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Improving Software Effort Estimation Using 
Neuro-Fuzzy Model with SEER-SEM 
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Abstract - Accurate software development effort estimation is a
critical part of software projects. Effective development of
software is based on accurate effort estimation. Although many
techniques and algorithmic models have been developed and
implemented by practitioners, accurate software development
effort prediction is still a challenging endeavor in the field of
software engineering, especially in handling uncertain and
imprecise inputs and collinear characteristics.  In order to
address these issues, previous researchers developed and
evaluated a novel soft computing framework. The aims of our
research are to evaluate the prediction performance of the
proposed neuro-fuzzy model with System Evaluation and
Estimation of Resource Software Estimation Model (SEER-
SEM) in software estimation practices and to apply the
proposed architecture that combines the neuro-fuzzy technique
with different algorithmic models.  In this paper, an approach
combining the neuro-fuzzy technique and the SEER-SEM
effort estimation algorithm is described. This proposed model
possesses positive characteristics such as learning ability,
decreased sensitivity, effective generalization, and knowledge
integration for introducing the neuro-fuzzy technique.
Moreover, continuous rating values and linguistic values can
be inputs of the proposed model for avoiding the large
estimation deviation among similar projects. The performance
of the proposed model is accessed by designing and conducting
evaluation with published projects and industrial data. The
evaluation results indicate that estimation with our proposed
neuro-fuzzy model containing SEER-SEM is improved in
comparison with the estimation results that only use SEER-
SEM algorithm. At the same time, the results of this research
also demonstrate that the general neuro-fuzzy framework can
function with various algorithmic models for improving the
performance of software effort estimation. 
Keywords – software estimation, software management,
software effort estimation, neuro-fuzzy software estimation,
SEER-SEM 

I. INTRODUCTION 

he cost and delivery of software projects and the quality
of products are affected by the accuracy of software 

effort estimation. In general, software effort estimation
techniques can be subdivided into experience-based,
parametric model-based, learning-oriented, dynamics-based,
regression-based, and composite techniques (Boehm, Abts, 
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and Chulani 2000). Amongst these methods, model-based
estimation techniques involve the use of mathematical
equations to perform software estimation. The estimation
effort is a function of the number of variables, which are
factors impacting software cost (Boehm 1981). These
model-based estimation techniques comprise the general
form: E = a × Sizeb, where E is the effort, size is the product
size, a is the productivity parameters or factors, and b is the
parameters for economies or diseconomies (Fischman,
McRitchie, and Galorath 2005; Jensen, Putnam, and
Roetzheim 2006). In the past decades, some important
software estimation algorithmic models have been published
by researchers, for instance Constructive Cost Model
(COCOMO) (Boehm et al. 2000), Software Life-cycle
Management (SLIM) (Putnam and Myers 1992), SEER-
SEM (Galorath and Evans 2006), and Function Points
(Albrecht 1979; Jones 1998).  Model-based techniques have
several strengths, the most prominent of which are
objectivity, repeatability, the presence of supporting
sensitivity analysis, and the ability to calibrate to previous
experience (Boehm 1981). On the other hand, these models
also have some disadvantages. One of the disadvantages of
algorithmic models is their lack of flexibility in adapting to
new circumstances. The new development environment
usually entails a unique situation, resulting in imprecise
inputs for estimation by an algorithmic model. As a rapidly
changing business, the software industry often faces the
issue of instability and hence algorithmic models can be
quickly outdated. The outputs of algorithmic models are
based on the inputs of size and the ratings of factors or
variables (Boehm 1981).  Hence, incorrect inputs to such
models, resulting from outdated information, cause the
estimation to be inaccurate. Another drawback of
algorithmic models is the strong collinearity among
parameters and the complex non-linear relationships
between the outputs and the contributing factors.
SEER-SEM appeals to software practitioners because of its
powerful estimation features. It has been developed with a
combination of estimation functions for performing various
estimations. Created specifically for software effort
estimation, the SEER-SEM model was influenced by the
frameworks of Putnam (Putnam and Myers 1992) and Doty
Associates (Jensen, Putnam, and Roetzheim 2006). As one
of the algorithmic estimation models, SEER-SEM has two
main limitations on effort estimation. First, there are over 50
input parameters related to the various factors of a project,
which increases the complexity of SEER-SEM, especially
for managing the uncertainty from these outputs. Second,
the specific details of SEER-SEM increase the difficulty of
discovering the nonlinear relationship between the 
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parameter inputs and the corresponding outputs. Overall, 
these two major limitations can lead to a lower accuracy in 
effort estimation by SEER-SEM. 
The estimation effort is a function of the number of 
variables, which are factors impacting software cost (Boehm 
1981). These model-based estimation techniques comprise 
the general form: E = a × Sizeb, where E is the effort, size is 
the product size, a is the productivity parameters or factors, 
and b is the parameters for economies or diseconomies 
(Fischman, McRitchie, and Galorath 2005; Jensen, Putnam, 
and Roetzheim 2006). In the past decades, some important 
software estimation algorithmic models have been published 
by researchers, for instance Constructive Cost Model 
(COCOMO) (Boehm et al. 2000), Software Life-cycle 
Model (SLIM) (Putnam and Myers 1992), SEER-SEM 
(Galorath and Evans 2006), and Function Points (Albrecht 
1979; Jones 1998).  Model-based techniques have several 
strengths, the most prominent of which are objectivity, 
repeatability, the presence of supporting sensitivity analysis, 
and the ability to calibrate to previous experience (Boehm 
1981). On the other hand, these models also have some 
disadvantages. One of the disadvantages of algorithmic 
models is their lack of flexibility in adapting to new 
circumstances. The new development environment usually 
entails a unique situation, resulting in imprecise inputs for 
estimation by an algorithmic model. As a rapidly changing 
business, the software industry often faces the issue of 
instability and hence algorithmic models can be quickly 
outdated. The outputs of algorithmic models are based on 
the inputs of size and the ratings of factors or variables 
(Boehm 1981).  Hence, incorrect inputs to such models, 
resulting from outdated information, cause the estimation to 
be inaccurate. Another drawback of algorithmic models is 
the strong collinearity among parameters and the complex 
non-linear relationships between the outputs and the 
contributing factors.  
SEER-SEM appeals to software practitioners because of its 
powerful estimation features. It has been developed with a 
combination of estimation functions for performing various 
estimations. Created specifically for software effort 
estimation, the SEER-SEM model was influenced by the 
frameworks of Putnam (Putnam and Myers 1992) and Doty 
Associates (Jensen, Putnam, and Roetzheim 2006). As one 
of the algorithmic estimation models, SEER-SEM has two 
main limitations on effort estimation. First, there are over 50 
input parameters related to the various factors of a project, 
which increases the complexity of SEER-SEM, especially 
for managing the uncertainty from these outputs. Second, 
the specific details of SEER-SEM increase the difficulty of 
discovering the nonlinear relationship between the 
parameter inputs and the corresponding outputs. Our study 
attempts to reduce the negative impacts of the above major 
limitations of the SEER-SEM effort estimation model on 
prediction accuracy and make contributions towards 
resolving the problems caused by the disadvantages of 
algorithmic models. First, for accurately estimating software 
effort the neural network and fuzzy logic approaches are 
adopted to create a neuro-fuzzy model, which is 
subsequently combined with SEER-SEM.  The Adaptive 

