzy model due to
the increase of outliers that were less than 100%. By
integrating the results from the MMRE, PRED, and the
industrial project data points, this calibration demonstrates
that the neuro-fuzzy model has the ability to reduce large
MREs.

Case 2 (C2): Learning with all project data including all outliers

In Case 2, we used the data points from all 93 projects to
calibrate the neuro-fuzzy model without removing the 39
outliers. The testing was performed with the same project
dataset used in the training and with the 6 industrial project
data points. In comparison to Case 1, this test attempted to
ascertain the prediction performance when the learning
involved the outliers as well as the effects of the outliers on
the calibration. the MMRE using SEER-SEM comparison to
the MMRE using SEER-SEM. Nevertheless, the industrial
project data points caused the MMRE to worsen with the
neuro-fuzzy model by 10.03%. The results of PRED
demonstrate that PRED(20%), PRED(30%), and PRED(50%)
decreased by more than 20%, while PRED(100%) increased
by 16.13% with the neuro-fuzzy model. Moreover, these
results also indicate that the neuro-fuzzy model is effective for
improving the MREs that are greater than 100%. As a result,
the MMRE in all of the datasets are improved when the neuro-
fuzzy model is utilized. In Cases 1 and 2, the results of PRED
and the 6 industrial project data points show that the neuro-
fuzzy model causes large increases in small MREs while
reducing large MREs. Hence, the decrease of large MREs
leads to the overall improvement of the MMRE, thus showing
the effectiveness of the neuro-fuzzy model.

Case 3 (C3): Learning with project data excluding part of outliers

After training, which included and then excluded all of the
outliers, Case 3 calibrated the neuro-fuzzy model by removing
the top 12 of 39 outliers where the MRE is more than 150%.
In this case, 87 project data points are used to perform
training, and the 93 project data points and the 6 industrial
project data points are used for testing. The results of Case 3
are almost identical to the results of MMRE and PRED as
demonstrated in Case 2. Specifically, for the neuro-fuzzy
model, the MMRE of industrial project data points is
worsened by 9.62%. Overall, as compared to Case 2,
calibration excluding the top 12 outliers does not make a
significant difference in the performance of the model.

Case 4 (C4): Learning with part of project data points

In the previous three cases, all data points from the 93 projects
were used for testing. However, in Case 4, we used part of this
dataset to calibrate the neuro-fuzzy model, and the rest of the
data points, along with the 6 industrial project data points,
were used for testing. The objective of this case was to
determine the impact of the training dataset size on the
calibration results. Table 2, Table 3, and Table 5 present the
results.

Case 4 -1 (C4-1):

Learning with 75% of project data points and testing with 25% of
project data points

This sub-case performed training with 75% of the 93 project
data points and testing with the remaining 25% of these
points. The project numbers for the training data points ranged
from 24 to 93, while those for the testing points ranged from 1
to 23 and also included the 6 industrial project data points. To
analyze the results, we compared the performance of SEER-
SEM to that of the neuro-fuzzy model for Projects 1 to 23. In
this case, the neuro-fuzzy model improved the MMRE by
10.98%. Furthermore, PRED(30%) and PRED(100%) with
our model improved by 4.35% and 8.70% respectively.
Finally, with the neuro-fuzzy model, the MREs of all 23
project data points were within 100%. In this case, the testing
results of the industrial project data points are improved from
the previous tests by 4.34%. These results demonstrate the
effective performance of the neuro-fuzzy model in reducing
large MREs.