Neuro-Fuzzy Inference System (ANFIS) is used as the 
architecture of each neuro-fuzzy sub-model. Second, this 
research is another evaluation for effectiveness of the 
general model of neuro-fuzzy with algorithmic model 
proposed by the previous studies. Third, the published data 
and industrial project data are used to evaluate the proposed 
neuro-fuzzy model with SEER-SEM. Although the data was 
collected specifically for COCOMO 81 and COCOMO 87, 
they are transferred from COCOMOs to COCOMO II and 
then to the SEER-SEM parameter inputs, utilizing the 
guidelines from the University of Southern California (USC) 
(Madachy, Boehm, and Wu 2006; USC Center for Software 
Engineering 2006). After the transfer of this data, the 
estimation performance is verified to ensure its feasibility. 

II. BACKGROUND 

Soft computing, which is motivated by the characteristics of 
human reasoning, has been widely known and utilized since 
the 1960s. The overall objective from this field is to achieve 
the tolerance of incompleteness and to make decisions under 
imprecision, uncertainty, and fuzziness (Nauck, Klawonn, 
and Kruse 1997; Nguyen, Prasad, Walker, and Walker 
2003). Because of capabilities, soft computing has been 
adopted by many fields, including engineering, 
manufacturing, science, medicine, and business. The two 
most prominent techniques of soft computing are neural 
networks and fuzzy systems. The most attractive advantage 
of neural networks is the ability to learn from previous 
examples, but it is difficult to prove that neural networks are 
working as expected. Neural networks are like ―black 
boxes‖ to the extent that the method for obtaining the 
outputs is not revealed to the users (Chulani 1999; Jang, 
Sun, and Mizutani 1997). The obvious advantages of fuzzy 
logic are easy to define and understand an intuitive model 
by using linguistic mappings and handle imprecise 
information (Gray and MacDonell 1997; Jang, Sun, and 
Mizutani 1997). On the other hand, the drawback of this 
technique is that it is not easy to guarantee that a fuzzy 
system with a substantial number of complex rules will have 
a proper degree of meaningfulness (Gray and MacDonell 
1997). In addition, the structure of fuzzy if-then rules lacks 
the adaptability to handle external changes (Jang, Sun, and 
Mizutani 1997). Although neural networks and fuzzy logic 
have obvious strengths as independent systems, their 
disadvantages have prompted researchers to develop a 
hybrid neuro-fuzzy system that minimizes these limitations. 
Specifically, a neuro-fuzzy system is a fuzzy system that is 
trained by a learning algorithm derived from the neural 
network theory (Nauck, Klawonn, and Kruse 1997). Jang‘s 
(Jang, Sun, and Mizutani 1997; Nauck, Klawonn, and Kruse 
1997) ANFIS is one type of hybrid neuro-fuzzy system, 
which is composed of a five-layer feed-forward network 
architecture. 
Soft computing is especially important in software cost 
estimation, particularly when dealing with uncertainty and 
with complex relationships between inputs and outputs. In 
the 1990‘s a soft computing technique was introduced to 
build software estimation models and improve prediction 
performance (Damiani, Jain, and Madravio 2004).  As a 
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technique containing the advantages of the neural networks 
and fuzzy logic, the neuro-fuzzy model was adopted for 
software estimation. Researchers developed some models 
with the neuro-fuzzy technique and demonstrated their 
ability to improve prediction accuracy. Hodgkinson and 
Garratt (Hodgkinson and Garratt 1999) introduced the 
neuro-fuzzy model for cost estimation as one of the 
important methodologies for developing non-algorithmic 
models. Their model did not use any of the existing 
prediction models, as the inputs are size and duration, and 
the output is the estimated project effort. The clear 
relationship between Function Points Analysis (FPA)‘s 
primary component and effort was demonstrates by Abran 
and Robillard‘s study (Abran and Robillard 1996). Huang et 
al. (Huang, Ho, Ren, and Capretz 2005 and 2006) proposed 
a software effort estimation model that combines a neuro-
fuzzy framework with COCOMO II.  The parameter values 
of COCOMO II were calibrated by the neuro-fuzzy 
technique in order to improve its prediction accuracy.  This 
study demonstrated that the neuro-fuzzy technique was 
capable of integrating numerical data and expert knowledge. 
And the performance of PRED(20%) and PRED(30%) were 
improved by more than 15% and 11% in comparison with 
that of COCOMO 81. Xia et al. (Xia, Capretz, Ho, and 
Ahmed 2008) developed a Function Point (FP) calibration 
model with the neuro-fuzzy technique, which is known as 
the Neuro-Fuzzy Function Point (NFFP) model. The 
objectives of this model are to improve the FP complexity 
weight systems by fuzzy logic, to calibrate the weight values 
of the unadjusted FP through the neural network, and to 
produce a calibrated FP count for more accurate 
measurements. Overall, the evaluation results demonstrated 
that the average improvement for software effort estimation 
accuracy is 22%. Wong et al. (Wong, Ho, and Capretz 
2008) introduced a combination of neural networks and 
fuzzy logic to improve the accuracy of backfiring size 
estimates. In this case, the neuro-fuzzy approach was used to 
calibrate the conversion ratios with the objective of reducing 
the margin of error. The study compared the calibrated 
prediction model against the default conversion ratios. As a 
result, the calibrated ratios still presented the inverse curve 
relationship between the programming languages level and 
the SLOC/FP, and the accuracy of the size estimation 
experienced a small degree of improvement. 