 Case 4 -2 (C4-2):
Learning with 50% of project data points and testing
with 50% of project data points

Case 4-2 divided the 93 project data points into two subsets.
The first subset included 46 project data points that are
numbered from 1 to 46 and were used to perform testing. On

P a g e |62 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

Summary of PRED Validation

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

PRED(20%)

Average

PRED(30%)

Average

PRED(50%)

Average

PRED(100%)

Average

SEER-SEM

Validation

the other hand, the second subset contained 47 project data
points, numbered from 47 to 93, which were used to train the
neuro-fuzzy model. In comparison to Case 4-1, this test
contains fewer training data points and more testing data
points. Accordingly, we analyzed the performance results of
the 46 project data points as estimated by both SEER-SEM
and the neuro-fuzzy model. In this case, the MMRE improved
by 13.04% when using the neuro-fuzzy model. Specifically,
the results of PRED showed improvement from those in Case

4-1; not only were the MREs of all 46 project data points
within 100%, but the MREs of most project data points were
also less than 50%. Furthermore, in the testing that involved
the 6 industrial project data points, the results were better than
those in Case 4-1. Using the neuro-fuzzy approach, the
MMRE of the 6 industrial project data points improved by
7.15%, which was the greatest improvement among all of the
cases in this study.

4) EVALUATION SUMMARY

In this section, we summarize the evaluation results by
comparing the analysis of all of the cases as presented in the
previous sections. Fig. 6 shows the validation summary for the
mmre across all of the cases. Specifically, the mmre improves
in all of the cases, with the greatest improvement being over
25%.

Fig.6. Summary of MMRE Validation.

Table 6 illustrates the PRED averages for SEER-SEM in all of
the cases, and Fig. 7 shows the PRED averages for all of the
cases using the neuro-fuzzy model. Compared to the PREDs
from SEER-SEM, the averages of PRED(20%), PRED(30%),
and PRED(50%) with the neuro-fuzzy model do not show

improvement. However, the average of PRED(100%) is
increased by 12.14%, which indicates that the neuro-fuzzy
model improves the performance of the MMRE by reducing
the large MREs.

Table 5. Summary of PRED Average.

 SEER-
SEM

Average of
Validation Change

PRED(20%) 39.76% 27.48% -
12.28%

PRED(30%) 49.27% 36.46% -
12.81%

PRED(50%) 62.02% 55.35% -6.67%
PRED(100%) 85.55% 97.69% 12.14%

Fig.7. Summary of PRED Validation

Fig. 8 presents the MMREs of industrial project data points
from all of the cases. The MMRE from Cases 1 and 4
demonstrate an improvement of no more than 7.15%. The
calibrations with the outliers in Cases 2 and 3 lower the
prediction performance of these two cases. Thus, for the
neuro-fuzzy model, the improvement of the MMRE of
industrial projects is minimal.

Summary of MMRE Validation

-30.00%

-10.00%

10.00%

30.00%

50.00%

70.00%

90.00%

110.00%

C1 C2 C3 C4-1 C4-2 Average

M
M

R
E

 a
n

d
 C

h
a
n

g
e

SEER-SEM
Validation
Change

Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0) October 2010 P a g e | 63

Fig.6. MMRE of Industrial Project Data Points.

V. CONCLUSION

Overall, our research demonstrates that combining the neuro-
fuzzy model with the SEER-SEM effort estimation model
produces unique characteristics and performance
improvements. Effort estimation using this framework is a
good reference for the other popular estimation algorithmic
models. The neuro-fuzzy features of the model provide our
neuro-fuzzy SEER-SEM model with the advantages of strong
adaptability with the capability of learning, less sensitivity for
imprecise and uncertain inputs, easy to be understood and
implemented, strong knowledge integration, and high
transparency.
Four main contributions are provided by this study:

a) ANFIS is a popular neuro-fuzzy system with the
advantages of neural network and fuzzy logic
techniques, especially the ability of learning. The
proposed neuro-fuzzy model can successfully
manage the nonlinear and complex relationship
between the inputs and outputs and it is able to
handle input uncertainty from the data.

b) The involvement of fuzzy logic techniques improves
the knowledge integration of our proposed model.
Fuzzy logic has the ability to map linguistic terms to
variables. Accordingly, the inputs of our model are
not limited to linguistic terms and can also work with
numerical values. The defined fuzzy rules are an
effective method for obtaining the experts‘
understanding and experience to produce more
reasonable inputs.