III. A NEURO-FUZZY SEER-SEM MODEL 

A. A General Soft Computing Framework for Software 
Estimation 

This section describes a general soft computing framework 
for software estimation, which is based on the unique 
architecture of the neuro-fuzzy model described in the 
patent US-7328202-B2 (Huang, Ho, Ren, and Capretz 2008) 
and was built by Huang et al. (Huang, Ho, Ren, and Capretz 
2006). The framework is composed of inputs, a neuro-fuzzy 
bank, corresponding values of inputs, an algorithmic model, 
and outputs for effort estimation, as depicted in Fig. 1. 
Among the components of the proposed framework, the 
neuro-fuzzy bank and the algorithmic model are the major 

parts of the model. The inputs are rating levels, which can 
be continuous values or linguistic terms such as Low, 
Nominal, or High.  V1, …,Vn  are the non-rated values of the 
software estimation algorithmic model.  On the other hand, 
AI0, …, AIm are the corresponding adjusted quantitative 
parameter values of the rating inputs, which are the inputs of 
the software estimation algorithmic model for estimating 
effort as the final output.  

 

Fig.1. A General Soft Computing Framework. 
 
This novel framework has attractive attributes, particularly 
the fact that it can be generalized to many different 
situations and can be used to create more specific models. In 
fact, its generalization is one of the purposes of designing 
this framework. Its implementation is not limited to any 
specific software estimation algorithmic model. The 
algorithmic model in the framework can be one of the 
current popular algorithmic models such as COCOMO, 
SLIM or SEER-SEM.  When various algorithmic models are 
implemented into this framework, the inputs and the non-
rating values are different. 

B. SEER-SEM Effort Estimation Model 

SEER-SEM stemmed from the Jensen software model in the 
late 1970s, where it was developed at the Hughes Aircraft 
Company‘s Space and Communications Group (Fischman, 
McRitchie, and Galorath 2005; Galorath and Evans 2006; 
Jensen, Putnam, and Roetzheim 2006).  In 1988, Galorath 
Inc. (GAI) started developing SEER-SEM (Galorath and 
Evans 2006), and in 1990, GAI trademarked this model. The 
SEER-SEM model was motivated by Putnam‘s SLIM and 
Boehm‘s COCOMO (Fischman, McRitchie, and Galorath 
2005; Galorath and Evans 2006; Jensen, Putnam, and 
Roetzheim 2006). Over the span of a decade, SEER-SEM 
has been developed into a powerful and sophisticated model, 
which contains a variety of tools for performing different 
estimations that are not limited to software effort. SEER-
SEM includes the breakdown structures for various tasks, 
project life cycles, platforms, and applications. It also 
includes the most development languages, such as the third 
and fourth generation programming languages, in the 
estimation. Furthermore, the users can select different 
knowledge bases (KBs) for Platform, Application, 
Acquisition Method, Development Method, Development 
Standard, and Class based on the requirements of their 
projects. SEER-SEM provides the baseline settings for 
parameters according to the KB inputs; there are over 50 
parameters that impact the estimation outputs. Among them, 
34 parameters are used by SEER-SEM effort estimation 
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model (Galorath Incorporated 2001 and 2006). 
Nevertheless, the SEER-SEM model contains some 
disadvantages. For instance, the efforts spent on pre-
specification phases, such as requirements collection, are not 
included in the effort estimation. In SEER-SEM effort 
estimation, each parameter has sensitivity inputs, with the 
ratings ranging from Very Low (VLo-) to Extra High 
(EHi+). Each main rating level is divided into three sub-
ratings, such as VLo-, VLo, VLo+. These ratings are 
translated to the corresponding quantitative value used by 
the effort estimation calculation. The SEER-SEM effort 
estimation is calculated by the following equations: 

KE 393469.0                                                 (1)  

                                                            
 
 
                                                                                   (2) 
 
 
 
                                                                                   (3) 
                   
ctbx =  
ACAPAEXPAPPLMODPPCAPTOOLTERM  
                                                                                            (4) 
ParmAdjustment= 
LANGLEXPTSYSTEXPDSYSDEXPPSYSPEXPS
IBRREUSMULTRDEDRLOCDSVLPSVLRV
OLSPECTESTQUALRHST(HOST)DISPME
MCTIMCRTIMSECRTSVL               (5) 
 
where, 
E is the development effort (in person years), 
K is the total Life-cycle effort (in person years) including 
development and maintenance,  

  
The elements included in equations (4) and (5) are 
parameters or combined parameters; the formulas for 
calculating combined parameters are shown below: 
AEXPAPPL =  
0.82+(0.47*EXP(-0.95977*(AEXP/APPL)))                     (6) 
 
LANGLEXP = 
1+((1.11+0.085*LANG)-1)*EXP(-LEXP/(LANG/3))      (7) 
TSYSTEXP =  
1+(0.035+0.025*TSYS)*EXP(-3*TEXP/TSYS)               (8) 
DSYSDEXP = 
1+(0.06+0.05*DSYS)*EXP(-3*DEXP/DSYS)                  (9) 
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 .833, /PSYS)) 0̂PEXP*EXP(-3*PSYS*0.23PSYS(0.91^ 
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                                                                                (10) 
SIBRREUS = 
SIBR*REUS +1                                          
 
                                                                                                    (11) 
 

C. A Neuro-Fuzzy Model with SEER-SEM 

a) Overview 

This section will describe the proposed framework of the 
neuro-fuzzy model with SEER-SEM, based on the general 
structure in the section III.A, as depicted in Fig. 2. The 
inputs consist of two parts: non-rating inputs and the rating 
levels of parameters, which include 34 technology and 
environment parameters and 1 complexity or staffing 
parameter. Among the technology and environment 
parameters, there is one parameter (SIBR), which is not 
rated by the linguistic term. SIBR is decided by users, 
through inputting the percentage.  Hence, similar to the 
input of size, SIBR is a non-rating value.  While the other 
parameters are labeled as PR1 to PR34, SIBR is labeled PR35. 