c) There are two techniques introduced in this research:
the triangular membership function and the
monotonic constraint. Triangular Membership
Functions are utilized to translate parameter values to
membership values. Furthermore, monotonic
constraints are used in order to preserve the given
order and maintain consistency for the rating values
of the SEER-SEM parameters. These techniques
provide a good generalization for the proposed
estimation model.

d) This research proves that the proposed neuro-fuzzy
structure can be used with other algorithmic models
besides the COCOMO model and presents further
evidence that the general soft computing framework
can work effective with various algorithmic models.
The evaluation results indicate that estimation with
our proposed neuro-fuzzy model containing SEER-
SEM is more efficient than the estimation results that
only use SEER-SEM effort estimation model.
Specifically, in all four cases, the MMREs of our
proposed model are improved over the ones where
only SEER-SEM effort estimation model is used, and
there is more than a 20% decrease as compared to
SEER-SEM. According to these results, it is apparent
that the neuro-fuzzy technology improves the
prediction accuracy when it is combined with the
SEER-SEM effort estimation model, especially when
reducing the outliers of MRE >100%.

Although several studies have already attempted to improve
the general soft computing framework, there is still room for
future work. First, the algorithm of the SEER-SEM effort
estimation model is more complex than that of the COCOMO
model. Prior research that combines neuro-fuzzy techniques
with the COCOMO model demonstrates greater
improvements in the prediction performance. Hence, the
proposed general soft computing framework should be
evaluated with other complex algorithms. Secondly, the
datasets in our research are not from the original projects
whose estimations are performed by SEER-SEM. When the
SEER-SEM estimation datasets are available, more cases can
be completed effectively for evaluating the performance of the
neuro-fuzzy model.

VI. REFERENCES

1) Abran, A. and Robillard, P. N. (1996) Function
Points Analysis: An Empirical Study of Its
Measurement Processes. Journal of Systems and
Software, Vol. 22, Issue 12: 895–910

2) Albrecht, A. J. (1979) Measuring Application
Development Productivity. Proceedings of the Joint
SHARE, GUIDE, and IBM Application
Development Symposium: 83–92

3) Boehm, B. W. (1981) Software Engineering
Economics. Prentice Hall, Englewood Cliffs, NJ

4) Boehm, B. W., Abts, C., Brown, A. W., Chulani, S.,
Clark, B. K., Horowitz, E., Madachy, R., Reifer, D.,
and Steece, B. (2000) Software Cost Estimation with
COCOMO II. Prentice Hall, Upper Saddle River, NJ

5) Boehm, B. W., Abts, C., and Chulani, S. (2000)
Software Development Cost Estimation Approaches
– A Survey. Annuals of Software Engineering: 177–
205

6) Chulani, S. (1999) Bayesian Analysis of Software
Cost and Quality Models. Dissertation, University of
South California

P a g e |64 Vol. 10 Issue 12 (Ver. 1.0) October 2010 Global Journal of Computer Science and Technology

7) Damiani, E., Jain, L. C., and Madravio, M. (2004)
Soft Computing in Software Engineering. Springer,
New York, NY

8) Fischman, L., McRitchie, K., and Galorath, D. D.
(2005) Inside SEER-SEM. Cross Talk – The Journal
of Defense Software Engineering: 26–28.

9) Galorath, D. D. and Evans, M. W. (2006) Software
Sizing, Estimation and Risk Management. Auerbach
Publications, Boca Raton, NY

10) Galorath Incorporated (2001) SEER-SEM User‘s
Manual

11) Galorath Incorporated (2005) SEER-SEM Software
Estimation, Planning and Project Control Training
Manual

12) Gray, A. R. and MacDonell, S.G. (1997) A
Comparison of Techniques for Developing Predictive
Models of Software Metrics. Information and
Software Technology, Vol.39, Issue 6:425–437

13) Ho, D. (1996) Experience Report on COCOMO and
the Costar Tool from Nortel‘s Toronto Laboratory.
the 11th International Forum on COCOMO and
Software Cost Modeling