 
Fig.2. A Neuro-Fuzzy Model with SEER-SEM. 

 
Each parameter PRi (i = 1, …, 34) can be a linguistic term 
or a continuous rating value. The linguistic inputs are from 
18 rating levels (r =1, …, 18), which include Very Low– 
(VLo-), Very Low (VLo), Very Low+ (VLo+), Low–, Low, 
Low+, Nominal- (Nom-), Nominal (Nom), Nominal+ 
(Nom+), High – (Hi-), High (Hi), High+ (Hi+), Very High– 
(VHi-), Very High (VHi), Very High+ (VHi+), Extra High– 
(EHi-), Extra High (EHi), and Extra High+ (EHi+). In these 
ratings, there are 6 main levels, VLo, Low, Nom, Hi, VHi, 
and EHi, and each main rating level has three sub-levels: 
minus, plus or neutral (Galorath Incorporated 2006 be 
2005). NFi (i = 1, …, 34)  is a neuro-fuzzy bank, which is 
composed of thirty-four NFi sub-models. The rating levels 
of each parameter PRi (i = 1, …, 34) are the input of each 
NFi . Through these sub-models, the rating level of a 
parameter is translated into the corresponding quantitative 
value (Pi , i = 1, …, 34) as the inputs of the SEER-SEM 
effort estimation as introduced in the section III.B, from 
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equations (1) to (11). The output of the proposed model is 
the software effort estimation. 

b) Structure of NFi 

 

Fig.3. Structure of NFi. 

The neuro-fuzzy bank fulfills an important function in the 
proposed neuro-fuzzy model with SEER-SEM effort 
estimation model. NFi produces fuzzy sets and rules for 
training datasets. It translates the rating levels of a parameter 
into a quantitative value and calibrates the value by using 
actual project data. According to fuzzy logic techniques, 
linguistic terms can be presented as a fuzzy set.  There are 
18 rating levels for each parameter in linguistic terms, which 
are used to define a fuzzy set in this research. The selected 
membership function translates the linguistic terms in this 
fuzzy set to membership values. Each NFi uses the structure 
of the Adaptive Neuro-Fuzzy Inference System (ANFIS), 
which is a five-layer hybrid neuro-fuzzy system, as depicted 
in Fig. 3.   

 Input and Output of NFi 
There is one input and one corresponding output for each 
NF. The input of each NFi (PRi , i = 1, …, 34) is the rating 
level of a parameter for SEER-SEM effort estimation model, 
such as Very Low (VLo) or High (Hi). On the other hand, 
the output is the corresponding quantitative value of this 
parameter (Pi , i = 1, …, 34), such as 1.30.  

 Fuzzy Rule 
Based on the features of ANFIS and the structure shown in 
Fig. 3, this work refers to the form of the fuzzy if-then rule 
proposed by Takagi and Sugeno (Takagi and Sugeno 1986). 
The rth fuzzy rule of the proposed model is defined as 
below: 
Fuzzy Rule r:  IF PRi  is Air  THEN Pi = Pir , 
r =1, 2, …, 18 
where Air is a rating level of the fuzzy set that ranges from 
Very Low- to Extra High+ for the ith parameter and is 
characterized by the selected membership function, and Pir 
is the corresponding quantitative value of the rth rating level 
for the ith parameter. Furthermore, with this fuzzy rule, the 
premise part is the fuzzy set and the consequent part is the 
non-fuzzy value. Overall, the fuzzy rules build the links 
between a linguistic rating level and the corresponding 
quantitative value of a parameter.  

 Functions of Each Layer 
Layer 1: In this layer, the membership function of fuzzy set 
A translates the input, PRi, to the membership grade. The 
output of this layer is the membership grade of PRi , which is 
the premise part of fuzzy rules. Also, the membership 
function of the nodes in this layer is utilized as the activation 

function; in our proposed model, all the membership 
functions of each node in Layer 1 are the same. In 
subsequent sections, the selected membership function will 
be discussed in detail. 
 

         for i = 1, 2, …, 34                                                                                                               

             r =1, 2, …, 18                   (12)         

where    is the membership grade of Air (=VLo-, VLo, 
VLo+, Low-, Low, Low+, Nom-, Nom, Nom+, Hi-, Hi, Hi+, 
VHi-, VHi, VHi+, EHi-, EHi, or EHi+) with the input PRi     
or        continuous number [ ]19,0∈x  ;    is the membership 
function of Air .  
Layer 2: Producing the firing strength is the primary 
function of this layer.  The outputs of Layer 1 are the inputs 
of each node in this layer. In each node, Label Π multiplies 
all inputs to produce the outputs according to the defined 
fuzzy rule for this node. Consequently, the outputs of this 
layer are the firing strength of a rule. The premise part in the 
defined fuzzy rule of our proposed model is only based on 
one condition. Therefore, the output of this layer, the firing 
strength, is not changed and is thus the same as the inputs, 
or membership grade.  
 
                                                                                 (13) 
 

Layer 3:  The function of this layer is to normalize the 
firing strengths for each node. For each node, labeled 
"N", the ratio of the rth rule’s firing strength to the sum of 
all rules’ firing strengths related to PRi is calculated. The 
resulting outputs are known as normalized firing strengths.  

                                                                                 (14) 

 
Layer 4: An adaptive result of Pi is calculated with the 
Layer 3 outputs and the original input of Pi in the fuzzy 
rules by multiplying    . The outputs are referred to as 
consequent parameters. 
                                                                                 (15) 

Layer 5: This layer aims to compute the overall output with 
the sum of all reasoning results from Layer 4.  
 
                                                                                 (16) 
 

 Membership Function 
This section describes the triangular membership function 
utilized in this work; this particular function is depicted in 
Fig. 4. Each rating level has the corresponding triangular 
membership function. This membership function is a 
piecewise-linear function. Throughout the learning process, 
the membership function is maintained in a fixed state.  The 
following calculation defines the triangular membership 
function: 
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                                               for r =1, 2, …, 18             
(17) 

where x = PRi or 
[ ]19,0∈x

Fig.4. Triangular Membership Function

There are several factors that influenced our selection of the
triangular membership function; first, the nature of the NFi
outputs was the most crucial reason. Pir is a piecewise-linear
interpolation 

between parameter values (Pi1, … Pi18 ) of the ith parameter, 
Pi. Hence, the selection of the triangular function can be
derived from the same results as a linear interpolation.
Secondly, one of the purposes of this research is to evaluate
the extent to which Huang’s proposed soft computing
framework can be generalized. Therefore, it was important
to use the same membership function as that utilized in
Huang’s research in order to perform validation with a
similar fuzzy logic technique (Huang 2003). Finally, the
triangular membership function is easy to calculate. 

 Learning Algorithm 
With ANFIS, there is a two-pass learning cycle: the forward
pass and the backward pass. The pass that is selected
depends on the trained parameters in ANFIS. In our
proposed model, when the error exists between the actual
effort and the estimated effort, the outputs are fixed and the
inputs are trained. Hence, the backward pass is the type of
learning algorithm that this study uses. It is generally a
hybrid method of Least Square Estimate (LSE) and Back 

Propagation, which is calculated using a gradient decent
algorithm that minimizes the error. For the learning
algorithm, the parameters of the premise part and the
consequent part are defined in two sets, as illustrated below: 

X = {x1, x2, ... , xn}  
   = {PR1, PR2, ... , PRN, SIBR, Size}                         (18) 
P = {{P11, P21, …, PN1}, {P12, P22, …, PN2}, …, {P1M, P2M, …, 
PNM}}                                                       (19) 

where N = 34 and M =18; X represents the inputs of the
model, which are the rating levels, SIBR and Size; and P is
the parameter values of the parameters. 

The output of each NF can be defined when substituting 
(13) and (14) into (16): 

for  i = 1, 2, …, 34                       (20) 

Pi is the weighted sum of inputs X for PRi .  
In the section III.B, the equations for the SEER-SEM Effort
Estimation are described in detail. The equations (1), (2), 
(3), (4), and (5) can be re-written as follows with the
parameters symbols: 

                                                                                                                                                                          (21) 

ctbx = P1  P2-25  P8  P3  P9  P11                       (22) ParmAdjustment  
=P23-4P31-6P24-5P26-7P35-22  P12…P21P27… 
P30P33P32                                                                                (23) 
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Utilizing equations (18) to (21), the proposed neuro-fuzzy 
model can be written: 

                                                                                                                                                     
                                             (24) 
 

If there are NN project data points, the inputs and outputs 
can be presented as (Xn, Eacn), where n = 1, 2,…, NN, Xn 
contains 34 parameters as well as SIBR and Size, Eaen is the 
actual effort with Xn inputs for project n. The learning 
procedure involves adopting the gradient descent method to 
adjust the parameter values of rating levels that minimizes 
the error, E. According to LSE, the error, E, on the output 
layer is defined as follows: 

 
 
 
                                   (25) 
 

where wn is the weight of project n and Een is the estimation 
of  the output for project n.  
                                                                                 (26) 
 
The following steps are used to perform gradient descent 
according to the Back Propagation learning algorithm.  
According to the SEER-SEM effort estimation model 
presented by equations (21) to (23), the results of the partial 
derivative of Een with respect to  
 
Pir,            
                      , are different.  
 

 
 
                                 (27)            
 

 
 
 
                   
           

for i = 1, 2, …, 34                     (28) 

                                                                                (29) 

After           is calculated out, equation (30) is used to  
 
calculate the adjusted parameter values.    
              
 
 
                                                                                 (30)           
 
where α > 0 is the learning rate and l is the current iteration 
index.  
 

 Monotonic Constraints 
A monotonic function is a function that preserves the given 
order. The parameter values of SEER-SEM are either 
monotonic increasing or monotonic decreasing. The 
relationship between the monotonic functions and the rating 
levels have been accepted by the practitioners as a common 
sense practice. For instance, the values of ACAP are 
monotonic decreasing from VLo- to EHi+, which is 
reasonable because the higher the analysts’ capability, the 
less spent on project efforts. As for TEST, its values are 
monotonic increasing because the higher test level causes 
more effort to be spent on projects. After calibrating 
parameter values by the proposed model, the trained results 
of these values may contravene the monotonic orders, so 
that the trained values are changed to a non-monotonic 
order. For instance, the parameter value of the ACAP rating 
Hi can be greater than the value of the corresponding rating, 
EHi. This discrepancy can lead to unreasonable inputs for 
performing estimation and can impact the overall accuracy. 
Therefore, monotonic constraints are used by our model in 
order to maintain consistency with the rating levels. 

IV. EVALUATION 

For evaluating the neuro-fuzzy SEER-SEM model, in total, 
data from 99 studies is collected, including 93 published 
COCOMO 81 projects and 6 industry studies in the format 
of COCOMO 87 (Ho 1996; Panlilio-Yap and Ho 2000). An 
algorithmic estimation model, E = a×Sizeb comprises the 
general form of COCOMO and SEER-SEM (Fischman, 
McRitchie, and Galorath 2005; Jensen, Putnam, and 
Roetzheim 2006). Specifically, this model enables us to use 
the COCOMO database for evaluating the proposed SEER-
SEM model in spite of the difference between COCOMO 
and SEER-SEM. In fact, various studies have revealed the 
similar estimation performances of COCOMO and SEER-
SEM (Madachy, Boehm, and Wu 2006; USC Center for 
Software Engineering 2006).   
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Fig.5.  Main Evaluation Steps.

 
Fig. 5 shows the main steps of our evaluation. First, in order 
to use both published COCOMO 81 and industrial project 
data in the evaluation, the information was translated into 
the corresponding format of SEER-SEM data. Second, there 
are four cases for evaluating the prediction performance of 
our neuro-fuzzy model.  
1) Performance Evaluation Metrics 

The following evaluation metrics are adapted to assess and 
evaluate the performance of the effort estimation models.  
 