14) Hodgkinson, A. C. and Garratt, P. W. (1999) A
NeuroFuzzy Cost Estimator. Proc. 3rd Int Conf
Software Engineering and Applications (SAE): 401–
406

15) Huang, X. (2003) A Neuro-Fuzzy Model for
Software Cost Estimation. Dissertation, University of
Western Ontario

16) Huang, X., Ho, D., Ren, J., and Capretz, L. F. (2005)
A Soft Computing Framework for Software Effort
Estimation. Soft Computing: 170–177

17) Huang, X., Ho, D., Ren, J., and Capretz, L. F. (2006)
Improving the COCOMO Model Using A Neuro-
Fuzzy Approach. Applied Soft Computing: 29–40

18) Huang, X., Ho, D., Ren, J., and Capretz, L. F. (2008)
System and Method for Software Estimation. USA
Patent No. US-7328202-B2

19) Jang, J. R., Sun, C. and Mizutani, E. (1997) Neuro-
Fuzzy and Soft-Computing. Prentice Hall, Upper
Saddle River, NJ

20) Jensen, R., Putnam, L., and Roetzheim, W. (2006)
Software Estimation Models: Three Viewpoints.
Software Engineering Technology: 23–29

21) Jones, T. C. (1998) Estimating Software Costs.
McGraw Hill, Hightstown, NJ

22) Madachy, R., Boehm, B., and Wu, D. (2006)
Comparison and Assessment of Cost Models for
NASA Flight Projects. 21st International Forum on
COCOMO and Software Cost Modeling

23) Nauck, D., Klawonn, F., and Kruse, R. (1997)
Foundations of Neuro-Fuzzy Systems. John Wiley &
Sons, Inc., New York, NY

24) Nguyen, H. T., Prasad, N. R., Walker, C. L., and
Walker, E. A. (2003) A First Course in Fuzzy and
Neural Control, Chapman& Hall /CRC, Boca Raton,
FL

25) Panlilio-Yap, N. and Ho, D. (2000) Deploying
Software Estimation Technology and Tools: the IBM
SWS Toronto Lab Experience. the 9th International
Forum on COCOMO and Software Cost Modeling

26) Putnam, L. H. and Myers, W. (1992) Measures for
Excellence. Prentice Hall, Englewood Cliffs, NJ

27) Reifer, D. J., Boehm, B. W., and Chulani, S. (1999)
The Rosetta Stone – Making COCOMO 81
Estimations Work with COCOMO II. CrossTalk The
Journal of Defence Software Engineering: 11–15

28) Takagi, T. and Sugeno, M. (1986) Derivation of
Fuzzy Control Rules from Human Operator‘s Control
Action. Proc. of the IFAC Symp. on Fuzzy Inf.
Knowledge Representation and Decision Analysis:
55 – 60

29) USC Center for Software Engineering (2006) Cost
Model Comparison Report. Dissertation, University
of South California

30) Wong, J., Ho, D., and Capretz, L. F. (2008)
Calibrating Functional Point Backfiring Conversion
Ratios Using Neuro-Fuzzy Technique. International
Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, Vol. 16, No. 6: 847 – 862

31) Xia, W., Capretz, L. F., Ho, D., and Ahmed, F.
(2008) A New Calibration for Function Point
Complexity Weights. International and Software
Technology, Vol. 50, Issue 7-8: 670–683

	Improving Software Effort Estimation UsingNeuro-Fuzzy Model with SEER-SEM
	Authors
	Abstract
	Keywords
	I. INTRODUCTION
	II. BACKGROUND
	III. A NEURO-FUZZY SEER-SEM MODEL
	A. A General Soft Computing Framework for SoftwareEstimation
	B. SEER-SEM Effort Estimation Model
	C. A Neuro-Fuzzy Model with SEER-SEM
	a) Overview
	b) Structure of NFi

	V. CONCLUSION
	VI. REFERENCES