 Relative Error (RE)    
( )

rtActualEffo
rtActualEffoEffortEstimationRE −

=  

The RE is used to calculate the estimation accuracy.  
 
 

 Magnitude of Relative Error (MRE)  

rtActualEffo
rtActualEffoEffortEstimation

MRE
−

=  

 
 Mean Magnitude of Relative Error (MMRE) 

  
The MMRE calculates the mean for the sum of the MRE of 
n projects. Specifically, it is used to evaluate the prediction 
performance of an estimation model.  

 Prediction Level (PRED)   
( )

n
kLPRED =   

where L is the maximum MRE of a selected range, n is the 
total number of projects, and k is number of projects in a 
set of n projects whose MRE <= L. PRED calculates the 
ratio of  projects’ MREs that falls into the selected range (L) 
out of the total projects. 
(e.g. n = 100, k =80,  where L= MRE <= 30%: PRED(30%) 
= 80/100 = 80%) 
 
 
 

2) Dataset 

There are two major steps in transferring data from 
COCOMO 81 to SEER-SEM: first, information is converted 
from COCOMO 81 to COCOMO II and then from 
COCOMO II to SEER-SEM.  The main guidelines are 
referred to (Madachy, Boehm, and Wu 2006; Reifer, 
Boehm, and Chulani 1999). In the method of the second 
step, 20 of the 34 SEER-SEM technical parameters can be 
directly mapped to 14 COCOMO II cost drivers and 1 scale 
factors, 1 COCOMO 81 cost driver, and 2 COCOMO 87 
cost drivers. The remainder of the SEER-SEM parameters 
cannot be transferred to the COCOMO model, and as a 
result, they are set up as nominal in SEER-SEM. After 
transferring 93 COCOMO 81 project data points, the 
estimation performance with transferred data are evaluated 
with the estimation performance metrics. Table 1 presents 
the details of the prediction performance of COCOMO 81, 
COCOMO II, and SEER-SEM.  

 
Table 1. Estimation Performance with Transferred Data. 

 
 Cocomo 81 Cocomo II Seer-sem 
Mmre (%) 56.46 48.63 84.39 
Pred(20%) 36.56 37.63 36.56 
Pred(30%) 51.61 54.84 45.16 
Pred(50%) 76.34 78.49 56.99 
Pred(100%) 92.47 94.62 81.72 
# of Outliers 22 20 39 

 
The data transferring from COCOMO 81 to COCOMO II 
keeps the very close performance with little improvement 
when doing COCOMO II estimation with the transferred 
data.  The transferring from COCOMO II to SEER-SEM 
causes the MMRE decreasing and the outliers increasing. 
Most of the new outliers come from the embedded projects 
whose MREs are lower than 50% before being transferred to 
SEER-SEM. The PRED is still stable and there is not a huge 
change. Overall, transferring from COCOMO 81 to SEER-
SEM is feasible for our evaluation, especially when the 
actual project data in the format of SEER-SEM are difficult 
to obtain. We use the online calculator of the USC Center 
for Software Engineering to perform COCOMO 81 and 
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COCOMO II estimation. We do SEER-SEM effort 
estimation by two methods. One is performed by the SEEM-
SEM tool (SEER-SEM for Software 7.3) which is offered 
by GAI, and the other is done manually by Microsoft Excel 
with the equations of SEER-SEM effort estimation model as 
presented in the section III.B. The SEER-SEM effort 
estimation model is also implemented as part of our research 
because it is part of our proposed model. The estimation 
performance by the SEER-SEM tool and Excel are very 
close. This is a way to make sure the algorithm of SEER-
SEM effort estimation presented in this paper to be correct. 
We select the results done manually to avoid the impact 
from other parameters settings in the SEER-SEM tool.  
The dataset of 6industrial project data points is from the 
COCOMO 87 model, which is slightly different than 
COCOMO 81, as the effort multipliers RUSE, VMVH (Host 
Volatility), and VMVT (Target Volatility) are not used in 
COCOMO 81.  However, RUSE can be transferred to 
COCOMO II directly because it is one of the COCOMO II 
cost drivers, and VMVH and VMVT can be transferred to 
the SEER-SEM parameters DSVL and TSVL. The rest of 
COCOMO 87 cost drivers are matched to the corresponding 
cost drivers of COCOMO 81. Then, they are transferred to 
COCOMO II and SEER-SEM. 

3) Evaluation Cases 

After transferring the data, we conducted four main case 
studies to evaluate our model. These cases, which used 
different datasets from 93 projects, were utilized to perform 
training on the parameter values. The 93 project data points 
and the 6 industrial project data points were adopted for 
testing purposes. The original SEER-SEM parameter values 
are trained in each case. The learned parameter values of the 
four cases are different. This reason causes the prediction 
performance difference amongst the cases and the SEER-
SEM. In order to assess the prediction performance of the 
neuro-fuzzy model, we compared SEER-SEM effort 
estimation model with our framework. Several performance 
metrics were used for the analysis of each case, including 
MRE, MMRE, and PRED.  Accordingly, Table 2 presents 
the MMRE results from Cases 1 to 4, and Table 3 shows the 
MMRE results of the industrial project data points. Table 4 

shows the PRED results of Cases 1, 2, and 3.  The PRED 
results of Case 4 are presented in Table 5.In the tables 
presenting the analysis results, we have included a column 
named Change‖, which is used to indicate the performance 
difference between SEER-SEM effort estimation model and 
our neuro-fuzzy model. For the MMRE, the prediction 
performance improves as the value becomes closer to zero; 
therefore, if the change for these performance metrics is a 
negative value, the MMRE for the neuro-fuzzy model is 
improved in comparison with SEER-SEM.  Additionally, 
the PRED(L)‖ in Table 4 represent the prediction level of 
the selected range, referring to the definition presented in 
the section IV.A; a higher prediction level indicates a 
greater level of performance for PRED. For PRED, a 
negative value for the Change‖ indicates that our model 
shows a decreased level of performance as compared to 
SEER-SEM. Finally, the results for both MMRE and PRED 
are shown in a percentage format. 
  

Table 2. MMRE of 93 Published Data Points. 
 

Case ID SEER-SEM Validation Change 
C1 84.39 61.05 -23.35 

C2 84.39 59.11 -25.28 

C3 84.39 59.07 -25.32 

C4-1 50.49 39.51 -10.98 

C4-2 42.05 29.01 -13.04 
         

Table 3. MMRE of Industrial Project Data Points. 
 

Case ID 
MMRE (%) 

SEER-SEM Industrial Average Change 

C1 37.54 35.54 -2 

C2 37.54 47.57 10.03 

C3 37.54 47.16 9.62 

C4-1 37.54 33.20 -4.34 

C4-2 37.54 30.39 -7.15 

 

 

 
 

 
Table 4. PRED of Cases 1, 2 and 3. 

 SEER-SEM Neuro-Fuzzy Model   

PRED(L) PRED (%) C1 C2 C3 
  PRED (%) Change PRED (%) Change PRED (%) Change 
PRED(20%) 36.65 29.03 -7.62 15.05 -21.6 15.05 -21.6 
PRED(30%) 45.16 37.63 -7.53 18.28 -26.88 18.28 -26.88 
PRED(50%) 56.99 64.52 7.53 36.56 -20.43 38.71 -18.28 
PRED(100%) 81.72 92.47 10.75 97.85 16.13 97.85 16.13 
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Case 1 (C1): Learning with project data points excluding all outliers 

This case involved training the parameters of projects where 
the MREs are lower than or equal to 50%. There are 54 
projects that meet this requirement. Since we wanted to 
perform learning without any impact from the outliers, the 
learning was done with 54 project data points, while 93 pieces 
of project data and the 6 industrial project data points were 
used for testing. When using the neuro-fuzzy model, the 
MMRE decreased from 84.39% to 61.05%, with an overall 
improvement of 23.35%. After testing data from the 93 
projects, we used the 6 industrial project data points to 
perform testing. The results of this evaluation present the 
same tendency as the testing results with the 93 project data 
points: the MMRE of the neuro-fuzzy model is lower than the 
MMRE of SEER-SEM by 2%. With the neuro-fuzzy model, 
PRED(20%) and PRED(30%) decreased by 7.62% and 7.53% 
in comparison to the same values using SEER-SEM; however, 
PRED(50%) and PRED(100%) improved with the neuro-
fuzzy model by a factor of 7.53% and 10.75% respectively, 
which indicates that the MRE of the neuro-fuzzy model, in 
comparison with that of SEER-SEM, contained more outliers 
that were less than 100% or 50%. Furthermore, the MMRE 
was significantly improved with the neuro-fuzzy model due to 
the increase of outliers that were less than 100%. By 
integrating the results from the MMRE, PRED, and the 
industrial project data points, this calibration demonstrates 
that the neuro-fuzzy model has the ability to reduce large 
MREs. 

Case 2 (C2): Learning with all project data including all outliers 

 
In Case 2, we used the data points from all 93 projects to 
calibrate the neuro-fuzzy model without removing the 39 
outliers. The testing was performed with the same project 
dataset used in the training and with the 6 industrial project 
data points. In comparison to Case 1, this test attempted to 
ascertain the prediction performance when the learning 
involved the outliers as well as the effects of the outliers on 
the calibration.  the MMRE using SEER-SEM comparison to 
the MMRE using SEER-SEM. Nevertheless, the industrial 
project data points caused the MMRE to worsen with the 
neuro-fuzzy model by 10.03%. The results of PRED 
demonstrate that PRED(20%), PRED(30%), and PRED(50%) 
decreased by more than 20%, while PRED(100%) increased 
by 16.13% with the neuro-fuzzy model. Moreover, these 
results also indicate that the neuro-fuzzy model is effective for 
improving the MREs that are greater than 100%. As a result, 
the MMRE in all of the datasets are improved when the neuro-
fuzzy model is utilized. In Cases 1 and 2, the results of PRED 
and the 6 industrial project data points show that the neuro-
fuzzy model causes large increases in small MREs while 
reducing large MREs. Hence, the decrease of large MREs 
leads to the overall improvement of the MMRE, thus showing 
the effectiveness of the neuro-fuzzy model. 

Case 3 (C3): Learning with project data excluding part of outliers 

After training, which included and then excluded all of the 
outliers, Case 3 calibrated the neuro-fuzzy model by removing 
the top 12 of 39 outliers where the MRE is more than 150%. 
In this case, 87 project data points are used to perform 
training, and the 93 project data points and the 6 industrial 
project data points are used for testing. The results of Case 3 
are almost identical to the results of MMRE and PRED as 
demonstrated in Case 2. Specifically, for the neuro-fuzzy 
model, the MMRE of industrial project data points is 
worsened by 9.62%.  Overall, as compared to Case 2, 
calibration excluding the top 12 outliers does not make a 
significant difference in the performance of the model.   

Case 4 (C4): Learning with part of project data points 

In the previous three cases, all data points from the 93 projects 
were used for testing. However, in Case 4, we used part of this 
dataset to calibrate the neuro-fuzzy model, and the rest of the 
data points, along with the 6 industrial project data points, 
were used for testing. The objective of this case was to 
determine the impact of the training dataset size on the 
calibration results. Table 2, Table 3, and Table 5 present the 
results. 
 

Case 4 -1 (C4-1):  

Learning with 75% of project data points and testing with 25% of 
project data points 

This sub-case performed training with 75% of the 93 project 
data points and testing with the remaining 25% of these 
points. The project numbers for the training data points ranged 
from 24 to 93, while those for the testing points ranged from 1 
to 23 and also included the 6 industrial project data points. To 
analyze the results, we compared the performance of SEER-
SEM to that of the neuro-fuzzy model for Projects 1 to 23. In 
this case, the neuro-fuzzy model improved the MMRE by 
10.98%. Furthermore, PRED(30%) and PRED(100%) with 
our model improved by 4.35% and 8.70% respectively. 
Finally, with the neuro-fuzzy model, the MREs of all 23 
project data points were within 100%. In this case, the testing 
results of the industrial project data points are improved from 
the previous tests by 4.34%. These results demonstrate the 
effective performance of the neuro-fuzzy model in reducing 
large MREs. 

 Case 4 -2 (C4-2):  
Learning with 50% of project data points and testing 
with 50% of project data points 

Case 4-2 divided the 93 project data points into two subsets. 
The first subset included 46 project data points that are 
numbered from 1 to 46 and were used to perform testing.  On 
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the other hand, the second subset contained 47 project data 
points, numbered from 47 to 93, which were used to train the 
neuro-fuzzy model.  In comparison to Case 4-1, this test 
contains fewer training data points and more testing data 
points. Accordingly, we analyzed the performance results of 
the 46 project data points as estimated by both SEER-SEM 
and the neuro-fuzzy model. In this case, the MMRE improved 
by 13.04% when using the neuro-fuzzy model. Specifically, 
the results of PRED showed improvement from those in Case  
 
4-1; not only were the MREs of all 46 project data points 
within 100%, but the MREs of most project data points were 
also less than 50%. Furthermore, in the testing that involved 
the 6 industrial project data points, the results were better than 
those in Case 4-1. Using the neuro-fuzzy approach, the 
MMRE of the 6 industrial project data points improved by 
7.15%, which was the greatest improvement among all of the 
cases in this study. 

4) EVALUATION SUMMARY  

In this section, we summarize the evaluation results by 
comparing the analysis of all of the cases as presented in the 
previous sections. Fig. 6 shows the validation summary for the 
mmre across all of the cases. Specifically, the mmre improves 
in all of the cases, with the greatest improvement being over 
25%. 

 

Fig.6. Summary of MMRE Validation. 
 

Table 6 illustrates the PRED averages for SEER-SEM in all of 
the cases, and Fig. 7 shows the PRED averages for all of the 
cases using the neuro-fuzzy model. Compared to the PREDs 
from SEER-SEM, the averages of PRED(20%), PRED(30%), 
and PRED(50%) with the neuro-fuzzy model do not show  

 
improvement. However, the average of PRED(100%) is 
increased by 12.14%, which indicates that the neuro-fuzzy 
model improves the performance of the MMRE by reducing 
the large MREs. 
 

Table 5. Summary of PRED Average. 
 

 SEER-
SEM 

Average of 
Validation Change 

PRED(20%) 39.76% 27.48% -
12.28% 

PRED(30%) 49.27% 36.46% -
12.81% 

PRED(50%) 62.02% 55.35% -6.67% 
PRED(100%) 85.55% 97.69% 12.14% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.  Summary of PRED Validation 
 

Fig. 8 presents the MMREs of industrial project data points 
from all of the cases. The MMRE from Cases 1 and 4 
demonstrate an improvement of no more than 7.15%. The 
calibrations with the outliers in Cases 2 and 3 lower the 
prediction performance of these two cases.  Thus, for the 
neuro-fuzzy model, the improvement of the MMRE of 
industrial projects is minimal.  
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Fig.6. MMRE of Industrial Project Data Points. 

V. CONCLUSION 

Overall, our research demonstrates that combining the neuro-
fuzzy model with the SEER-SEM effort estimation model 
produces unique characteristics and performance 
improvements. Effort estimation using this framework is a 
good reference for the other popular estimation algorithmic 
models. The neuro-fuzzy features of the model provide our 
neuro-fuzzy SEER-SEM model with the advantages of strong 
adaptability with the capability of learning, less sensitivity for 
imprecise and uncertain inputs, easy to be understood and 
implemented, strong knowledge integration, and high 
transparency. 
Four main contributions are provided by this study: 

a) ANFIS is a popular neuro-fuzzy system with the 
advantages of neural network and fuzzy logic 
techniques, especially the ability of learning. The 
proposed neuro-fuzzy model can successfully 
manage the nonlinear and complex relationship 
between the inputs and outputs and it is able to 
handle input uncertainty from the data.  

b) The involvement of fuzzy logic techniques improves 
the knowledge integration of our proposed model. 
Fuzzy logic has the ability to map linguistic terms to 
variables. Accordingly, the inputs of our model are 
not limited to linguistic terms and can also work with 
numerical values. The defined fuzzy rules are an 
effective method for obtaining the experts‘ 
understanding and experience to produce more 
reasonable inputs.  

c) There are two techniques introduced in this research: 
the triangular membership function and the 
monotonic constraint. Triangular Membership 
Functions are utilized to translate parameter values to 
membership values. Furthermore, monotonic 
constraints are used in order to preserve the given 
order and maintain consistency for the rating values 
of the SEER-SEM parameters. These techniques 
provide a good generalization for the proposed 
estimation model. 

d) This research proves that the proposed neuro-fuzzy 
structure can be used with other algorithmic models 
besides the COCOMO model and presents further 
evidence that the general soft computing framework 
can work effective with various algorithmic models. 
The evaluation results indicate that estimation with 
our proposed neuro-fuzzy model containing SEER-
SEM is more efficient than the estimation results that 
only use SEER-SEM effort estimation model.  
Specifically, in all four cases, the MMREs of our 
proposed model are improved over the ones where 
only SEER-SEM effort estimation model is used, and 
there is more than a 20% decrease as compared to 
SEER-SEM. According to these results, it is apparent 
that the neuro-fuzzy technology improves the 
prediction accuracy when it is combined with the 
SEER-SEM effort estimation model, especially when 
reducing the outliers of MRE >100%.  

Although several studies have already attempted to improve 
the general soft computing framework, there is still room for 
future work. First, the algorithm of the SEER-SEM effort 
estimation model is more complex than that of the COCOMO 
model. Prior research that combines neuro-fuzzy techniques 
with the COCOMO model demonstrates greater 
improvements in the prediction performance. Hence, the 
proposed general soft computing framework should be 
evaluated with other complex algorithms.  Secondly, the 
datasets in our research are not from the original projects 
whose estimations are performed by SEER-SEM. When the 
SEER-SEM estimation datasets are available, more cases can 
be completed effectively for evaluating the performance of the 
neuro-fuzzy model.  
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